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ABSTRACT

In thes dasign of random access CSMA protocols for time-constrained
applications such as packetized voice, thae distribution of message naiting
times is af critical importance. It is shawn that ths ordering or scheduling
imposed on message transmissions by a particular random access pratocol
greatly affects the message waiting time distribution., We present a random
access protocol which can provide 3 largs class of distributad messags
scheduling disciplines basad on message arrival times. Morsover, this
protocol can adaptively vary to provide an optimal service discigline in

response to cnanging system demands.

Analytic models are derived for the waiting time distribution for the cases
of FCFS, LCFS and RANDOM scheduling and the analytic results ars compared with
simulatian, Gther possible scheduling disciplines are discussad and the
impact of the distributed scheduling discipline on the parfarmence of time—

canstrained applications is axamined,

*This work was supportsd in part by National Science Foundation Grant NSF
ECS-8110318 and the Defense Advancsd Research Projects Agency Project NOOO3g-
g2-C-0427.



1. Introduction

The usa of carriar sanse multiple access (CSMA) channels for data
communication has been studied now for almast a decade. Much of this research
has focusad on developing random access strategies which permit users to
sfficiantly share a channel in a distributad fashion. The primary parformance
metric used to evaluata these random accass strategies has bean the classical

tradeoff betwesn time delay and throughput.

For many data communications applications, average time delay and
throughput are adequata to charactarize the relevant parformance tradeoffs.
Howaever, for many time—canstrained applications, [e.g. packetized voics,
distributed sensor natworks [Distributed Sensor Networks 78]] in which data
must seither bs transmittad within a cartain time Limit or be Llgst, the
additional performance metric of Lloss must be considered. Thus, rather than
the two way tradasoff between time delay and throughput, there is a thres way

tradeoff among tha performance measures of loss, throughput and time dalay.

We will show that for time-constrained communication over CSMA channels,
the grdering imposed on the messags transmissions by a barticuLar channs (
access strategy is a critical factor in detarmining system parformence. That
is, while a random accass stratagy doas pravida for distributed sharing of a
resourca, the channal accass maechanism itsalf also functions as a distributad
scheduling mechanism which psrmits messages distributad among the stations on
a channel to be transmittad according to some aexplicit or implicit scheduling
policy. A single general random access protocol based aon a genaralization of
current window mechanisms [Gallager 78] [Towsley 82] can be used to obtain a
large class of distributed scheduling disciplinas based on message arrival
times. Moreover, such a ganeralized window mechanism can adaptively vary
during systam operation tg pravide an optimal service discipline in responss
to changing system demands.

In the following saction we describe this random access protocal and



discuss its use as a distributed scheduling mechanism. In ssction 3 we then
study three particular cases in which the protocol provides FCFS, LCFS and
RANDOM scheduling and present approximsts anelytic models for ths waiting time
distribution for esch of these three disciplines, The analytic rssults ares

shown to compare favorably with simulstion results.

Using these results, we then compars the time delay versus throughput
versus Loss parformance of the thres distributed scheduling disciplines in
gaction 4, Another scheduling discipline which specifically attempts to
maximize the percantage of messages with waiting times below a specifiad time
bound is then suggested and discussed. Finally, the psrformancs results ars
usad to illustrats several i{mportant features of the scheduling function
performed by a random accasss protocol and the impact of the scheduling
function on the time—constrajned performanca of the protocol.

2. A Protocal for Time-Constrained Communication Qver a CSMA Channsl

In this section ws describe a random access protocol suitable for time-
constrained communication over a C(SMA channel and demonstrate its use as a
distribqted scheduling mechanisa. A probabiliastic model of ths protocol’s
behavior is derived in order toc obtain average paerformance measures for the

contention resaclution phase of the protocol.

2.1. Description of the Protocol

Let us assume that each station on the multiple access channal possessas a
clock which defines the current tima, t, and that the clocks at all stations
are synchronizsd. Each station will maintain a velus for each message which
arrives at the station called the pseudc arriygl time of the message. The
initial value of a message's pseudo arrival time is the actual arrival time of
the message at ths station; a message's pseudo arrival time may change as
described bslow. In addition, each station will also maintain a valus,
t_past, such that all messages currently at any station have a pseudo arrival
time greatsr than t_past; all stations initiaLizé t_past to the initial clock
value, Finally, each staticn has a pseudo random number generstor and each
station initializes the generator with the same saed and therefore produces

the same saquence of pseudo—random numbers,



The opsration of ths protocal is shown below in figure 1. The psesudo-
arrival times of all messages which hava not yet besn succassfully transmittsd
are shown balow ths time axss in this figurse,. Tha protocol functions as
follows, AlLL stations <continucusly monitor the channsl and aftar each
succassful messags transmission, each station uses its random number genarator
and a scheduling policy to be dascribed below toc select a window of time
between t_past and the current tima, t; the salaction of this window is shown
oan the sacbnd time axis in figurs 1. Sincs all stations have the same valus
of t_past and gensrats thes same saquencs of rsndom numbers, all stations will
selgct the seme window of time. Aftar a window has baen selactad, all
stations with messages with pssudo -arrival times which fall within this window
of time attempt ta transait thes message. .
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If no staticns have a message with a p-saudo arrival time which falls in
this window, then an empty slot occurs on the channel and all stations salasct
a new initial window aftar updating their values of t_past and tha psaudo
arrival time of any messags as discussed below. If axactly one messags falls
within this initial window, then its transmission begins immadiataly.



If mors than one station has a message with a psaudoc arrival time which
falls within the time window, then two or more stations attempt to transmit a
message and a collision occurs, All stations continue to monitor the channeal
and attempt to resolve this collision by splitting the inftial time window in
half. The ststions then use their random number generstor and the schaduling
pclicy described below to select one of the twc halves of the initial window
as shown on ths third time axis in figurs 1; since all stations uss the same
sequance of pssudo random numbers, all stations will select the same hslf of
the split window. Ths random access procedure is then repeated using the
selectad half of the split window as the new time window. If no message has a
psaudo arrival time which falls in the sslectad half of a split window, an
empty slot will occur on the channel and all stations will then select the
remaining half of the split window, immediately split this new window (since
it 18 known to contain two or more messages), choose one of the halves of the
newly split window, and repeat the above access procedurs using that half of
ths newly split window. This splitting process continues until a single
message is finally transmitted. '

ALl staticns perform the windowing process and thus sach station knows the
width, w', and the starting time, t', of avery time window which contains
sither no message arrivals or a single message arrival, Once a window with
exactly zero or one message arrivals has bean selected and the message (if
any] has been transmittaed, all stations can effectively remove this window of
time from consideratign, as if the window of time had never occurrad. The
affact of removing this window of time is twofold. First, all stations with a
massage with a psaudo arrival time before t' must update the pseudo arrival
time of the message by the width, w', of the window. Secondly, since the
psaudo arrival time of each message which arrived before t' has been increased
by w', thers is a gap of time from t_past to t_past+w' for which it is known
that thera ars ng messages present and gll stations can updatas t_past
accordingly. Tha effect of updating the value of t_past and the pseuda

arrival times is shown on the fourth time axis in figure 1,

The selection of the position of tha initial window and the method by which
ons of the two halves of a split window is selectad determine the scheduling

policy implemented by the random access mechanism, Suppose that the time



between t_past and t (the current time] divides into n windows of width W; we

note three special cases:

1. Tha first (oldest) of the n windows is always salected as the
jnitial window and the first half of a split window is always
chosen before the second.

2. The last (newest) of the n windows is always selected as the
initial window and the second half of 8 split window is always
chosen before the first.

3. Each of ths n windows is esqually likely to be chosen as the initial
window and both halves of a split window are equally Llikaly to be
chosen first.

Case (1) above implements FCFS scheduling, case (2) implements LCFS
scheduling and case (3) implements RANDOM scheduling. In the most general
casa:

4. Each of the n windows is saslected with some probability according
to some discrete probability distribution é and the first half of a
split window is selsctad with probability q and the sscond half is
salacted with probability 1-q.

Depending on the distribution § chosen in (4) and the value of g, any one
of a lLarge class of schaduling disciplines can be selectesd. As we will ses,
tha optimal salection of § and q will be dependent on currsnt system demands
including throughput and Loss tolersnces,

2.2. Analysis of the Average Performance of ths Window Mechanism

In this saction we derive an approximate expression for thes avserags message
scheduling time of the protocol. In order to obtain this sxpression we will
first follow Towsley [Towsley 82), Malle [Molle 81] and others and
analytically determine the exact value of the message scheduling delay under
saturation conditions, which occur when the averags arrival rate sxceeds ths
average time needed to schedule and transmit a message. Spacifically, we will
make use of the property that at saturation, the averags waiting time is
unbounded and thus the difference between the current time and t past is
always greater than any window width chosen.




Once the averags scheduling delay under saturation conditions has been
obtained, the actual message arrival rats at which saturstion occurs can then
be determined. This value for the saturstion arrival rats and tha averags
message scheduling time at saturation can then be used to provide an
approximates exprsssion for the message scheduling delay for arrival rates less

than saturation.

We will assume that time is slotted 1n units of 2t0, whars tg {8 the end-
to—-end propagation delay of the channel. Furtharmore, we will assume that all
stations can detect messags collisions (CSMA-CD) and can abort transmission of
a collided messags in a negligible amount of time. Finally, we assume that
the message arrivals to all stations together constitute 8 poisson process
with rats A (arrivals/slot].

Since the overall arrival process is poisson, at gny point in time, the
inter—(pseudo)arrival times of unsent messages waiting at all stations are
exponenttally distributed with mean 1/A. This fact can be inductively
astablished since, dus to the memoryless property of the sxponential
distribution, the removal of a time window and the concommitant shifting of
psaudo—arrival times as described above presarves this exponential
intararrival property. 0One important consequence of the exponential nature of
the inter—{pseudc)arrival times is that any two windows of time between the
currant time and t_past which are of equal length are stati;ticaLLy identical

with respect to the pseudo—arrivel times. Thus the grder in which windows are

selactad has no effect on the average message scheduling delay and thus the
aygrage message scheduling time is independent of the scheduling disciplins
implemented by the protocol.

Let us now procsed to detarmine the average message scheduling time which

in general, will bs a function of the arrival rate, A. Define:

S(X) - average time (in slots) to schedule a message for traffic
arrival rate a.

As discussed earlier, in order to obtain an approximate expression for s(X,
we will first detsrmine ths exact value of S(), under saturation conditions.

Defineg:




S - the average number of slots needed to schedules a message at
sat R R . .
saturatiaon, The Llast slot {in which only 1 message is
transmitted) is not considered part of the scheduling time,

s; — the number of slots needed to schedule a messags given a window
is known to contain k maessages, with k >=2.

qg. i — Probability that i messages are in aone half of a window given
’ there are k messages in the window. Due to the memoryless
proparty of the interarrival process, Qg . 1s given by:
?

p;j — probability of {1 arrivals in a window. If the length of a
window is given by the parameter ¥ (in units of time slots],
then:

py = (1™ / )

Now, Esat can be expressed in tarms of s, by conditioning on the number of
arrivals in a window:

Sgar = Pgl{1+Sgee) + P00 + kli Py [1+sy)

or _ o , (1)
Ssat = Pg * Ly Py l1+s,]
T = po

The added 1's in ths terms (1+sk] and (1+s in (1) ars due to ths fact

sat’
that 1 time slot 1is first required to Llearn that 2zero aor two aor mars
callisions hava ceccurred. We can now condition S, on the events of zero, one,
or maore than one message in the selactad half of a split wiﬁdow. Note that if
no message occurs in the selectad half of a split window (this occurs with
probsbility qk,D]' no slot is needed to determine that two or more massagses
occur in ths remaining half of the split window and that half can be split
immediataly. Conditioning s, thus gives:

k
= +(s.~ . . .
or Sk qk'0[1 (sk 1)) + qk’1 g + igzqk”[‘ﬁ's,l) @]
k-1
s = (1= Qg9 = Gepl *+ 550,48y 3¢k
I ="9k,0 7 9,k’
with the initial condition S = 0.5. Values for s, can be iteratively

obtained from (2) above and then substituted into (1) to determine the value
for Sg,.. Note, however, that Sggy is @ function of the yet unspecified value

of M. Clearly, the valus of this parameter should be chosen to minimize the



value of s Numerical methods can bs ussd to show that Esat achiesves a

sat
minimum value of 1.24 slots when N has a value of 1.2. Thus, whatsver the
sctual arrival rate at which saturation occurs, the initial window sizes, ¥,
should be chosen such that 3¢ = 1.2 and thus 8,,, = 1.24 slots, independant of

the srrival rate at which saturation occurs,

Equation (1) thus gives the message scheduling delay under saturation
conditions to be 1.24 slots; let us now determine ths actual arrival rats at
which saturation occurs. Following Lam [Lem 80], we nota that the overall
channel utilization p (the arrival rate times the average time for scheduling
snd transmitting a message) must be bounded above by unity. If we define = as
the ratio of the end-to—end propagation delay, tg, to the fixed message
length, then the Llength of a message in slots is given by 1/(2m) and the

channel utilization bound is axpressesd as:
AM1/(2m) + 8(N) <= 1 ‘ (3)

The saturation value of the arrival ratas, )Sat' is that value of X for which
the equality in (3] holds and thus:

Mgt = 1 / (1/(2m) + Sgq,]) or >‘sat =1/ (1/(2m} + 1.24) (4]

If we define thes effective channel throughput, p', to be tha fraction of ths
channsl which is utilized by successfully transmitted messages, (i.s. @' =
M(2m) ) then the effactive channel throughput at saturation or the maximum

effectiva channel utilization is given by:

Piat = 1/ (2] = 1
1/72a) + Sgq 1 + 208,

The analysis thus far has provided the average message scheduling delay
under saturation conditions ss well as the actual maessage arrival rate (and
thus effactive throughput) at which saturation occurs. We also know that as A
and thus p' approaches 2zero, the average message scheduling delay also
approaches zero since an arriving message would always be sent without
contention upon arrival., Given these two endpoint valuas, we will approximate
the intarmediate points of the aversge message scheduling time, s(p'), by
fitting a function of the faorm p' / [(a — p'] to these sndpoint values, where

a is a suitably chosen constant, The results of this approximation are



compared with the aversge message scheduling times gbtained through simulation
for various message sizes in figure 2. In the following sectian, the average
massage scheduling times will bs used to study the waeiting tims distribution

under differsnt scheduling disciplinass.

3. Waiting Time Distributions for FCFS, RANDOM and LCFS Scheduling

In this section, we presant analytic and simulation results for the
distribution of message waiting times for fixed Length packsts in the casaes in
which the window random accass protocol provides FCFS, RANDOM and LCFS
schaduling. Throughout the analysis in this section the messages waiting at
stations to be transmitted will be considered as customers in a distributed
quaue, More importantly, the message scheduling time or contention resclutian
time immediataly prescading a successful transmission will be considered as
part of the service time for that message which is successfully transmittad.
Thus the sarvice time for a particular message will always have two compaonents
: a message scheduling time (i.e. tha scheduling delay due to that contsnticn
period (if any)] which results in ths message beginning successful

transmission) and the actual transmission time for that particular messaga.

3.1. Service Time Distribution of Messages

In this section we detesrmine the service time distribution for fixed length
messagas; notes that since the message scheduling tims has been shown to be
independent of the scheduling discipline impasad by the protacol, this service
time distribution will thus alsa be indapasndent of the scheduling discipline.
Let b(t) be the distribution of the messagas service time, s{(t) be the
distribution of the scheduling time, and x(t) be ths distribution of the
message transmission time; throughout this saction, tima will be in units of
slot Llength. Since tha sarvice time is tha sum of two independent random

variables, the service time distribution time is given by:
b(t) = s(t] ® x(t) (5]

where ® is the convolution operatar. For the case of fixed length messages,
x(t) is given by:

x(t] = y5(t - 1/(2m) ) (6)



whare Yg 18 the unit impulse function and 1/(2m) is the fixed message Length.

The distribution of the message schaduling ¢time is more difficult to
obtain, Howsver, our simulation studies have shown that the geomstric
distribution 1is a good approximation for the message schaduling time
distribution, whers the mean of the geometric distribution is takan to be the
mean scheduling time as detsrmined in ths previous section. Lat 8()\) be the
average message scheduling delay and define cy to be the probability that the
message scheduling delay is { slots. Then:

cy = cl1-c)t
whare:

c=1/ (1 +8(N)
and the probability distribution for the message scheduling time 18 thus given
by:

s(t] = f,cq¥ple-i) (7)

Finally, using the value for x(t) and s(t) from (6) and (7] respectively,

equation (5) gives the service time distribution for a message as:

b(t) = I cq¥glt - (1/(2a) + i) ) (8]

3.2. Distribution for FCFS Scheduling

Since the message scheduling or collision resolution time has been modeled
as part of the service time of the messages, our model of the distributad
queus reducss to the casa of an M/G/1 queue, wheras the service distributian of

the customers is given by (8).

The waiting time distribution for customers in an FCFS M/G/1 queue is given
by [Kleinrock 75]:

@

= —oloknrk
Weerslt) -kEO (1-plp b (t) (8)
where -
b(t) = the density function of the residual service time that an
arriving customer finds for the customer (if any) in servica.
6K(t) = the k-fold convalution of b(t)
e = the server utilization, previously defined as



p=A(1/(2m] + S(N)

For valuss of p not espacially close to unity, the infinite sum in (9) can
be truncated at some finites value of k to produce an excellent approximation
to weeeglyl. The residual servica time density for a given arrival rate (N
and a service time distribution given by (8) can be calculated [Kleinrock 75]
to be:

- x

Ble) =1 = T, cq¥_qlt=- (1/(2) + i]) (10]

( 1/(2m) + S(N )

whers Y_, is the unit step function,

Figurs 3 shows tha computed waiting time distributions for the case in
which the random access protocol provides FCFS service; the sum in equation
{9) was terminated at k=9 to cbtain thess valuss. Waiting time distributions
are shown for 3 differant traffic arrival intensitiss for message lengths 10
and 50 times the end-to—end channal propagation delay (oe0.1 and o~0.02,
respectivelyl. The degree to which thssa analytic results in figurea 3 agree
with the simulation values indicate that goocd spproximations wers introduced
to obtain the analytic form of we e (t].

3.3. Distribution far LCFS Scheduling’

In order to computa the waiting time distribution under LCFS scheduling,

the entire waiting tims of a message can be considesred as a series of waiting

time components as shown Bbelow in figurs 4, A message has no waiting time
with probability V4. With probability 1-Y, a message has a first waiting time
component with a distribution given by dq(t). A messege which finishes the
first waiting time component begins sarvice with probability Ya and requirses a
sacond waiting time component (with a distribution dy(t] ) with probability 1-
72. In general, Y; represents ths probability, given that a message has
completed i-1 waiting time components, that it will begin service aftar
component i-1. Note that in ordar for a message to have exactly i waiting
tims components, it must not enter servica after completing each of the first
i-1 waiting time componants and must sntar sarvica aftar the ith componant.

Thus the probability that a message has exactly i waiting time components is




given by: (1-Y4)(1-Y5) * ° * (1=Y4)Vj4q. The distribution of the Length of
the {1th companent is given by dy(t).

figure 4

If a message experiences any waiting time at all, then the first component
of its waiting time, d1[t], results from the residual ssrvice of anothar
message already in service when the message arrives; thus o4 (t) is given by
b(t). Since the. scheduling discipline is LCFS, the remaining components of
the message's waiting time result from messages which arrive after ths
messsge,  but are transmittad before the messags; thus dy(t) is'given by b(t)
for 1>1.

Using the above model of therwaiting time, the distribution of the waiting
time is given by:
- 5 S (=Y. 1cc (1= " i-2
Wlepslt] = Yybgle) + (1-Fq1fpble) + £ (1=Fy)* o (1 Yi1Y B (8)® T (e]  (11)

whers Y, and Elt] are as praviously defined and bi_a(t] is the (i-2)fold
convolution aof the sarvice time distribution. We now compute ths unknown
values, (¥;}. To do this, define :

qg — probability that no messages are waiting to be sent (queue is
empty) at equilibrium.

P; — probability of i arrivals during a residual service time.
P; — probebility of i arrivals during a messaga's servica tima.

Pf ~ probability that | messages have arrived during the first k
componsents of the message waiting time given that the kth component
of the message waiting time has just esnded.




QX - probability that | messages have arrived during the first k-1
] components of the message waiting time given that the kth component
of the message waiting time has just begun.

Clearly, Y4 = gg and 72 = 50. The value af gg can be determined from an
analysis for the number in the queue as in [Lam 80]. Since the ith waiting
time component is the lLast component if and only if exactly i-1 messages have
arrived during the first i waiting time components, the remaining valuas for

{71} are given by Yi = P1 -1 - The values for Q§+1and P§+1can be iteratively
detsrmined from the initial caondition P} = BJ. First, G§+1

from P? as follows. The rslationship betwesn thess two sets of probabilities

can be computed

is shown below in figure 5.

- {p (ak*1 (pk*1} .-
J J
N L ® 1 J\
/Yk'ﬂ U yk+2 .\\-

figure 5

g
for a message to complets k waiting time components, k-1 or more messages must

Note that for all j lLess then k-1, is known to be zero since in order
have arrived since its oawn arrival. Now, if a message begins the k+1st
waiting time component, there must have been gtrictly more than k-1 messages
after component k was complated (octherwiss the message waiting time would have
ended after component k); thus although Pt_1 was nan zero at the end of ths
kth waiting time component, at the baginning of component k+1, it is known

k+1 k+1

that Qu_4 = 0. For values of ] greater than k-1, the ratio of Q§+1and QJ+1

should equal the ratio of Pf and Pf+1. However, the actual values of Qk+1 nd
in} must be normalized since at the beginning aof component k+1, Qtfq = Q.
The above considaratiaons indicate that ths values aof 0k+1are given by:
aj.‘” = 0 a<j<k (12)
= k i =
PJ Jd >=k
k
1= Pl

Finally, given the values for Qf+1 the valuas of P§*1can be easily computed by



conditioning the esvent of j arrivals immediataly following k+1 weiting time
components on the number of arrivals during component k+1. Thus:
b

i = 2Z0%j-n"Pn (13}

The waiting time distribution for LCFS service can thus be computed using
(11), (12) and (13) with the values of (¥;]} found above. Figure & shows the
computed waiting time distributions for 3 different traffic arrival
intensities for message lengths given by a=.1 and o=.02. Note that all the
distributions shown 1in figure 6 rise rapidly for time valuas Lless than the
message Llength (corresponding to messages which begin service immediately
after a residual service is completed] and then slowly approcach the asymptotic

value of 1.

3.4. Distribution for RANDOM Scheduling

The waiting time distribution under RANOOM scheduling can also be
detsrmined using waiting time compaonents. Specifically, the first component
of the waiting time aonca again results from the residual sarvide time for
another message already in service when the message arrives, Also, ths
remaining components of the waiting time ance again result from the sarvice
times of other messages; however, since the message scheduling disciplins is

RANDOM, these other maessages may have arrived at any time.

The value for YO will be exactly the same as under LCFS since the
probability that an arriving message finds the queue empty is independent of
the order in which messages are selactad for servicea [(Kleinrock 76]. In order
to detarmine ths remaining values for the [Yi}, we can use the average number
of messages in the distributed queue given there is at least one message in
the queue (i.s. the messaga for which the waiting time distribution is beaing
computed). This conditional value is given by o/(1-gq), where g is the
unconditional average number of customers in the queue. Since RANDOM
scheduling implies that all messages in the queue are equally likely to begin
service next, if there are on the average, 3/(1-q0] messages in the queue, one
way to model the probability that a particular message begins service

immediately after waiting time component i is:



. = . = 1 -

Y 1 ar 7 qq i>1
3 q (14)
1 - qO :

The waiting time distribution under RANDOM scheduling can be computed using
these values of (Y;} and equation (11)., Figure 7 shows computed waiting time
distributions for RANDOM scheduling for thrse diffsrent traffic arrival
intensities and message sizes given by o=0.1 and o=0.02.

In the following section the rasults for the waiting time distributions for
FCFS, LCFS and RANDOM obtained in this section will be used to discuss the
impact of the scheduling discipline imposed by the protocol on the time—
constrained performance of the protocol.

4. The Impact of Scheduling Disciplines on the Time—Constrained Psrformance of
Random Access Protocols '

As mentioned earliesr, many time constrained applications are characterized
by two important featurss: tolerable message Lloss and the constraint that
messages not received at the destination station (or wequivalently not
bsginning transmissian at the sending station] within some fixed amount of
time after arrival at ths sending station are considered lLost. Thus, message
loss, as well as time delay and throughput, is an important performance

measure for time-constrained applications which use random access protocols.

The time delay versus message loss tradecff for a given random access
protocol can be detsrmined from the distribution of the message waiting times,
For example, the message Loss versus time delay tradeoff for FCFS scheduling
and a throughput of @' = .70 is given in figure 3 - if tha waiting time bound
is 40 time slots, for instance, then the message lass is approximataly 30%; if
the time bound is increased to 100 time slots then the maessags loss is only
6%. Since the waiting time distributions determine the time delay versus Loss
tradeoff, the caomparison of the time-constrained performance of two protocols
raquires tha comparison of their waiting time distributions., In figure 8 we

show sample waiting time distributions for FCFS, LCFS and RANDOM scheduling in



order to provide 8 qusntitative example of the impact that a scheduling

digscipline can have on tha time-constrained performance of ths protccol.

The results in figure 8 indicate that for the given traffic intensity and
message size, none of the three protocols is uniformly the best in the sense
of minimizing Loss for all possible time bounds. For small time bounds (large
Loss), LCFS is better than FCFS and RANDOM, while for large time bounds (smail
loss), FCFS is better than LCFS and RANDOM. Similar results can be found by
comparing waiting time distributions from figurss 3, 6 and 7, The results in
figure 8 also indicate that thars can be significant pesrformance differencas
dus to the imposed scheduling discipline. For exampls, for the same fixsd
time bound, the meesage Lloss for FCFS and LCFS can differ by as much as 20%;
for the same message loss, the time bounds required by FCFS and LCFS to
realize this Lloss can differ by as much as 100%. Clearly, the scheduling
discipline imposed by & protocol greatly affscts the time-constrainad

performance of the protocol.

Although FCFS and LCFS each perform better than the other {and RANDOM) for
cartain values of time deslay and message loss, the question arisss whethar
there are other scheduling disciplines which perform better than both FCFS and
LCFS in such regions. Since we are interestad in maximizing the probability
that a message has a waiting time below some given bound, a scheduling
discipline similar to minimum slack tima scheduling in deterministic
scheduling [Coffman 761 would seem promising. Under minimum slack time
scheduling, that messags with a current waiting time closest to, but not
excaeding, the waiting time bound is transmitted naxt. This message can be
selscted by choosing the beginning of the initial time window to be ths
current time minus the waiting time bound and resclving collisions within a
window on a FCFS basis. Figure 9 shows simulation values for minimum slack
time scheduling for weiting time bounds of S0, 70, and 80 time slots. From
simulation studies and as evident from figurs 9, we have noted that minimum
slack time scheduling for a specific time bound perfarms equally as well ar
better than both FCFS and LCFS in the region of the waiting time bound,
However, as shown in figurs 8, the increase in performance is relatively

small,




Finaltly, it should be noted that all the various scheduling disciplines
discussad so far can be implemented by the same general window random access
mechanism, In practice, system charactsristics such as average traffic
arrival rata, loss tolerances and acceptable time delays may vary aver time.
Since ths ralative time—constrained performance of the different scheduling
disciplines depends strongly on these variable system characteristics, a
crucial feature of the general window mechanism which makes it particularly
suitable for time—constrained applications is the capability of the single
window mechanism to impasa different scheduling disciplines in respanse to thsa

changing system charactaristics.

5. Conclusion

We have presantsd an adaptive random accass protocol for CSMA networks
which is based on a generalization of the time window mechanism, This
protocal can be used to provide any of a large class of distributed scheculing
disciplines based on message arrival times. We have studied the cases in
which the protocol provides FCFS, LCFS and RANDOM scheduling and have
presanted both analytic and simulation rssults for the message waiting time
distribution. In addition, a protocol which specifically attempts to maximize

the probasbility that messags waiting times ars below a given baound was also
introduced and discussed.

The paerformance results have demonstrated the critical impact of ths
scheduling discipline on the time-constrained pasrformance of ths protocol,
thus indicating that the scheduling discipline imposed by a protocol should be
a primary concarn in the design of random access protocols for time—
constrainad applications in CSMA networks.



(Coffman 78]
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figure 8

Comparison of waiting time distributions
FCFS versus LCFS versus RANDOM
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figure 9
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