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Abstract
R Y o o o

This paper deals with the optimal solution of a linear
regularly-elliptic 2m-th order boundary-value problem Lu = £,
with £ € Hr(Q), r > -m. Suppose that the problem is indefinite,
i.e., the variational form of the problem involves a weakly-
coercive bilinear form. Of particular interest is the strength
of finite element information (FEI) of degree k and the quality
of the finite element method (FEM) using that information. The
error is measured in the Sobolev {4 norm (0 { £ < m); we assume
that k > 2m - 1 - ¢{. Both the normed and seminormed cases are
considered, in wh.zh an a priori bound is given on the Sobolev
r-norm and seminorm of f, respectively. In the normed case, the
FEM is guasi-opt: . 1iff k > 2m - 1 + r, but FEI is always
cuasi-optimal in. n~ation (i.e., the spline algorithm using FZI
is a quasi-optimal algorithm). In the seminormed case, we give
a very restrictive necessary and sufficient condition for the FEM
£to have finite error. When the FEM has finite error for the semi-
normed case, it is quasi-optimal iff Xk > 2m - 1 + r; however,

FEI is always quasi-optimal information for the seminormed case.




1. Intfoduction

This paper is a theoretical study of the optimal solution of
the variational form of 2m-th order linear regulerly-elliptic
boundary-value problems Lu = f with £ € Hr(ﬂ), Q CIRN, r > -m
having homogeneous boundary conditions (see Section 2). Such
problems are to be solved using information of cardinality at
most n. (In this Introduction, we use words such as information,
cardinality, gquasi-optimal, etc., without definition; they are
cdefined rigorously in Section 3.)

In [15], this problem was considered under the following

conditions:

(i) The problem is definite; i.e., its variational form
involves a coercive bilinear form (which is thus an
inner product over the space of functions satisfying
the essential boundary conditions).

(ii) Error is measured in the "energy norm" generated bv this
inner product (which is equivalent to the Sobolev

m—-norm) .

(iii) An a priori bound is given on the Sobolev r-norm of £.

Of particular interest was the optimality of the finite element
method (FEM) of degree k, as well as the optimality of finize

element information (FEI) (see Section 4). The main result was
that the FZM is quasi-optimal among all algorithms iff k > 2m - 1 + r.
However, FZII is alwavs‘quasi—optimal information; that is, the
spline algorithm usiné FEI is always guasi-optimal.

How crucial are the conditions in [153]7?




Condition (i) disallows problems such as the Helmholtz

. P - — .
problem: given £ & H (), find u : u - IR such that

(1.1) Au + Au = £ in

u=20 on all,
where A 1s not an eigenvalue of -A. If A 1is bigger than the
smallest eigenvalue of -A, this problem does not yield a coercive

bilinear form.

Condition (ii) is that the energy norm was used. Although
this norm is equivalent to the Sobolev m-norm, the constant which
measures this equivalence may be so large that a very good energy-
norm solution may not be sufficien;ly accurate in the m-norm.
(This would appear to be the situation in boundary layer problems.)
Moreover, it is sometimes of more interest to use other norms,
such as the L,-norm for measuring displacement error.

Assumption (iii) is a standard assumption on partial dif-
ferential equations and the FEM [1,3,8]. However, for ﬁany cther
problems, one often only assumes an a priori bound on the Sobolev
r-seminorm (see the examples and the annotated bibliography of
[11]). 1If we wish to place the elliptic boundary-value problem
into a complexity hierarchy consisting of such problems, it too
must be solved under the assumption that an a priori bound on the
Sobolev r-seminorm is given.

In this paper, the results of [15] are extended by weakening

conditions (i), (ii), and (iii) above. We assume:




(1)' The problem is indefinite: its variational form involves

a weakly coercive bilinear form.

(ii)' Error is measured in the Soboclev 4 norm, where
0 <4 < m.
(iii)' Both the normed and seminormed cases are considered,

i.e., an a priori bound is given on the Sobolev -
norm and the r-seminorm of £ &€ H™ (Q) (respectively) ,
the seminormed case making sense iff r 1is a non-

negative integer.

Again, we will be interested in the optimality of the FEM of

degree k, as well as that of FEI. We assume in this paper that
{1.2) k>2m -1-4;

see Section 4 for further information.

It turns out that replacing (i) by (i)' causes almost no
difficulty, while replacing (ii) by (ii)' may be done via a
variant of the Aubin-Nitsche duality argument [5, pp. 136-139].
Hence in the normed case, the main results of [15] still hold
when (i) and (ii) are replaced by (i)' and (ii)'; see Section 5
for details.

The situation is different when replacing (iii) by (iii) ',
i.e., going from the normed to the seminormed case. Consider the

problems

(2] " +u =f in (0,1) with wu(0) = u(l) =0

e



(1.4) -u" + u=£f in (0,1) with u'(0) = u'(1l)

30,
where
1 i 2
(1:8) £ €8 [U,1) and Jolf'(x)]1%aAx < 1.

No matter what value is given for k, the FEM has infinite error
for (1.3), but there exists an algorithm using FEI which has

finite error. 1In fact, FEI is always quasi-optimal information for

(1.3); that is, the spline algorithm using FEI is a gquasi-optimal
algorithm. On the other hand, the FEM always has finite error for
(1.4) and is (in fact) quasi-optimal when k > 2; however, FEI is
always quasi-optimal information for (1.4).

We discuss the seminormed case in detail in Section 6. We

show that the FEM has finite error iff Pr_l(ﬂ) < LS, , where

Pr_l(ﬂ] and Sn respectively denote the space of polynomials of
degree at most r - 1 over {1 and the finite element space of
dimension n. (Note that this condition is very restrictive in

practice; see e.g. Remark 6.1.) When this is the case, we find
that the FEM is quasi-optimal among all algorithms using FEI iff
k >2m - 1 + r. However, FEI is always quasi-optimal information
for the seminormed case.

In Section 7, we discuss the complexity of obtaining =-
approximations. We show that (in both the normed and seminormed

cases) the penalty for using the FEM if k < 2m - 1 + r is unbounded

as

4]

= 0. Since this is an asymptotic measure,

we also wish tg

y f@: fixQd

know whether there is a penalty for using the FE



moderate size when Kk < Jm - 1 + r. We consider a simple model
problem, and show that the complexity of the "spline algorithm”

using FEI is less than that of the FEM whenever ¢ < ¢ where

OI

Finally, in Section 8, we summarize our work, and point out

some possible extensions and open gquestions.




2. Ihe Variational Boundary-Value Problem

In what follows, we use the standard notation for Sobolev
spaces, inner products, and norms, multi-indices, etc., found in
Ciarlet [5]. Fractional- and negative-order Sobolev spaces are
defined by Hilbert-space interpolation and duality, respectively;
see Chapter 2 of [3] and Chapter 4 of (8] for details.

Let CIRN be a bounded, simply connected, COO region.

Define the uniformly strongly elliptic operator

L oy el o
Lv:= z (~-1) D (aas

lal,131<m

DP

v)

€ ¢~ (3) such that a_.. = a. In

ith rea cefficients a .
wit lc t o3 23 3

order to have appropriate boundary conditions, define a normal

family of operators

B.v:= L b. D'v (0 ¢ J <m-1)
1, lel<q, 3¢
-3
. .. X5
(with real coefficients bja €& C  (3Q))), where

0 < 94 Loeolq. 1 £ 2m - 1,

which covers L on 23il. To make the boundary-value problem to

be solved be self-adjoint, we let

m := min{j a5 > m]
and require that
* 1
m - ~ —l I'd
£q]}3=0 J LZm -1 - q_}m x = LO/- e M - l}




(See Chaptef 3 of [3], Chapter 5 of [8] for further definitions
and illustrative examples.) We are interested in solving the

elliptic boundary-value problem

given £ € Hr(ﬂ), where r > -m, find u : 3 - IR such that

(2.1) Lu = £ in 0
Bju =0 (0 ¢ j {m=-1) on 530.
Let
il - I m, -~ . * -
Ho({l):= {v € H () : ij =0 (0 < jJ <m =~ 1);

denote the space of H™(Q) -functions satisfying the essential
boundary conditicns. We define a symmetric, continuous bilinear

from B on Hg(u) by

. o o 3
oW s % ) aaSD vD"w.

In [15], we assumed that B was Hg(u)—coercive, i.e.,

that there exists vy > 0 such that
B(v,v) > YUVU; for v € Hg(ﬁ).

When m = 0, the conditions on L yield that B is L, (i) -coercive.

2
However, for m > 1, there exist elliptic boundary-value problems
which do not yield a bilinear form that is Hg(ﬂ)—coercive (such
as the Dirichlet oroblem for the Helmholtz equation).

In this paper, we assume instead that B 1is weakly

Hm(u -coercive [8, pg. 310]. Since B is symmetric, this means

E
that there exists y > 0 such that



- m .
for any nonzero Vv € HE(Q), there exists nonzero

(2.2) w & Hg(ﬂ) such that
B(v,w) > vl il -

The following lemma gives a condition which is sufficient to
establish weak coercivity. (The result appears to be well-known;
its proof for arbitrary m is a straightforward modification of

the proof for the case m =1 which is found in [3, Chapter 57:)

égggg 2.1. Let m > 1. Suppose that

(i) the only solution of (2.1) with £ =0 is u =20
and

(ii) B is [H?(J),Lz(ﬂ)]—coercive (8, pg. 301]; that is,

there exist > 0 and Yy > 0 such that

‘g
[B(v,v) > Yoﬂvni - Yluvﬂg Vv e Hg(ﬁ).

m

E(ﬂ)—coercive‘

Then B 1is weakly H

—

Remark 2.1, Suppose that Bj is the Jjth normal derivative
operator (0 < j < m - 1), so that (2.1) is a Dirichlet problem and
HE(U) = H%(D). Then (2.3) is G&rding's inequality (see e.g. [(1])
which follows immediately from the conditions on L. Hence, B
is weakly H%(ﬂ)—coercive provided that (i) holds in

heorem 2.1.

For example, the Helmholtz problem (1.1) is weakly H,({Q)-coercive

O H

if X 1is not an eigenvalue of -a.

—

We now define the variational boundary-value problem as

follows. Let r > -m. We wish to solve the problem



given £ € HF(Q), find u = Sf € H (Q) such that

. m
B(u,v) = (£,v), f fv 7 v € Hp(@).
From the Generalized Lax-Milgram Theorem [3, Theorem é.2.l], S
is a Hilbert space isomorphism ot 1 ™(Q) onto Hg(ﬁ), and so
S : Hr(ﬁ) - Hg(ﬂ) is a bounded linear injection. Since B 1is
only assumed to be weakly coercive (i.e., we do not know that

B(v,v) > YuVUi holds), the problem (2.4) is said to be indefinite.

It is useful to recall the "shift theorem" ([3, Chapter 37,
[8, Chapter 51), which states that since f € Hr(Q),'we have
Sf & Hg(ﬂ) 0 H2m+r(ﬂ), and there exists a constant ¢ > 0,

independent of £, such that

(2.5) o Msell, . < HEl, < olsEl .-

If r > N/2, then the shift theorem, Sobolev's embedding theorem,
and an m-fold integration by parts yield that u = Sf is the

solution to (2.1).
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3. Information and Algorithms
~ P e o o a P o P = o o N

In this section, we briefly define some of the concepts
mentioned in the Introduction. A more leisurely description may
be found in [15]; most of the terminology and results are taken
from {11}.

Recall that we are trying tc approximate S : Hr(ﬂ) - Hg(ﬂ),
where r > -m. We are only allowed to sample a finite amount of

"information" about problem elements £ € HY (). Here, information

n of cardinality n 1is a linear surjection n : Y (Q) - R7. By °

an algorithm ¢ using 0n, we then mean a (possibly-nonlinear)
mapping @ : Dcp < n(Hr(Q)) - Hg(ﬂ); the class of algorithms
using n is dencz=d 2(n0).

Given information n and an algorithm ¢ € 2(n), the quality
of the approxima:t-.ons produced by ¢ is then measured by its

(worst-case) H® ' -error with respect to a given set & of

problem elements

(3.1) e, (p,5):= sup||SE - p(E)|,,
< fe3 4

where 0 < 4 < m. In this paper, we consider the normed case,

where F is the unit ball BHT (1) of BT (Q) defined by
3aT(2):= {£ ¢ BT (@) : |[£]_ < 1],

. e . . N PO
and the seminormed case, where & 1s the unit semiball #H™ (J)

)]

Hr(ﬁ) given by

sET () = (£ € 5N Q) el < 1},
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(the latter for r a non-negative integer). In either case,

there exists a Hilbert space H and a bounded linear surjection

T : (1) -~ H such that
(3.2) 5 ={feH (@ : |TE] < 1}.

H = Hr(ﬂ) and T = I, the identity operator in

(Indeed, choose

the normed case. The seminormed case is covered in (14, Section 5].)

Note that ker T = 0 in the normed case and ker T = Pr_l(ﬂ) in

the seminormed case.

We then wish to determine the optimal HL(Q)-error, e{(n,S),

of algorithms using the given information n
eL(n,S):= inf e, (p,5).
&2 ()
From Chapter 2 of (111,
(3.3) e, (n,3) =  sup ishil,
h€s 0 kern
which makes it easier to determine eL(n,S). An algorithm

@oe € 2 (n) such that
&) = e, (n,3)

is then said to be an optimal error algorithm using n.

RemarX 3.1. We briefly discuss the nature of optimal

then eL(n,a) = +C8

T

error algorithms. If ker n N\ ker T # 0,

(11, Theorem 2.3.1] (recall that G and T are related by (3.2)).

SO we assume that ker i 1 ker T = 0. Then T ker n 1is a closed
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subspace of H [2, Proposition 6.1]. For each integer i,
1 <1i<n, let z, € 5T () satisfy

n(z.) = e, = ith unit vector in =R"

Tzi is orthogonal to T ker n.

Then the spline algorithm

©S(nf):= venf v =[Sz, ... 8z1"

1

is a (linear) optimal error algorithm using 1 [l11, Chapter 4].

Remark 3.2. Although the procedure above tells us how to
construct optimal error algorithms, it may be very difficult to
follow in practical situations. Usually, we are willing to settle
for algorithms that are only optimal to within a constant factor
(independent of the cardinality of the information used) rather
than optimal error algorithms. More precisely, let {nn}iil ‘be

a sequence of information operators with card nn < n, and let

0

{pnjn=1 be a sequence of algorithms with ¢ € 2(n_ ). We say
that {¢n5n=l is a guasi-optimal sequence of algorithms using
=t if

*
We use the .i- and JS-notations, as well as the standard O-

notation. For functions f and g, we write
f =1l(g) 1ff g = O(£)
and

£ =.a(g) iff £ = 0(g) and g = O(f).
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(The terminology is taken from the finite-element literature,

see e.g. [13].) O

Just as we may ask for optimal algorithms using given informa-
tion, one may ask which information of a given cardinality is best.

Let

e, (n,5):= 1nf{eL(h,3) : card n < n}

*
denote the nth minimal error. We say that nn of cardinality

at most n 1is an nth optimal information if

*
eL(nn,E) = eL(n,E).
From Chapters 2 and 3 of [1l1l}, we have

(3.4) (n,5) = d_(5(),HL @),

€

where dn is the Kolmogorov n-width and Hé(ﬂ) is the completion
) in the HY(l) norm.

of H_(Q

m
E
Remark 3.3. From Chapter 2 of [11], we see how to construct

* *
an nth optimal information operator A However, nn involves

*
knowing eigenvectors of K K, where K = STT (the dagger repre-
senting the pseudoinverse). Since these are difficult to determine
in practice, we once again are willing to settle for optimality

A S
to within a constant factor. More precisely, let {nn}qzl be a

. - 13 i3 *
& sequence of information operators with card n_ < n. Then

a

* o~
.[1 At . -- . [
{ n}n=1 1s guasi-optimal if

*
e{’(nn,zi) =E)(et(n,5)) as n—~<.
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4., PFinite Element Methods and Information
~F Va_ a2~ o= o o N on o oV oF o 0 LY LV oV en ot oV IS o8 o LRV o o o ot o o o e

In this Secticn, we show how the finite element method (FEM)
fits into the setting of the previous section. We describe the
finite element information (FEI) which the FEM uses, and recall
some quasi-optimality results from [15] for the case where
assumptions (i), (ii), and (iii) from Section 1 hold.

We let {Sn};;l be a regular family of finite element subspaces

of degree k. That is, Sn is an n-dimensional subspace of

H?(u) consisting of piecewise polynomials of degree k over a
o

n=1 is regular (8, pg. 132].

triangulation 5 = of Q, where [Sn}
Of course, since .4 is qu, we must make an additional assumption
about boundary elements to guarantee that Sn c Hg(ﬂ) in the

situation where (2.1) is not a Neumann problem. (For instance,

we may use curved elements as in [6].)

Remark 4.1. As indiéated in (1.2) of the Introduction, we
assume that k > 2m - 1 - 4 in this paper. This technical
assumption is needed for the proofs of some upper bounds which
appear below. However, there are a number of situations where
this holds automatically:

(1) If max(0,m - 1) < 4 < m, (1.2) holds by (15, Lemma 4.1].

In particular, (1.2) holds when m = 0 (where 4{ = 0)
or m =1 (where 0 <4 < 1).

(ii) If N > 2 and triangular elements are used, the

results of [16] and the fact that 4 > 0 show that

(1.2) holds.




Hence, the only possiblity that (1.2) will fail is when N =1
or when rectangular elements are used. However, it is possible
for kX = m in either of these settings; hence (1.2) can indeed

fail to hold when N = 1 or when rectangular elements are used.

The finite element method (FEM) using {Sn}iil is then defined

as follows:
given f € Hr(n) and a non-negative integer n, let
u_ € Sn satisfy

n

(4.1) B(un,s) = (f,s)0 ¥ s &€ Sn'

It is well known (see e.g. [3, Chapter 6] for the case m =1,

the general case being similar) that if {Zn}nzl is quasi-uniform

. . o .
(8, pg. 272], then B 1is weakly coercive on {Sn} in the sense
n=1
of Theorem 8.1 c©Z 8], and hence there exists a unique solution
Uy < Sn te (4.1). Moreover, in this quasi-uniform case, we may

use (1.2) and [8, Theorems 8.2 and 8.6] to see that there exists

a positive constant C (independent of £, u, n and un) such that

5 < _ . _
(4.2) [l un“m < CquUu st
seén
and .
‘ . - (x+m-4) /N, . ; I

(4.3) ju - un(j{' < Cn der 7 £ & H (),
where

cas=min(k + 1 - m, m + r).

We now show how the FEM fits into the setting of Section 3.
Let {sl,...,sn} pe a basis for 3 . Then (4.1) means that

u_ & Sn satisfies



16

(4.4) Blu ,s;) = (£,5:) 1 <i<n. :

Hence ug depends only on the finite element information (FEI)

n determined by Sn, where

) . T . r
nnf.~ [(f,sl)0 .o (f,sn)O] vy £ € H (Q).

We define an algorithm P, € é(hn) by

@n(nnf):= un,

where u < Sn satisfies (4.4); we will refer to 9, as being
the FEM using the FZII nn wherever this will cause no confusion.

Hence, (4.3) now becomes
(4.5) |se - o_(n_£)j, < cn” WU Hg v £ ¢ BT (Q)

in the quasi-uniform case.
We now relate the results of [15], where we assumed that
(1), (ii), and (iii) from the Introduction held, so that |

and the energy norm are equivalent on HE(Q):

Theorem 4.1. Let B be Hg(ﬂ)—coercive.

(i) em(wn,BHr(Q)) =,J(n_“/N), with "i" replaced by "3

in the gquasi-uniform case.

s T _ - (m+r) /N . )
(111) e (a ,BH () = «(n ), with "0" replaced by

"g" in the gquasi-uniform case. __

. m,~ .
Hence, for the case where B 1is HE(u)—coer01ve, the error

is measured in the energy norm, and the set of problem elements
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consists of the unit ball of g¥(3), the FEM is quasi-optimal

using FEI iff k > zm - 1 + r, while the FEI is always guasi-

ootimal information (in the quasi-uniform case).
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5, Analysis of the Normed Case
~ AT NN AT SRS SR

In the next two sections, we extend the results in Theorem 4.1
to the case where B 1s weakly coercive and where error is
measured in the norm H-UL (where 0 <4 < m and (l1.2) holds).

In this section, we consider the case where & = BHr(Q), the
unit ball in HT ().

We first determine the nth minimal error.

Theorem 5.1. eL(n,BHr(Q)) =18(n_(r+2m_é)/N) as n - <o,

Proof: From (3.4), we have
- r _ r L
(5.1) eL(n,BH (Q)) = dn(SBH (Q),HE(Q)).

Let

H§+2m(g) = {u ¢ gTT2m ) Bju =0 1<3X m - 1)}

denote the class <z all Hr+2m(ﬂ)—functions satisfying the

essential boundary conditions. For any o > 0, let

(5.2) X(¢):= {u & H§+2m(ﬂ) sl L, < 8) = asaé*zm(n).

Then the shift theorem (2.5) yields
-1 T,
(5.3) X{(g 7) < SBH (li) < X(39),

and so (5.1) and (5.3) yield

(5.4)  a_(x(s™h,HL()) < e, (n,BET(A)) < d_(X(3) ,HE ().

But (5.2) implies that
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r+2m
E

(5.5) dn(X(a),Hé(Q)) = 34, (BH Q) ,H (Q)) Y6 >0,

so that (5.4) and (5.5) yield

r+2m(,

DHAMa) ,HS (@) < e, (n,BET(Q)) < od_(BHLTZM() ,HL (D)) .

(5.6) o Yd_(mH
n

By Theorem 2.5.1 of [3],

LI+2m _ 1/2 | 2 (r+2m-1)
(5.7) a_(BaL*?™ (@) ,H (u)) = (@, /2 () 1y @) )
But Hé/z ) = 8t/?%q) = Hé/z(ﬂ), and so
(5.8)  a_(BHL/ %), L, () = a_(BHE 2 (), L, ()

1/2

1
[©(d (BH,(Q),L,(0)))]

the last by another application of Theorem 2.5.1 of [3]. Hence

(5.6), (5.7), and (5.8) vield

r+2m-4

- r, . 1. ;
(5.9) e, (n,BH" (i) (@(d_(BH,(2),L,(2)))]

But the results of Jerome [7] yield

-1/N

(5.100 dn(BHé(Q),LZ(Q)) = ©(n ).

The theorem follows immediately from (5.9) and (5.10). =

We next show that the usual estimate (4.5) of the error of

the FEM is sharp. Recall that o+ = min(k + 1-m, m + r).

Theorem 5.2.

_.(p.-i-m-{a)/N) as n -~ o,

(i) e£(¢n,BHr(J)) = 2(n

is guasi-uniform, then
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n-(H+m-4)/N

N

r, _ o oS
e&(mn,BH (Q)) = 09/( ) as n .

Proof: First note that Theorem 5.1 yields

-(r+2m-4) /N

(5.11) e, (p_,BH (1)) > e, (n,BH (Q)) =9 (n ).

It remains to show

k+1-1) /N

(5.12) e, (o ,BHT (Q)) = Q(n” ! ) as n — =,

since (5.11) and (5.12) yield (i), while (i) and the usual estimate
(4.5) yield (ii).

The proof of (5.12) is very similar to that of (4.17) of

(15]. Let HD be the interior cf a hypercube such that ad < Q,
and let
33:= (K €3 K < ﬁo}.
7.
Choose u & Hg+“‘ ..) such that
u(x) = 1k v x € a°.

(k + 1)1 71

In what follows, we define (for any region K c:mN) l.lL X
14

to be the usual seminorm [5, (3.1.2)] for non-negative integers 4,

while for non-integral values of {4 > 0, we define I°IL K by the
. 14
Sloboditskiﬁ technigue, i.e.,
w12 -z g v - otven?
KT L2 % -z [NFr2E-Wh %
7T KK ®
(see [8, pg. 96]1). 1In any case, we have d.uL,K > l.l%,K' We

3

write Pk(K) for the polynomials of degree at most X over K.
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Let K & Jg. We clzim that there is a constant Cl > 0,

independent of K and n, such that

(5.13) inf Ju - S[E g 2 Cf vol (k) 2(k+1-2) /M + 1
. K 2
S:Pk(K)

To show (5.13), note that K 1is the affine image of a "reference

element" R which is independent of K. It is straightforward

to check that the functionals
AN AN
v l

B> v and

k+1 R %p. ®) ¢ R

are seminorms on Pk+1(?). Since 4 < m < k (the last by Lemma

Pk+l(ﬁ)

is finite-dimensional, there is a constant él = el(k,m,?) > 0

4.1 of [15]), they have the same kernel Pk(ﬁ). Since

such that

(5.14) inf |9 - 8| > 1% v 9

825
gépk(ﬁ) 1, R | x+1,8

®) .

€ P

As in [13], we may then use Theorem 3.1.2 of [5] and (5.14) to

conclude that (5.13) holds.

Let
d_:=int U {X : K &3
n

Wwe then use (5.13) to see that
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|2
4,K

(A%

in lu - slf z inf lu - s

seS -0
n KEun SEPK(K)

2(k+1-4)/N+1

(5.15) c2 5§ vol(x)

v

1
k€3 °
n
, vol(ﬁn) 2(k+1-4) /N
2 S/ ‘
)
n
the last because
L vol(K) = vol(G_ ).
-0 n
K:on
Since nn c do and 1lim vol(ﬁn) = vol(ﬁo), there is an n, > 0
n—<o
such that
(5.16) vol () > % vol?) Yn>n
* n - 2 =~ 70
Hence (5.15) and (5;16) yield that there is a C2 > 0, independent
of n, such that
(5.17)  inf lu - sl, > c, (550 (KFI=OI/N 7 n > ng.
sEs
n
But #Sg = 0(n) (see (4.14) of [15]), and so
(5.18) inf |u - s|. > con” (KFI-4I/N Yn>n.;
,ﬁ i =73 =70
s&3
n
where C3 > 0 1is independent of n.
Now let £ = Lu. Then £ 1is a nonzero element of Hr(ﬂ),
since u 1is a nonzero element of Hr+2m(ﬂ). Let

E
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£ = /)],

so that
*
st = u/||£] .
*

Then o(n f) €8 and -, 211, yield

* . * I * i *

Ist - o (0 £ Wy 2 IsE -9 £)1,
. .
(5.19) > inf |[Sf - sl,
s&Sn

_ 1 : _
= EfW; ;éf lu le,
n

since S, is a subspace of Hg(Q). Hence (5.18) and (5.19) yield

* * C
_ ) | 3 -(K+1-¢) /N ,
(5.20) “Sf - @n(ﬂnf )d{, Z '[m]—r' n ¥y n Z no.

N :
Since £ & BH'(4) and I£il, > 0 is independent of n, (3.1)
implies (5.12).

We now ask when the FEM is quasi-optimal using FEI. We
see that this is the case iff k > 2m - 1 + r, while FEI is always

gquasi-optimal information, in

Theorem 5.3.

-(r+2m-4) /N

-

(1) e{(nn,BHr(Il)) = I(n ) as n - <o,

—~

. v — ’w
(1i) If {on;

n=1 is quasi-uniform, then

,BHT (3)) = 3(

)

-

qoloram=L) /Ny Lo L e

eé(nn
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Proof: Using Theorem 5.1, we have

", —~(r+2m-4) /N

e. (n_,BEF(Q)) > e, (n,BHT(Q)) = &(n ) as n -0,
4 n - A

establishing (i). To establish (ii), we let z € BHr(Q) N ker nn,

i.e.,
(5.21) (z,8)y = O vs&s, and uZur < 1.
Let g & Y @) « #™@Q) (since 4 < m). Symmetry of B and

(5.21) yield

(sz,9), = B(Sz,E9)
= (z,89),
= (z,8g - s)0 ¥ s & §. 1.
and so
(5.22) l(sz,9) 41 < uzurHSg - s, is €8 .

By Theorem 4.1.1 of [3], there exists s € Sn such that

| -A/N -\ /N
(5.23)  |sg - si_p < ¢nMsall < con™ Vsl
where Cl > 0 is independent of n, g, and z,
(5.24) A = min{(r + 2m - 2, k + 1 + r) = r + 2m - i

(bv (1.2)), and (2.5) was used to establish the right-hand ineguality.

vence, (5.21)-(5.24) yield

(5.25) |(52,g)0| _

‘ < C
i gi[ -1 = -1 "

-{(r+2m-4) /N




Since g € H—L(Q) is arbitrary, (5.25) implies
| (sz,9) 4l _
-4 .. itg -1 -

gEH (&)
Since z € BHT(i1) N ker n_ is arbitrary, (3.3) and (5.26) yield

. T -{(r+2m-4) /N
e, (n ,BH”(Q)) = sup Iszll, < c¢,on ( ,

z € BHY () N ker ‘nn

which, along with (i), yields (ii). ]

Hence in the guasi-uniform case, the FEIL is always quasi-
optimal, information, while the FEM is quasi-optimal using the
FEI iff k > 2m - 1 + r. Thus the spline algorithm (see Section 3)
using FEI is always quasi—optimal among all algorithms, while the

FEM is guasi-optimal among all algorithms iff k > 2m - 1 + r.
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6. Analvsis of the Seminormed Case
I~ P o P S VR LU PV S L ot T o o B

In this Section, we see how the results of [15] extend to
the case where B 1is weakly coercive, the error being the worst-
case HL(Q)-error over BHT(Q) (the set of HT(Q)-functions £
such that |f|r < 1) where 0 <4 {( m. 1In this Section, we assume
that' r 1is a non-negative integer.

Let

denote the problem index [11, pg. 31]. We then have an estimate

of the n-th minimal error in

Theorem 6.1.

*
(i) If n < n , then eé(n,ﬁHr(Q)) = +0,

(ii) e, (n,sH" (1) = g(n-(FTam-L}/Ny o Lo,

Proof: (i) follows immediately from Theorem 2.3.2 of [11].

To establish (ii), let
BT @) = v @ /e | (@)

under the quotient norm. Then [l14, Lemma 5.3]

*
e (n,er(ﬁ)) O(2,(n - n ,Bgr

3 3 (:3))

(6.1)

* r, -
O(eL(n - n ,BH"{a1))

where "B" denotes unit ball and the second step is because

Bfi¥ (1) = BeY(J). 3Sut Theorem 3.1 yields
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eL(n - n*, BHT(Q)) @ ((n - n*)-(r+2m—£)/N)

(6.2)
n—(r+2m—£)/N)

= O as n - <<,
Hence (6.1) and (6.2) yield

(6.3) e, (n,sH" (1)) = o(n” FFUI/N) oo Lo,

On the other hand, BHT () < BHY () yields

(6.4) e, (n,38°(2)) > e, (n,BHY () =& (n” (FFEMUI/N) 55 oo

The estimate (ii) then follows from (6.3) and (6.4).

We next investigate the error of the FEM. We show that either

the FEM has infinize error, or the estimates of Theorem 5.2 hold.

Theorem 6.2.

(1) If sp (a2)

iR

X N
Sn, then eé(wn,ud (Q)) "= +c<.,

(i) If sp__,(4) < §, for all sufficiently large n, then

= (u+m-{) /N

¢ I = - A
eL(@n,nH (1)) 2(n ) as n —~ X,

0

where the "Q" may be changed to "@" when {Sn}nzl

is guasi-uniform.
Proof:

(1) Let SPr_l(ﬂ) Z §, - Since the range of o  is 8§ ,

there exists £ & Pr_l(u) such that Qn(ﬂnt) # Sf. Since Ph

is linear and P__, (i) = kerl|-l_ = ker T (see (3.2)),

e, (:pn,dHr(Q)) = +¢ by Lemma 3.2.2 of [11].

(ii) Let SPr_l(u) c Sn. Then Theorem 5.2(1i) yields
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r _ a(n-(p+m—é)/N

eL(¢n,uHr(ﬂ)) > e, (9 ,BE (1)) ).

. ~ 150 . . . -
Suppose now, in addition, that {on;n_l is guasi-uniform. We

need only show that

n—(u+m—£)/N)

(6.5) eL(¢n,BHr(Q)) = 0O as n - .

Let £f € dHr(Q). Then
(6.6) £ =f, + £
where

£, €P__,G) and £, ¢ 87(@) =HT (@) /P__ ().

1 r—l(

Recall [5, Theorem 3.1.1] that there is a constant 'Cl > 0 such

that

(6.7) J e on fF@).

Since £, € ?__,(s) and £ € BH' (Q), we have

IEll, < Cylfylp = cylel <cy,

so that (4.5) yields

,.l'*'m_'{a) /N;

‘ y —(z+m-{) /N
(6.8) |Isf, - _(a £}, < Cn IE50, < Con 7 .

Now fl < pr_l(u) and §P

(4.2), we have

G) = Sn, so that Sf. & $_. Using

r—l( 1 n
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“Sfl - CPn(nnfl)uL i l‘lel - @n(nnfl)“m

(6.9)

|~

Cinf |SE, - s
s€8n 1 m

= 0.

Since S, D and n, are linear, (6.6), (6.8), and (6.9)

yield

. =\ 1“"(, N
Is£ - »_(n_£)], < cyn (pm=L) /N

Since f € 8HT (1) is arbitrary, this yields (6.5).

Remark 6.1. We illustrate the different possibilities in
Theorem 6.2 by considering the model problems (1.3) and (1.4),
where we have r =1 and m = 1. Hence we define two solution

operators, by letting S, : Hl(O,l) - Hé(o,l) and S Hl(O,l) -

1 2

Hl(O,l) be the solution operators corresponding to (1.3) and (1.4),

réspectively. That is, for any f € Hl(O,l),

u = s,f satisfies -u" +u=£f in (0,1) u(0) = u(l) =0,
and

u = Szf satisfies -u" + u = £ in (0,1) u'(0) =u'(l) = 0.
(Note that Sy and S, differ only in their boundary conditions.)

We claim that the FEM has infinite error for Sl' but has finite

error for 52. Again, keep in mind that these problems are being

solved for all £ ¢ H'(0,1) such that |f| < 1.

1

To see that the FEM has infinite error for Sl’ note that
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Sl(PO(O’l)) is spanned by the solution of

-z" + z =1 1in (0,1) z(0) = z(1) = 0,

the solution of which is

e - 1 X e2 - -X
z(x):= 1 - —3————-e - <—§———— e 7,
e” -1 e” -1

Since z 1is not a polynomial, we have Sl(PO(O,l)) Z Sn, no
matter how big k (the degree of the space Sn) or n (the
dimension of sn) are. Hence, the FEM has infinite error for
the problem Sl'

We now consider the problem 82. We find that SZ(PO(O,l)) =

PO(O,l), since the only solution to
7-z" + z 1 in (0,1) z'(0) = z2'(1l) =0

is z(x):= 1. Si.ce k > 1 [15, Lemma 4.1] and there are no
essential boundary conditions for this problem, we have

Sz(PO(O,l)) < Sn for all n > 1 and any choice of k. L]

Remark 6.2. Since &s_ < Hm(Q), the condition SP (G) < &8

—_— n E r-1 - °n
is equivalent to the condition Pr_l(ﬂ) < Lsn. In situations where
the explicit form of the solution operator is unknown (i.e., most

cases which arise in practice), it will generally be easier to

rerify whethe : ) < LS a 7t ! )y = 5 .
verify whether Pr—l( ) = L8~ than whether SPr—l( ) =5, —

Remark 6.3. The Condition SPr_l(U) < Sn is very restrictive,

since it is not generally the case that the solution u of the

problem Lu = f (with £ polynomial) is a piecewise polynomial
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satisfying the boundary conditions. (For example, we saw that
the solution u = Slf of (1.3) with f =1 involves exponential
functions in Remark 6.1.) It would be extremely unlikely to

have SPr_l(ﬂ) c Sn in most situations, especially those where

h

s has a complicated boundary or the coefficients a3 © L are

nonpolynomial. Hence, we see that the FEM has finite error only

under exceptional circumstances.

Remark 6.4. Instead of fixing n and varying £ (in our
worst-case setting), we can fix £ and increase n. This yields
the asymptotic setting studied in Trojan [12]. Using results
from [12], it is easy to show that for the seminormed case, the

-(r+2m-4) /N

HL(Q)—error of the FEM is always & (n ) as n =< in

the asymptotic setting. O

Hence, there are situations in which the FEM has infinite
error, no matter how big k and n are. 1Is this a feature of
the FEM itself, or is it a feature of the information which the
FEM uses? In the remainder of this section, we show that the
fault lies with the FEM rather than with the FEI. In fact, we
will show that FEI is quasi-optimal information.

In order to do this, we first establish

Lemma 6.1, There exists an integer ng > 0 and a constant

C > 0 such that for any n > no,
] - ~
Uz“r < clzl 7z & ker n_.

Proof: If r = 0, this is immediate.
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Suppose now that r > 1. 1If the conclusion is false, then

<o
there is a subseguence {zn ¢ ker N }i—l such that
i i

(6.10) '“zn.”r =1 and ¥lT_|zn.| = 0.
i i i
Following the proof of (8, Theorem 3.1.1], the Rellich-Kondrasov

compactness theorem yields that there exists z € Pr_l(ﬂ) and a

0

subseguence, which we again denote {zn € ker nn }i-l' such that
i i

(6.11) lim =z =z in HT () (and thus in L. (Q)).
. n. 2
1—CC 1

Hence we see that

(6.12) Izl = 1.

‘e claim that =z = 0, contradicting (6.12). Indeed, let
z > 0. Using denseness of C;Q(Q) in Lz(ﬂ), there exists

w € ¢ (1) such that

0
(6.13) lz - wj, < % ¢
0 3 7"
Since Cav(ﬂ) < Hg(ﬁ) 0 Hl(ﬂ), the standard results (found in,
e.g., [8, Chapter 6]) yield that there is a Cl > 0 (independent

of 2z and w) such that for any Jj > 0, there exists Sj < Sj

for which

.—l/lell.

Ww - sjuo < Clj

Hence, there is an index i,(tg) such that for any i > io(z),

O(
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there exists s, < Sn satisfying

i i
(6.14) lw - s_ i, < L.
: ‘ n.%0 ~ 3 °-

i
From (6.11) and U‘uo < ll-lf,, there is an index i;(e) such that
for any 1i > il(a), there exists =z € ker n for which

n; n,

(6.15) Iz -z |.<%e

n; 0 3 77

Let iz(s) = max{io(s),il(s)}. Then (6.13)-(6.15) and the triangle

inequality yield

(6.16) Hzn' - Sn.UO < € Vi i,(e).
1 1
But z & ker n = Hr(ﬂ) fn (Lz(ﬂ)/s ) and s € 8 . Hence
n. n. n. n. n.
i i i i i
(2 ’Sn.)O =0
i i

which yields

2 2 2
uzn‘“O < “zn.uo -2z asp ) ¥ usn.uo
i i i i i
=z - s_ 5« g2
n. n,
i i
(from (6.16)). Thus for any ¢ > 0, there is an index iz(s)
for which
Uzni“o < = i i),
Hence
(6.17) lim z, = 0 in Lz(ﬂ).

iz Py
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From (6.11) and (6.17), we have z = 0, the desired contradiction. .

e are now ready to show that the FEI is always guasi-optimal

information for the seminormed case.

Theorem 6.3.

.n—(r+2m—t)/N)

(1) eL(nn,ﬂHr(Q)) = 0 as n - <o,

(ii) 1If [Sn}:il is quasi-uniform, then

n—(r+2m—L)/N

e (nn,BHr(Q)) = g ) as .n = <,

£
Proof: Since card A=y Theorem 6.1 yields

e, (n_,3HT (D)) > e, (n,#H"(Q)) = o (o~ (TH2m-2) /N,

as n - x,
establishing (i). To prove (ii), let z € BHr(Q) N ker n_. For
n

~

any g € HY(3), we use (5.22) to see that

(6.18) l(sz,9) 4l < Uz“r inf |sg - sfl__.
séén

By (5.23) and (5.24), there is a Cl > 0 (independent of n, g,

and z) such that

(6.19) inf |sg - s|__ ¢ cn  (FPEINgy
s&Sn

By Lemma 6.1 and =z & uHr(Q), we have

(6.20) lzit, ¢ Cylzl < Cy,

where C, 1is independent of n and 2. Hence (6.18)-(6.20)

-

vield
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| (82,9 4l - (r+2m-2) /N

(6.21) T
-4

!

where C is independent of n, 2z, and g. Taking the supremum

over all nonzero g € H V@), (6.21) implies

(6.22) Iszli, < cn” (r+2m=L) /N

Since z € #BHT () N ker n is arbitrary, (3.3) and (6.22) yield

. P o ~(r+2m-4) /N
ea(nn,BH (Q)) < Cn .

which, along with (i), establishes (ii). ]

Hence (in the quasi-uniform case), the spline algorithm
using FEI is guasi-optimal among all algorithms in the seminormed

case.
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Z' Complexity Analvsis

In this section, we discuss the complexity of finding =-
approximations to the solution of the variational boundary-value

problem, as well as the penalty for using the FEM when

k < 2m -.1 + r.

Let ¢ > 0. An algorithm ¢ € 2 (n) produces an c-approximation

to the problem (S,5) in the HL(Q)—norm if
eé(@,a] < €.

The complexity comp(p) of an algorithm ¢ € 2(n) is defined via the
model of computation discussed in Chapter 5 of [11]). (Informally, we
assume that any linear functional can be evaluated with finite

cost cy, and that the cost of an arithmetic operation is unity.)

It then turns out that if n has cardinality n, then

(7.1) comp(y) > nc, + n - 1 Vo € 2(n),

while if $ is linear, then

{(7.2) comp (p) < nc, + 2n - 1;

4]

v

o
-

see (11, Chapter 5, Section 2]. We then define, for

the c-complexity COMPL(s,a) of the problem (S,3) in the
<

H” (si) -norm to be

CoMP, (£,5) = inf{conp(yp) : e, (,3) < <j.

[y}

IZ ¢ 1is an algorithm for which

*

- *
(7.3) e, (@ ,5) < ¢ and complp ) = COMPL(E,E),
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*
then 9 1is said to be an optimal complexity algorithm for

c-approximation of the problem (S,5) in the HL(C)—norm.

Remark 7.1. Not surprisingly, it is difficult to determine
optimal complexity algorithms. We will generally willing to
settle for optimality to within a constant factor, independent

*
of &. We say that a family [@e} of algorithms has quasi-

e>0

optimal-complexity for the problem (S,5) iff

*

eL(@:,&) < e for all sufficiently small = > 0
and
* J—
comt(p ) = @(COMP£(5,E)) as e — 0. _J
(=%
Recall that “a is the FEM of degree k using the FEI nn
based on the fin. : element subspace 8 . We assume that {Jn};;l

is quasi-uniform, where Jn is the triangulation of {1 upon
which Sn is based. Let @i denote the spline algorithm using

nn {see Remark 3.1). We let

FEM%(slu) = lnf[comp(mn) : eé(y ,5) < g}

denote the algorithmic complexity of the FEM for the problem
($,5) in the H{(ﬂ)-norm, and

T = = 3 1 "‘S : N £}
SPLLNEL(;,U)V lnftcomp[qn) : eé(g ) £ )

denote the algorithmic complexity of the spline algorithm using
the TEI for this problem. Using the results of Sections 5 anc 6,

(7.1), and (7.2), we find



Theorem 7.1.

(1)

(ii)

(iii1)

(iv)

38

comp, (2,5) =0 (M IEFM)y og ¢4 0 for ¥ = 38T
L
and for 3§ = BHT(Q).
SPLINEé(s,S) = @(E—N/(r+2m—t)) as € -~ 0 for & = BHr(Q)
and for 3 = 3HT(Q).
FEM, (,BHY () = @ (W W)y og o Lo,
(a) If there exists no integer n > 0 for which
SPr—l <8 then
FEM, (¢,2H7(2)) = + Y e >0
(b) If there exists no integer ng > 0 such that
SP < 8 vV n>n,, then there exists ¢, > 0
r-1 — "n =0 0
such that
FEX (:,8HT (1)) = +x 0 < e < eqe
(c) If there exists an inteqer ng 20 such that
SP._ 1 S Sn ion > Ny then
FEM, (e,3HT (1) = @ (e WMy o o g, —

Hence, we may draw the following conclusions:

Corollary 7.1.

(1)

(i1)

The spline algorithm using the FEI is always guasi-

optimal, for both the normed and seminormed cases.

The FEM is guasi-optimal for the normed case iff

k>2m -1 + r,

If

k < 2m -1 + r, then
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r .
FEM, (¢,BH" (Q)) 1 AN

= = 3((E)' ) as € - 0,
COMPL(E,BH (1))
where
_ 1 1
(7.4) MEKXFI-zT rim<-z Y
and so

FEML(E,BHI(Q))
lim = +oo,

£=0 COMP{(E,BHr(Q))

(1ii) The FEM is quasi-optimal for the seminormed case iff

K >2m - 1 + r and SP € 8, for all sufficiently

r-1

large n. If kX < 2m -1 + r and SP._, < Sn for

all sufficiently large n, then

FEmC(E,BHr(Q))

coMp, =, 3HY (1))

where A 1is given by (7.4); if Spr—l o4 Sn for all

n sufficiently large, then

FE&L(s,er(J)) =+ for all = > 0 sufficiently small.

Hence when k 1is too small for a given value of r, there
is an infinite asymptotic penalty for using the FEM instead of

the spline algorithm. Corollary 7.1 implies that there is an
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= > 0 such that

(7.5) SPLINEL(s,E) < FEML(E,J) for 0 < g < €y

What is the wvalue of eo? If EO

may turn out that it is more reasonable to use the FEM for

is unreasonably small, it

"practical" values of €. We determine the value of € for

a model problem in

Example 7.1. Let N =1, = (0,7), m=1, r =1,

Hé(ﬂ) = Hé(o,n), and consider the bilinear form B : Hé(o,ﬂ) X

H3(0,7) =R defined by
.. - _— ; , ol
B(v,w):= JO v'w ¥y v,w & HO(O,n).

Hence for £ € H 12,7), u = Sf 1is the variational solution to

the problem

-u" = f in (0,w)

u(0) = u(w) = 0,

We choose Sn to be the n-dimensional subspace of Hé(o,v)
consisting of piecewise linear polynomials with nodes at

X, = —A_ (0 ¢ j<n+ 1), so that k = 1.

3 n+ 1
We wish to determine €0 such that (7.5) holds with 4 =1
T .. 1 . . .. -
and ¢ = BH (0,7). This is similar to Example 6.1 of [13],
the only difference being that in [153], we measured error by the

energy norm (which is the i -seminorm l-ll), while here we use

the H'-norm ﬂ-ﬂl. Using the Poincare inequality [9]




Ll.f\loi l'll on Hé(or’”)r
we have

(7.6) 1 <ty € /2 11 on Hi(0,m).

1

Hence (6.25) and (6.32) of [15]), along with (7.6) imply

1 T . .90689968
(7.7) e, ,BH (0,7)) > = p
1™7n /12 (n + 1) n+ 1
and
s 1 _ 1 2 . 1.4142136
(7.8) e (p /BHT(0,7)) < V2 (—)° = 5
(n + 1)

Using (7.1) and (7.7), we have

T

(7.9) FEM, (,851(0,%)) > (¢; + 1) S {) -1,
/12

while (7.2) and (7.8) yield

-1/2

(7.10) SPLINEl(s,BHl(O,ﬂ)) < ey + 2) (V7 ¢ - 1) - 1.

1
Thus (7.%9) and (7.10) yield that

Lio,n)) if 0 < e < ¢

(7.11) SPLINEl(E,BHl(O,n)) < FEM, (¢,BH

where = is the smallest positive solution ¢ of

-1/2

(cy + 1)<—§:~e‘1 - 1> = (¢ + 2) (V2 ¢ - 1).
/12

Some algebra yields




We now examine the value of ao(cl) under various assumptions
on the cost <y of evaluating a linear functional (noting that
for c, > 0, eo(cl) increases with cl). Clearly cq > 0, so

that

1/2)2

0) = |¥2 - (/7 - 1_> * 0.22747884,
VY12

This tells us that (7.11) holds for all ¢ less than (roughly)

0.227. Next, we assume that <, > 1, i.e., that evaluating a

linear functional is at least as hard as an arithmetic operation

(it would be hard to imagine otherwise). In this case,

(c

o!cy)

. - (34 _ (2 -
Z:O(l) - 2Y2 <4 /_

ﬂ 1/212
> = 0.37714081.
3

I’_
1

Finally, it is reasonable to assume that ¢, >> 0, i.e., that

1

evaluating a linear functional is much harder than an arithmetic

operation {11, pg. 85]. One may check that

2

lim so(cl) = gi ¢ V2 £ 0.58157202,

C ., =

1

giving an estimate of Eo(cl) for large values of Cqy-
Based on this exéhple, it seems reasonable to conjecture that
(7.5) cenerally holds for "reascnable" values of T (However,

see the discussion at the end of [15, Section 6] for some comments

about this conjecture.)
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8. Summarv, Extensions, and Open Questions
P T e o o o o I S VS S SV S e A a2l

We have shown that FEI of degree k is always gquasi-optimal
information for indefinite linear elliptic problems Lu = f
under the following conditions:

(i) Error is measured in the Sobolev {-norm, where

0 <4 < m.
(ii) Either |f} < 1 (r > -m) or [£f]_ < 1 (r a nonnegative
integer).
(ii1) k > 2m - 1 - 4.

However, the FEM is not always guasi-optimal among all algorithms
using FEI. In the normed case |[f| < 1, the FEM is quasi-
optimal iff k > 2m - 1 + r. 'In the seminormed case Iflr <1,
the FEM has finite error iff the finite element subspace contains
SP__yi if this holds, then the FEM is guasi-optimal iff
k >2m - 1 + r. In the case where k < 2m - 1 + r, the asymptotic
penalty for using the FEM is infinite.

What happens when we try to weaken the assumptions above?

The natural weakening of (i) is to allow 4{ to satisfy the
inequality ¢ < m. The proofs of Theorems 5.2(i) and 6.2(ii)
(the lower bound for the FEM) do not hold, since there seems to
be no natural definition of the Sobolev {-seminorm for negative
values of 4. 1In the case where {Sn};s is uniform and

=1
2(3) (i.e., a Neumann problem), the results in [10]

HU(Z) = H
show that these results do hold for negative { 1in this special
situation. We conjecture that this is true in general, i.e.,

the lower bounds for the FEM given in these theorems hold for
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any { < m. However, the other results in this paper do hold

h

for any 4 such that 4 < m, provided (iii) still holds.

Condition (ii) may be weakened in a number of ways. Rather
than use the norm (or seminorm) over H'(Q), we may use H'Hr o
4

or I-Ir b’ the W 'P(3) norm and seminorm. Alternatively, we
7
r,s

may decide to use the norm in the Besov space Bp (3) (see (4]).
If we let & be the unit ball (cr semiball) in one of these
spaces, is FEI still guasi-optimal information? When is the
FEM quasi-optimal?

Finally, what happens when (iii) no longer holds? 1In this
case, the bounds that may be established using the techniques
of this paper are no longer tight; Although (iii) holds for
£ > 0 1in most cases of practical interest, it is important to
find out what hapvens when (iii) is false, which can occur when

rectangular elements are used or when error is measured in

negative norms.
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