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Abstract

In order to provide performance improvements in the
execution of iarge logic programs, it 1s highly desirable
to 1avestigate the relationships between logie, data-base
systems and knowledge-based systems 1n the context of
massively parallel architectures  This paper presents
a model for the interpretation of logic programs in this
tvpe of environment and overviews the algornithms
under deveiopment

An interpreter that implements the model has teen
demonstrated in simulations on a number of small
pregrams  Implementation requires that only a small
set of hardware primitives be available, these have
been successfully implemented on a working prototype
machine, DADO

Current. research aims to develop the model into a
practical and efficient logic programming system for
use on the machine

1. Background and Introduction

Lngic orogramming 1s a programming methodology
tased on <vmholie logic. nvolving the use of Horn
clauses  These are umversally quantified first order
axiom: contuiming  at  least one positive literal, 2
restrictad form of the general clause encountered n
first order predicate caleulus  As a consequence of
their  formal mathematical semantics. Horn  clans=s
provide an exphcit declarative interpretation In
addition. Kowalskt [11] has assigned them 2 procedural
semantics that provides a bams for theirr use n
programming and effectively delines how a program s
to be executed Thz logic-based languages {1 19 2§]
that have been developed 2s a result are based on hus
procedural interpretation of iHorn clauses  Under this
interpretation terms in the body of a clause constitute
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subgoals that must be examined in order to satisfy the
head goal. For pedagogical reasons, 1n this paper we
will refer to the syntactic structure and terminologv of
Prolog when discussing logiec programming [ormalisms
Thus the following clause

logician{X) - human(X), teaches(X logic)

may be read declaratively as

for every X. X is a logician

tf X is human
and X teaches logic ‘

or procedurally as

to solve the goal of finding if X s a
logician. solve the goal of finding if X is a
huwman and solve the goal of finding if X
teaches logic

Execution of a legic program comprising a et of Horn
clanses involves the proof of a user directive using the
tlanses an the program The results of tha =xecution
are the poss:ble binding sets for vanables oceurring in
the directive. each of which 15 existentially quantifiad.
ar fadure 1f the proof cannot te constructed
the meaning of 3 program 13 eszentially declarative in
nature  different control strategies cxn be u:ed to
constru t the preof  Prolog (200 26) emplov: & simple
Jdepth-fiezt search of the AND/OR definad by
~lanzes 1n the program A number of other lonc.
tased langnage implementations {16 19] have provided
treadth-first  search and more sophisticated controf
structuras in in attempt to improve flexibility and
~fficiency on von Neymann machines [l 27)

-ty

Since

free

The cloze relationship between logic and fati-tase
svstems [T 18] provides an excellent theoretical basis
for the development of both data-base and
knowledge-based  systems Logic  programming
languages provide a naturai framework for  the
implementation of these svstems sinca they provide
both the basic inference mechanism requir=d 2nd a
uniform representation for factual and proczdural

verems



knowledge Kunifup and Yokota [12] have shown that
Prolog. augmented with the sef-of meta-predicate, 1s a
relationally complete query language and have outlined
methods to interface data-base operations and problem
solving systems within a Prolog environment The
architectural model of this and other svstems [10]
involve separate raasoming ard relational searching
£ngines

The model describzd :n this paper a zngle
inferznce engine for logic programming n 2 massively
parallel environment It may be implemented using
associalive opcrations similar to thosa discussed in the
literature on data-base machines and a:zociative
processors [23]  The model makes use of parallelism
inherent 1n logie programs and as such does not
requirs the uze of additional non-logical annotations
A number of opportunities exist for parallel execution
of logic programs [> 15] The form described in this
paper 1 an exiension of the modsl termed
parallelism [3]

uses

search

2. The Model

The mod~l presented may be viewed conceptually as
the confliguration shown in figure 1, making no
commitment to a particular connection topology A
sypervizory, conlrol processor (CP) communicates with
a large numtber (on the order of many thousands) of
procczsing elements (PE's) in a2  tghtly coupled
enviroament that s single inslruction, multiple data
stream (SIMD) [6] 10 style but differs in that 1t allows

remota  procedure invocation There 15 no giobal
memory =ach PE has it's own local memory and the
PE c:onliguratton may be associatively addressed

Since the PE s are assumed to be relatively simple in

nature  the svstem may effectively be viewed as an
intelligent memory where processing and storage are
exten:ively intermingled
o O
o 5 © o
o) 0]
o o
®)
Ccp
O Rule Bodies and
o) Top Level Algorithm o o
O
PEs O O O o o

Rule Heads Unit Clauses
and Local Subroutines
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always initiated by the control
processor through a small number of primitive
hardware instructions The synchromzation of the
system 1s assumed to be inherent in the operation of
these primitive instructions, and they must be
efficiently 1mplemented In order to describe the
semantics of the instructions, three registers are of
interest

Communication 1s

CPR the control processor register used for
communication

the processing element communication register
the enable flag resident at each PE. when true,
the PE may participate in communication with

the CP

PER
EN

The necessary and sufficient set of primitive hardware
mnstructions  required to implement the model are
d=fined as follows

ENABLE Set EN to true, in every PE

BROADCAST  If EN 15 true then copy CPR
to PER, 1n every PE

REPORT If EN 1z true then copy PER to

CPR assuming only one PE 1s
enabled

Copy min(PER) to CPR, (min(PER)
15 the minimum value held 1n a PER
register in any enabled PE})

By  broadcasting
associatively based 1r.

an  appropniate  code  these

ructtons can be used to invoke
local subroutines at each PE Local subroutines
perform  various [unctions which include memory
management. unification and manmipulation of variable
bindings  Their execution may effect the contents of
the three communication regsters

The algorithms described in the following sections may
be implemented using only this small set of
instructions  The instructions have been demonstrated
on an existing architecture suggesting that a practical
implementation 15 realizable

2.1 The Distribution of Information

In order to reduce both the time spent In
communication and the speed of various matching
algorithms, the information stored locally at each PE
1s kept in a tokenized form Tokens are typed
pointers into a symbol table kept at the control
processor, the sole area in the system that the print
form of the program 1s mantained (8]

The performance of many sequential algorithms can be
enhanced by using the associatively based mechanisms



previously described [9].  In general, however, if a
significant amount of information is to be accessed, a
good hashing or table lookup technique is likely to be
as eifective due to the communication costs involved.
When a logic program is loaded, umt clauses and rule
heads are distributed freely throughout the PE's Rule
bodies are stored in the control processor rather than
at the PE’s This eliminates the cost that would
otherwise be 1incurred 1n transferring them f{rom the
PE’s to the control processor upon rule activation. A
token is stored with each rule head to identify the
corresponding rule body for retrieval from the control
processor when needed. Each umit clause and rule
head 1s assigned to one and only one PE, howaver
each PE may contain several pieces of information.
The distribution of this information maybe completely
arbitrary and thus considerable flexibility 1n allocation
strategy exists Intelligent distribution schemes can
easily improve performance At present, clauses are
allocated to a particular PE based on the staue
complexity of clauses already at the PE and f
possible, no two clauses within a PE use the same
predicate More sophisticated run time ailocation
techniques are presently under consideration

2.2 The Top Level Algorithm

An abstract algorithm, which resides at the control
processor and supervises the execution of logie
programs, i1s presented (n the appendix The algorithm
traverses the AND/OR search space defined by the
clauses in the program using four principle operations,
unification, join, substitution and purging Each
operation makes extensive use of the primitive
hardware instructions detailed previously in order to
efficiently manage variable bindings made during
program execution

In summary the algorithm accepts a directive from
the wuser and expands the entire first level of the
search space. producing sets of bindings for variables
1n the directive [t then loops, attempting to collect a
binding set from the PE configuration and print it as
a resylt Binding sets take two forms and are
generated during umfication and join operations as the
algorithm proceeds.  Simple binding sets are those
involving only unit clauses (1 e, clauses with no body)
while complez binding sets are those which include
bindings made when a rule head is involved in the
operations Consider the following example

Goal f(1)

Contents of PE 5 {Clause 1, umt clause, f{(X)}
Contents of PE 20 {Clause 2, rule, {(Y) - body(2)}
Coentents of Control Processor:  {body(2) - h(Y), g(2)}

On completion of unification, PE 5 will contain a
ample binding set (1e, [ X/1 |) while PE 2 will
contain a complex binding set (1e, [Y/1-->body(2)})
When a simple binding set s reported to the control
processor. the bindings are immediately printed as a
rescit When a complex binding set 1s reported
furtrer inferences must be made in order to elaborate
the :=arch :pace and complete the proof. [n this case,
the rules referenced in the complex binding set must
be acuvated This 1s achieved by accessing the
relevant body using the token associated with each
binding (eg, body(2)), making any relevant
instantiations (e g, Y/1), renaming variables, and then
broadcasting the instantiated body (e g, <h(l).g(_1)>
) to the PE's to be solved. This causes the search
space to be partially elaborated beyond the first level
of the execution tree  The algorithm terminates when
no further binding sets can be collected, at which
point the user 15 prompted for a new directive

Stnce a directive may consist of a conjunction of goals,
all goals must be solved in order to satisfy the
directive. In attempting to solve a particular goal, the
control processor broadcasts the goal to each PE which
immediately begins searching for clauses relevant to
the goal To determine which clauses are relevant, a
unification algonithm 1s executed which, if successful,
produces a set of bindings for variables involved 1n the
unification operation  Since the unification at each
clause 1s independent of the others 1n the program,
they may be carried out in parallel. After a goal 1s
broadcast and unification has begun, a number of
processors may become idle because they do not
contatn relevant clauses By broadcasting additional
goals, prior to the completion of the first goal, these
idle processors may be used to solve the additional
coals in  parallel Jince each goal 1s solved
independently, each producing a distinct set of variable
bindings, and because goais may :hare vanables, it 1s
necessary  to ehiminate conflicting bindings once all
goals are complete This may be carried out using a
join 3] operation which constructs a resuit set for the
conjunction as a whole

Since a conjunction will exist 1s the body of a clause,
the variable bindings found using the join operation
must be transformed into a form consistent with the
clause head  This operation involves a substitution
algorithm (explained in more detail 1n section 5) which,
when complete, allows the space occupted by variable
bindings i1n the conjunction to be reclaimed The
actual reclamation of space 13 carried out using a
purging algonthm

The very nature of the problem involves the parallel
axploration of a possibly exponential search space, it 1s



important to mimimize, as far as 1s possible. the space
used to store bindings  The algorithms generate a
[frontier sel which comprises a complete
characterization of the search space cast i1n terms of
the rules which must eventually be activated 1n order
to yield all possible results This represents the
mimmum nformation that must bz maintained 1n
order to traverse the search space As results are
found they are printed yielding back the space they
occupy

3. The Unification Operation

A linear umfication algonthm {17] operates locally at
#ach PE on conjunctions broadcast from the control
procezsor  Consider the following zomewhat 1deslized
scenario which 1z intended to iilustrate the techmque

Conjunction to te unified a b
Contents of PE 1 ay
Contents of PE 2 b

The following sequence of events results

1 The CP broadcasts the conjunction ‘a, b’ to
everv PE

2 PE 1 begins unifying <a 21>, at the same
time PE 2 begins unmifying <ab;>. fals
quickly and progresszes to unify <bb;>

3 PE 1 completes unifying <a.a)>, attempts
to umify <ba;> and fals quickly

4+ PE 1 and PE 2 complete unification

The binding sets created are identified by a level
number that 1s associated with each goal. Thus
bindings for "a’ are tagged 'level 1' and those for b’
are tagged ‘level 2' distinguishing them A sequence
number 1s also allocated to each binding set that
relates to the position of the unifiable clause 1n the
order of the program text  The unification process
reduces the time taken to find all bindings for a
conjunction to the time taken to umify the most
complex single goal plus a small constant for each
fatlure goal  When failure of a conjunction occurs, it
is detected quickly by probing to see if there were any
results at all {or each particular goal

Having obtained binding sets it 1s inevitably necessary
at some potnt to transmit them across the network
Consider the following example supplied by Paterson
and Wegman {17]
{G(F(x1 x1) F(x2.x2).

F(xn-1,xn-1}}, G(x?,x\?: xn)}

6!

If an expliat representation of the unifier 15 used, an
exponential amount of space 1s required, techniques for
sharing  structure (DAG's) c¢an be employed to
overcome the problem [I7] In a2 distnibuted
environment,  additional problems occur when the
unifier must be transferred across the network In
particular  4f the structure of the n'th binding 1s
traversed and transmitted explieitly, the transmission
exponential time This problem may be
overcome using a similar  paradigm  to  sharing
structure namely.  common  substructures  are
transmitled only once This requires that a send
mark be uassocrated with each vanable at the PE n
which 1t resides  The first time the binding for a
variabie 1s transmitted the send mark 1s set  Further
sitempts to transmit the varniable binding cause 1t's
nime to be sent rather than 1ts structure Since
names are pointers into the symbol table in the
tontrol  processor,  the change of referencing
«nvironment. (PE environment to control processor
environment) resulting from the transmission does not
affect the structure which may now be reconstructed
at the receiver  These algorithms are presently being
implemented 1n the avalable hardware and take a
sutstantially different approach to the problem than
that advocated for FFP machines (14}

requires

4. The Join Operation

Consider the following clause which exhibits a famihar
froblem experienced 1n data-base systems, that of
shared variables that occur in a conjunction

grandfather(X, Z) - father(X, Y), parent(Y, Z)

Results for each goal 1in the clause body are
represented by sets of variable bindings that were
created  during  unification  and  are  distributed
throughout the PE configuration When the solutions
for each constituent goal are available, inconsistent
tindings for variables that are common to different
goals (eg, 'Y’ in the above clause) must be
eliminated  The remaining solutions form the result
set for the conjunctive goal taken as a whole, and
thus for the clause head Consider the following
distributed  binding  environment  resulting  from
unifications using the the above rule body:
Contents of PE 14
father(paul, jane)
level=1 sequence=1

bindings [ X/paul, Y/jane |

Contents of PE 5.
father(john, mary).
level=1 sequence=2

bindings: | X/john, Y/mary ]



Contents of PE 7
father(alex, andy)
level=1 sequence=3

bindings: | X/alex, Y/andy |

Contents of PE 11:

parent(andy. mark) bindings [ Y/andy, Z/mark |
level=2 sequence=4

Contents of Pt 3

parent(mary, addy) bindings: | Y/mary, Z/eddy ]
level=2 sequence=35

The set of atomic formulae (both unit clauses and rule
heads) represented in the PE configuration may be
regarded comprising several relations, each the
ertension of some goal hteral  Viewed 1n this way,
the elimination of binding conflicts may be carred out
by applying a relational equi-join [3] algorithm to sets
of wvartable bindings for goals occurring 1n  the
conjunction under consideration In outline the
algorithm proceeds as follows

as

FOREACH binding _set IN smallest _relation DO

{
enable(smallest _relation), 75 distinguished by level
binding report _an__unused _binding,
enable(largest _relation),
broadcast{binding), % parallel operations
broadcast _command(match _common _ variables),
brosdc.\st_command(form_uruon_of_results)_

}

This algorithm forms an ordered set of resuit bindings
The ordering 1s maintained by an array calculation
involving  the sequence numbers and provides
opportunity to ensure the correct operation of
sequentialities which may occur 1n some code segments
(eg. [/O operations) The above example forms the
following simple binding sets

Contents of PE 3

father(john. mary)

tindings | X/john, Y/mary, Z/eddy |
level=1 sequence=4

Contents of PE 7
father{alex. andy)
bindings | X/alex. Y/andy Z/mark |

level=1 sequence=>

Bindings from rule heads may be included 1n the join
result along with those from unit clauses As a
consequence, possible rule activations that may take
place appear in the result but are not executed until

the .
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they are required This lazy evaluation technique
ensures the correct operation of certain code sequences
{e g . streams) and also prevents unnecessary work

At the completion of a join operation, all binding sets
(both simple and complex) are left at PE's distributed
throughout the system and not at the control
processor

On a conventional von Neumann architecture, this
algorithm 1s  expensive to compute {O(n log nj)
However, using the primitive hardware operations
outhined earlier, 1t can be computed in time that s

strictly proportional to

- the size of the smallest set of results for
any goal involved in the join, and

- the
over

number of common variables joined

If the number of results at a particular PE becomes
large during some stage of the algorithm, individual
results must be redistributed. This adds an additional

cost that 1s proportional to the size of the result
relation The algorithm 1s based on a techmique
described in a doctoral dissertation by Shaw [23];

however, since the match phase of the operation must
be carried out over logical terms, unification must be
sed rather than a simple symbol matcher

Since the results for the constituent parts of the
conjunction are all available prior to the use of the
join and the size of the result sets may be obtained
=fficiently using the available hardware primitives, the
algorithm may use an optimal ordering in considering
results over the whole conjunction This 15 a similar
notion to that used by Warren [27] in the
implementation of an interpreter that reordered the
axecution of goals in relational data-base queries

When a join result involves the bindings made on the
head of 1 rule. the complex bindings created have a
special representation of the form

{ <common bindings>, <rule 'a’ bindings>, <rule ‘b’
bindings > <rule ‘n” bindings>}

This may be interpreted as

to complete this part of the search space,
aclivate rules a,b...n

Many such binding sets may exist within the PE
configuration The common bindings shown in the
above representation form the most restrictive set of
bindings for all rule invocations 1n the complex
binding This set 1s formed during the join operation



using  umfication If umfication falls the complex
tainding will not appear in the result set and no work
would be expended 1n proving the rules in the complex
tinding It 15 not yet clear that, n practical
applications. forming and maintaining the common
bindings 13 1n general less costly than attempting to
prove the rules involved Conzider the [ollowing
examyple [4]

I permute( “ [] )

2 ;wrmute(PL1 [PH|PL2]) -
delete{PH PL1 PL3)
permute(PL3 PL2)

3 delete{DA [DAIDL) DL)

4 delet«;DB [DC|DLI] [DC|DL2i -
delete{DB DL1 DL2)

A conventional Prolog interpreter would enter anfinite
rcgrsion if the above clauses were used with the goal

permute(A, {a])

After printing the first result. which 15 "A = [a]"
tacktracking causes the 'delets’ goal to hbe retried in
clauze 2 Thiz second call has the firzt argument
instantiated to ‘a’ and the other two arguments
uninstantiated  The delete algonthm then attempts to
find 2ll possible lists that ‘a’ may be deleted from, by
virtue of the depth first search involved. using clauses
3 and 4 The algornthms 1n thiz paper are able to
atihize all the anformation available to prevent nfinite
recursion an s similar manner to breadth first search
An explanation of how the above example 1z executed
will zerve to clarify how this 1z achreved

Imitrally  as a rezult of umiying the goal with the head
of clause 2 the following binding set is created

[ A/PL1 a/PH [J/PL2 ] ('a/b - “a is bound to bt}

Clauze 2 15 now activated and two goals are posted
(shown here with renamed vanables sigmified by *77),
delrtely "PL1 "PL3) and permute{"PL3 [])

deletern "PL1 "PL3) produces bindings

{ a/DA. [DA|DL]/?PL1, DL/°PL3 | a) from clause 3

[ /DB [DCIDL1}/°PL1 [DC|DL2)/°PL3 |

dause 4

t.) from

permutel"PL3 [} produces bindings

[ I/°PL3 ]

¢) from clause 1
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The join operation when apphed to the result sets for
the two goals now creates the set of hindings

| a/DA [DADL)/?PL1, []/°PL3, [}/DL | from a) and ¢)

Since *PL3 was bound to || win binding set ¢), at the
time the join 1s carried out the complex binding that
would have occurred from the combinatien of tinding
z#tz b} and ¢) 15 discarded. thus preventing the call to
‘delet= with  uninstantiated arguments and non
teTminating recursion

5. The Substitution and Purge Operations

When a complex binding is reported to the control
proceszor. it holds all the information required to
complete some =sub tree in the search space Each
rule binding in the complex binding carries a pointer
to the corresponding rule body, held in the control
processor so that 1t can he retrieved and activated
The rezults for rule bodies however, do not necessarily
represent the results for the goal which invoked the

rule  Consider the [ollowing example
Goal f(X)
Rule fa{Y)) - gtY)
Fact g(b)
Fact glc)

Solving the bodv of the rule generates value: for Y.
tut the resuits for ‘X' are of the form ‘a(Y) In
order to minimize the space used by bindings, the
iitial binding set | a(Y)/X. b/Y. ¢/Y ] can be
reduced to a new set | a(b)/X, a{c)/X ] by a process
have come to term substitution The mitial
binding set can now be deleted. using a process termed
purging which reclaims the space they occupy As the
search space s expanded. these techniques can be
carried out in parallel across the new bindings found
(b/Y and ¢/Y in this case) using the primitive
hardware instructions described earlier  The resulting
set of bindings, maintained at the PE’s, constitutes
only the frontier set described earlier

we

Figure 2 shows how variables are conceptualized at the
time the substitution operation takes place  The state
of the computation prior to the substitution operation
15 such that a compiex binding f{rom the present

frontier set has been received at the control processor
It carries a set of bindings, the Top->Frontier
bindings which occurred when the complex binding
was created These characterize the search space



TOP->FRONTIER FRONTIER->NEW FRONTIER

AT FRONTIER

ABOVE FRONTIER BELOW FRONTIER

TOP->NEW FRONTIER

Figure 2

above the present frontier set As a result of
activating some rule in the complex binding, bindings
for those variables in the body of the rule are created
using untfication and join operations  These bindings,
the Frontier->New Frontier bindings. are distributed
throughout the PE’s and are to be included in the
new frontier set created when the substitution
operatton occurs

Since variable tindings may occur in both directions
(goal-head and vice versa) during unification. the two
bindings szts described above effectively comprise three
lavers of bindings  The above frontier bindings are
those from variables occurring in rules above the
present {rontier set to terms in the rule being resolved
(eg. X 1n the previous examplel  The at frontier
bindings are those for variables occurring in the rule
being activated at the frontier zet (eg . Y' n the
previous example)  The below frontier bindings are
those for variables occurring in umt clauses or rule
heads that some atomic formula, 1n the body of the
rule being resolved, unified with

Substitution takes the three layers and creates a new
set of bindings that does not contain any redundant
information (eg. 'Y  1n the previous example) This
new set binds terms above the present f{rontier set to
those in the new f{rontier set in parallel across the new
frontier 2t Thus the bindings maintained are always

from the top-level directive to the current {rontier set
The new f{rontier set s distributed throughout the
PE's and a purging operation can now be used to
reclaim the space occupled by any redundant
information

8. An Example Search Space
An example will serve to illustrate how bindings are

formed and resolved  Consider the f[ollowing set of
abstract clauses in which each term 1s assumed to be

some structure containing variables;

Cl)t - a, b,..c C2) ay - d e C3) as
C4) a3 - I C3) by - & Cs) ba
C7) ¢ C8) d|. C9) dy
C10) dy Cl1) dg Ci2) e
C13) fy Culy) 1, C15) g

The subscripts zhown serve only to clarify  the
explanation and are not actually part of the clauses
Figure 3 shows the search space generated by the
program while attempting to solve a1 top level directive
't using the famihiar AND/OR tree representation for
illustrative purposes

Il the program were executed by a conventional Prolog
interpreter, consistent binding combinations from the
following set would be printed as results

djegce d3 2 bac figec
dj e by ¢ dyege fi bac
dyege dyebyec fr g ¢
dg e be c 32 gcC ra bq c
dyege a3 by ¢ T

The model of execution described earlier constructs an
dentical set of results In the diagrams that follow,
the ordering maintained by the algorithm 1s reflected
by the left to right order in which the bindings appear
on the page. Complex bindings are marked *' to
distinguish them

In unmifving the directive ‘t’ with the head of clause

C1, the foliowing complex binding is created at the
PE holding the head of Cl

Stage 1
L.

When this binding is reported to the control processor
it carries nformation which allows the body of clause
C1 (the conjunction "a. b, ¢) to be accessed from the
symbol table instantiated and broadcast to the PE's
for unification A join operation then causes the
following set of bindings to be generated at PE's
distributed throughout the system

Stage 2
alblc‘ alb.zc' &2blc'
32 bﬁ (o 33 bl [ 33 bg c*

The leftmost binding 15 now reported to the control
processor The binding carries the information that
‘3 18 contributed by the head of clause C2, ‘bl' by



"N
Figure 3 ° ° °
a4 a, 33 bl 0. c
> .
goal Q
d, d, d3 d, e fl . I3 binding
the head of clause C5 and that "¢ was a unit clause Stage T
This allows clause C2 to be accessed at the control
processor and activated As a consequence goals ‘d’ fy bac fa by
and ‘e are broadcast to the PE configuration for
unification and their results are joined The same
operation then allows clause C3 to be activated 7. The DADO Architecture

causing goal ‘g’ to be resolved The results from both-

these clauses (C2? and C53) are then joined resulting in
the [ollowing distributed binding environment

Stage 3
dy e g ¢ dyege dyegc dyegec
3y by ¢ ® a3y by c” ay by ¢ ag by c”
a3 by ¢ *

Since the first four bindings do not need expansion
(because they are sample bindings). they are now
printed  Following cycles cause the search space to be
completely elaborated as follows,

SKJS“ 4

d]eb.:,c d3eb:_,c d4eboc

3 by c” a3blc' asch'

Stage 5

Iy, 8¢ 39 ag by c¢* ag by c*

Stage 6
fyge

fQ g C 33 bQ c*
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DADO |24, 2] a highly parallel,
architecture based on VLSI technology

1S tree-structured

It s our belief

that DADO can provide sigmficant, cost-effective
performance improvements over sequential machines 1n
a’ wide range of Artificial Intelligence applications
The DADO prototype now under construction
comprises 1023  proce:zing  elements (PE’s) inter-
connected to form a complete binary tree  Currently,
each PE 15 implemented wusing an Intel 8751

microcomputer chip and 2n Inte] 2186 8Kx8 RAM
chip A speaal combinational /O switch,
implemented as a custom integrated circuit, i1s under
development It provides high-speed communication
facilities including. as a subset, the pnimitives described
in this paper The speed of each primitive 15 expected
to be approximately equal to a single 8751 instruction
execuled locally at a PE  The full-scale version of the
svstem. implemented enuirely in custom VLS
expected to contain many thousands of PE's
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An 1nual prototype version of the system, using 15
PE's. has teen fullv operational since April 1983 It's
main purpose 1s to provide a software development
environment  The communication and synchronization
faciities, which will be available in future versions of
the machine, are presently implemented in firmware
and are made efficient by pipelining instructions
through the tree



It :hould be noted that the binary tree organization of
DADO was chesen for reasons related to efficiant
implementation 1n VLSI [13]  As s the case with
many of the parallel algornithms under investigation,
the DADO tree structure has no direct relevance to
the logic programming algorithms outhined n this

paper

8. Current and Future Research

[t would be possible to use a number of alternative
strategtes to those presented n this report Three
important variations are under consideration

- The complete evaluation of all results 1n a
join 1s unnscessary, it would be prefzrable
to only consider rasults from a :ingle
elament of the smallest relatton at anv one
point 1n the search  This sirategy would
generally te more useful when all possible
resuits are not required

- When goals in a conjunction do not share
variatles tha join algorithm computes the
cartesian product of the relations [t would
b~ preferable to avord this overhead f the
gniis can bte shown to be independent

- The :ubstitution mechamzm used s very
sophistizated and requires considerable code
restdeat at cach processer The s of
sintple stack an the con'rol processor may

be more =ffactive however this method
jiorludes parallel substirution
An o interpreter uwsing the  hasic  inference  enzine

desertbed in this papsr has been successfully
demonzreted on 3 numbter of :mail logie programs
nnder siminlation The smmlator s <ractarsd such
cde czgments may gralaallv be delegated
to *he DADO trze for imrlementstion and resting It
200 goal ol this research to generilize the model
deseribed into 3 practicsl logie programming svstem for
use  on  the machine Various  sections  of  the
slgorithms  have already been mpl-mentad on rthe
prototvye  svstem  reported carlier A number of
agnificant problems such as the use of negition have
not vet teen addressed  However where poassible the
implemaontation will  closely

ha! var us

resambplae ~Anvantinnal
[iciog in order to encour2ge logic programmars ‘o use

the :vitem

Investigations to determine how many processers will
produce optimal runming time 1n relation to the size of
1 Ziven program and how best to cigamize run fime

processor allocation are still to be carried out. A
statistical analysis of Prolog source programs has begun
in order to ascertain the level of parallelism that can
be expected and tune various heuristics used in the
model|

The use of formahsms which allow Prolog to express
concurrency [2, 21] lend themselves to a different form
of architecture than that presented 1n this paper and
attack o different set of problems Merzing these
formahsms 1n order to provide efficient support for
formalizms such as object-oriented programming {22
and distnibuted Al applications 15 an  attractive
possibility

9. Conclusions

The motivation for this work is to investigate the ties
tetween logic. data-base sy:tems and knowledge-based
:ystems  in the context of massively paralle]
architectures The model presented displays a number
of attractive qualities

- The small et of primitive coemmunication
operations needed have been successfully
implemented and the algorithms are based
on efficient operations that  mamipulate
bindings  1n 2 non von  Neumann
architecture  This suggests that a practical
and effisrent svstem 1s realizable

- No additional. non logical annotitions are
repured

- Cliuses may be placed at arbitrary PE’s :n

the hurdware confignratien This creates

asilerable fl=xiteiiry 1n the  allocanion
stratezes which can be usaed

- A aumteer of Jlagses mav be packed into w
ange- PE S Az 1 remit performance will
ara -fuily packing  dznsity
1ncrogses above the optimum leve|

-grife a3

- No rrphication of nfurmation 1z roquirad

- The model presents 3 unfform method to
han:dle  both  procedural and  factudl
Knowiedge  prezent a0 knowledge-based
<vstems by wvirtue of the logic programming
methodology used

The u:e of parallelism s transparent to the
user



While the parallel execution of a logic
program 1s potentiaily exponential in space
considerable effort has been expended to
reduce the space required, 1n practice, to 2
minmum

The approach  presented  requires sophisticated
algorithms, a number of avenues are being investigated
1o reduce their complexity  Current research ams to
gensralize the model to a practical and effictent logic
programming system for use on the DADO machine
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APPENDIX - Supervisory Interpreter Code

The following abstract algorithm s executed at the
control processor and supervises the sxecution of logic
programs It uses four primary operations, namely,
unify, join, substitute and purge These  are
implemented using the primitive hardware instructions
detailed 1n Section 2

¢ First level for bindings
constant BASE _LEVEL = 2

repeat
directive = get directive() % Read
if (directive [= TRalt) then
prove _print{directive) %% Prove, Print

intil (directive = halt)

‘rove _ print(conjunction)

UNIFY(conjunction, BASE LEVEL)

= do unifications focally 1 PE's
JOIN(BASE LEVEL, length conjunction)
¢ produce fesult for conjunction
YIELD()

P mar‘k bindings at level 1, the resuit set level

while “results remain” do

result = report next result(]
if simple(result) fRen print(result)
else “¢ rules need to be expanded

{le\'r,-l = BASE LEVEL
foreach head binding in result do

body =
fookup(head binding body ptrsymbol table)
bodv =instantidted(body, head” binding bifidings)
UNIFY(body. level) -
JOINilevel “length body)
SUBSTITUTE(head binding bindings, level)
PL RGE(level} -
lovel = level + 1 “C different result sets put
¢ on different levels

}lOI.\'(BASE LEVEL, size result)
“¢ form resdlt :et for expanded complex binding

}\'IELD()



