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Abstract

We examine the problem of containing buffer overflow attacks in a safe and efficient manner. Briefly, we dynam-
ically augment source code to catch stack and heap-based buffer overflow and underflow attacks, and recover from
them by allowing the program to continue execution. Our hypothesis is that we can treat each code function as a
transaction that can be aborted when an attack is detected, without affecting the application’s ability to correctly
execute. Furthermore, our approach allows us to selectively enable or disable components of this defensive mecha-
nism in response to external events, allowing for a direct tradeoff between security and performance. We apply our
system to the problem of containing worms, combining this defensive mechanism with a honeypot-like configuration.
This approach allows us to detect previously unknown attacks and automatically adapt an application’s defensive
posture at a negligible performance cost.

The primary benefits of our scheme are its low impact on application performance, its ability to respond to at-
tacks without human intervention, its capacity to handle previously unknown vulnerabilities, and the preservation
of service availability. We implemented the scheme as a stand-alone tool, DYBOC, which we use to instrument a
number of vulnerable applications. Our performance benchmarks indicate a slow-down of 20.1% for Apache in
full-protection mode. We validate our transactional hypothesis via two experiments: first, by applying our scheme to
17 vulnerable applications, successfully fixing 14 of them; second, by examining the behavior of Apache when each
of 154 potentially vulnerable routines are made to fail, resulting in correct behavior in 139 of cases.

1 Introduction

The prevalence of buffer overflow attacks as a preferred intrusion mechanism, accounting for approximately half
the CERT advisories in the past few years [54], has elevated them into a first-order security concern. Such attacks
exploit software vulnerabilities related to input (and in particular input length) validation, and allow attackers to
inject code of their choice into an already running program. The ability to launch such attacks over a network has
resulted in their use by a number of highly publicized computer worms [51, 1, 5, 7, 39, 57, 6, 49].

In their original form [8], such attacks seek to overflow a buffer in the program stack and cause control to be
transfered to the injected code. Similar attacks overflow buffers in the program heap [36, 2], virtual functions and
handlers [43], or use other injection vectors (e.g., format strings [3]). Due to the impact of these attacks, a variety of
techniques for detecting, removing, containing, or mitigating buffer overflows have been developed over the years.
Although detection is perhaps the most desirable solution, this is a very difficult problem, for which only partial
solutions exist (e.g., [15, 31]). Each of these techniques suffers from at least one of the following problems (this is
not an exhaustive list):

• Most importantly, there is a poor trade-off between security and availability: once an attack has been detected,
the only option available is to terminate program execution [19], since the stack has already been overwritten.
Although this is arguably better than allowing arbitrary code to execute, program termination is not always a
desirable alternative (especially for critical services). Automated, high-volume attacks, e.g., a worm outbreak,



can exacerbate the problem by suppressing a server that is safe from infection but is being continuously probed
and thus crashes.

• Severe impact in the performance of the protected application: especially with dynamic techniques that seek
to detect and avoid buffer overflow attacks during program execution by instrumenting memory accesses, the
performance degradation can be significant.

• Ease of use: especially as it applies to translating applications to a safe language such as Java or using a new
library that implements safe versions of commonly abused routines.

An ideal solution uses a comprehensive, perhaps “expensive” protection mechanism only where needed and allow
applications to gracefully recover from such attacks, in conjunction with a low-impact protection mechanism that
prevents intrusions at the expense of service disruption. We have developed such a mechanism that automatically
instruments all statically and dynamically allocated buffers in an application so that any buffer overflow or underflow
attack will cause transfer of the execution flow to a specified location in the code, from which the application can
resume execution. Our hypothesis is that function calls can be treated as transactions that can be aborted when a
buffer overflow is detected, without impacting the application’s ability to execute correctly. Nested function calls
are treated as sub-transactions, whose failure is handled independently. Our mechanism takes advantage of standard
memory-protection features available in all modern operating systems and is highly portable. We implemented our
scheme as a stand-alone tool, named DYBOC (DYnamic Buffer Overflow Containment), which simply needs to be
run against the source code of the target application. Previous research [45, 46] has applied a similar idea in the
context of a safe language runtime (Java); we extend and modify that approach for use with unsafe languages.

We apply DYBOC to 17 open-source applications for which buffer overflow exploits are known, correctly mit-
igating the effects of these attacks (allowing the program to continue execution without any harmful side effects)
for 14 of the applications. In the remaining 3 cases, the program terminated; in no case was the attack successful.
Although a contrived micro-benchmark shows a performance degradation of up to 440%, measuring the ability of
an instrumented instance of the Apache web server indicates a performance penalty of only 20.1%. We validate our
hypothesis on the recovery of execution transactions by evaluating the effects on program execution on the Apache
web server. Our results show that when each of the 154 potentially vulnerable routines are forced to fail, 139 result
in correct behavior. Albeit we focus on stack-based attacks, our approach can be used against heap overflows.

Although we believe this performance penalty (as the price for security and service availability) to be generally
acceptable, we extend our scheme to protect only against specific exploits that are dynamically detected. This ap-
proach lends itself particularly well to defending against network worms. Briefly, we use an instrumented version of
the application (e.g., web server) in a sandboxed environment, with all protection checks enabled. This environment
is operated in parallel with the production servers, but is not used to serve actual requests nor are requests delayed.
Rather, it is used to detect “blind” attacks, such as when worm or an attacker is randomly scanning and attacking IP
addresses. We use this environment as a “clean room” environment to test the effects of “suspicious” requests, such
as potential worm infection vectors. A request that causes a buffer overflow on the production server will have the
same effect on the sandboxed version of the application. The instrumentation allows us to determine the buffers and
functions involved in a buffer overflow attack. This information is then passed on to the production server, which
enables that subset of the defenses that is necessary to protect against the detected exploit. In contrast with our
previous work, where patches were dynamically generated “on the fly” [50], DYBOC allows administrators to test
the functionality and performance of the software with all protection components enabled. Even by itself, however,
the honeypot-mode of operation can significantly accelerate the identification of new attacks and the generation of
patches or the invocation of other remediation mechanisms.

The remainder of this paper is organized as follows. We describe our approach and the prototype implementation
in Section 2. We then evaluate its performance and effectiveness in Section 3, give an overview of related work in
Section 4, and conclude the paper in Section 5.



2 Our Approach

The core of our approach is to automatically instrument parts of the application source code1 that may be vulnera-
ble to buffer overflow attacks (i.e., buffers declared in the stack or the heap) such that overflow or underflow attacks
cause an exception. Our goal then is to catch these exceptions and recover the program execution from a suitable
location. This description raises several questions:

• Which buffers are instrumented?

• What is the nature of the instrumentation?

• How can we recover from an attack, once it has been detected?

• Can all this be done efficiently and effectively?

In the following subsections we answer these questions, also describing the main components of our system. The
question of efficiency and effectiveness is mostly addressed in the next section.

2.1 Instrumentation

Since our goal is to contain buffer overflow attacks, our system instruments all statically and dynamically allocated
buffers, and all uses of these buffers. In principle, we can combine our system with a static analysis tool such as
[24, 54, 31, 48, 21, 15] to identify those buffers (and uses of buffers) that are provably safe from exploitation.
Although such an approach would be an integral part of a complete system, we do not examine it further here; we
focus on the details of the dynamic protection mechanism. Likewise, we expect that our system would be used in
conjunction with a mechanism like StackGuard [19] or ProPolice to prevent successful intrusions against attacks we
are not yet aware of; following such an attack, we can enable the dynamic protection mechanism to prevent service
disruption. We should also note the “prove and check” approach has been used in the context of software security in
the past, most notably in CCured [42]. In the remainder of this paper, we will focus on stack-based attacks, although
our technique can equally easily defend against heap-based ones.

For the code transformations we use TXL [37], a hybrid functional and rule-based language which is well-suited
for performing source-to-source transformation and for rapidly prototyping new languages and language processors.
The grammar responsible for parsing the source input is specified in a notation similar to Extended Backus-Naur
(BNF). Several parsing strategies are supported by TXL making it comfortable with ambiguous grammars allow-
ing for more “natural” user-oriented grammars, circumventing the need for strict compiler-style “implementation”
grammars. In our system, we use TXL for C-to-C transformations using the GCC C front-end.

The instrumentation itself is conceptually straightforward: we move static buffers to the heap, by dynamically
allocating the buffer upon entering the function in which it was previously declared; we de-allocate these buffers
upon exiting the function, whether implicitly (by reaching the end of the function body) or explicitly (through a
return statement). Care must be taken to handle the sizeof construct, a fairly straightforward task with TXL.

For memory allocation, we use a version of malloc() that allocates two additional zero-filled, write-protected
pages that bracket the requested buffer, as shown in Figure 1. pmalloc() uses mprotect() to mark the surrounding
pages as read-only. As mprotect() operates at memory page granularity, every memory request is rounded up to the
nearest page. The pointer that is returned by pmalloc() can be adjusted to immediately catch any buffer overflow or
underflow depending on where attention is focused. This functionality is similar to that offered by the ElectricFence
memory-debugging library, the difference being that pmalloc() catches both buffer overflow and underflow attacks.

Figure 2 shows an example of such a translation. Buffers that are already allocated via malloc() are simply switched
to pmalloc(). This is achieved by examining declarations in the source and transforming them to pointers where the
size is allocated with a malloc() function call. Furthermore, we adjust the C grammar to free the variables before
the function returns. After making changes to the standard ANSI C grammar that allow entries such as malloc() to
be inserted between declarations and statements, the transformation step is trivial.

1Although binary rewriting techniques such as those used by RAD [44] may be applicable here, we do not further consider them here due
to their significant complexity.
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Figure 1. Example of pmalloc()-based memory allocation: the trailer and edge regions (above and below the
write-protected pages) indicate “waste” memory allocated by malloc(). This is needed to ensure that mprotect() is
applied on complete memory pages.

Original code
int func()
{

char buf[100];
...

other func(buf);
...

return 0;
}

Modified code
int func()
{

char *buf = pmalloc(100);
...

other func(buf);
...

pfree(buf); return 0;
}

Figure 2. First-stage code transformation, moving buffers from the stack to the heap using pmalloc().

For single-threaded, non-reentrant code, it is possible to only use pmalloc() once for each previously-static buffer.
Generally, however, this allocation needs to be done each time the function is invoked. We shall see how to minimize
this cost in Section 2.3.

Any overflow (or underflow) on a buffer allocated via pmalloc() will cause the process to receive a Segmentation
Violation (SEGV) signal, which is caught by a signal handler we have added to the source code. It is then the
responsibility of the signal handler to recover from such failures.

2.2 Recovery: Execution Transactions

In determining how to recover from such exception, we introduce the hypothesis of an execution transaction.
Very simply, we posit that for the majority of code (and for the purposes of defending against buffer overflow
attacks), we can treat each function execution as a transaction (in a manner similar to a sequence of operations in a
database) that can be aborted without adversely affecting the graceful termination of the computation. Each function
call from inside that function can itself be treated as a transaction, whose success (or failure) does not contribute
to the success or failure of its enclosing transaction. Under this hypothesis, it is sufficient to snapshot the state of
the program execution when a new transaction begins, detect a failure per our previous discussion, and recover by
aborting this transaction and continuing the execution of its enclosing transaction. Currently, we focus our efforts
inside the process address space, not dealing with rolling back I/O. For this purpose, a virtual file system approach
can be employed to roll back any I/O that is associated with a process. We plan to address this further in future work.

Note that our hypothesis does not imply anything about the correctness of the resulting computation, when a failure
occurs. Rather, it merely states that if a function is prevented from overflowing a buffer, it is sufficient to continue
execution at its enclosing function, “pretending” the aborted function returned. Depending on the return type of the



function, a set of heuristics is employed so as to determine an appropriate error return value that is, in turn, used
by the program to handle error conditions. Details of this approach are described in Section 2.2. Our underlying
assumption is that the remainder of the program can handle truncated data in a buffer in a graceful manner. For
example, consider the case of a buffer overflow vulnerability in a web server, whereby extremely long URLs cause
the server to be subverted: by catching such an overflow, the web server will simply try to process the truncated
URL (which may simply be garbage, or may point to a legitimate page).

A secondary assumption is that functions that are thusly aborted do not have other side effects (e.g., touch global
state), or that such side effects can be ignored. Obviously, neither of these two conditions can be proven, and
examples where they do not hold can trivially be constructed. Since we are interested in the actual behavior of
real software, we experimentally evaluate our hypothesis in Section 3. Note that, in principle, we could checkpoint
and recover from each instruction (line of code) that “touches” a buffer; doing so, however, would likely prove
prohibitively expensive.

The mechanism for implementing this recovery is straightforward: we use sigsetjmp() to snapshot the location to
which we want to return once an attack has been detected. The effect of this operation is to save the stack pointers,
registers, and program counter, such that the program can later restore their state. We also inject a signal handler
(initialized early in main()) that catches the SIGSEGV2 and calls siglongjmp(), restoring the stack pointers and
registers (including the program counter) to their values prior to the call of the offending function (in fact, they are
restored to their values as of the call to sigsetjmp()):

void sigsegv handler() { siglongjmp(global env, 1); }

The program will then re-evaluate the injected conditional statement that includes the sigsetjmp() call. This time,
however, the return value will cause the conditional to evaluate to false, thereby skipping execution of the offending
function. Note that the targeted buffer will contain exactly the amount of data (infection vector) it would if the
offending function performed correct data-truncation.

In our example, after a fault, execution will return to the conditional statement just prior to the call to other func(),
which will cause execution to skip another invocation of other func(). If other func() is a function such as read(),
strcpy(), or sprintf() (i.e., code with no side effects), the result will be equivalent to a situation where these functions
correctly handled array bounds checking.

There are two benefits in this approach. First, objects in the heap are protected from being overwritten by an attack
on the specified variable, since there is a signal violation when data is written beyond the allocated space. Second,
we can recover gracefully from an overflow attempt, since we can recover the stack context environment prior to the
offending function’s call, and effectively siglongjmp() to the code immediately following the routine that caused the
overflow or underflow. While the contents of the stack can be recovered by restoring the stack pointer, special care
must be placed in handling the state of the heap. In order to deal with data corruption in the heap, we can employ
data structure consistency constraints, as described in[20], to detect and recover from such errors.

Thus, the code in our example from Figure 2 will be transformed as shown in Figure 3 (grayed lines indicate
changes from the previous example).

To accommodate multiple functions checkpointing different locations during program execution, a globally de-
fined sigjmp buf structure always points to the latest snapshot to recover from. Each function is responsible for
saving and restoring this information before and after invoking a subroutine respectively, as shown in Figure 4.

Finally, functions may also refer to global variables; ideally, we would like to unroll any changes made to them
by an aborted transaction. The use of such variables can be determined fairly easily via lexical analysis of the
instrumented function: any l-values not defined in the function are assumed to be global variables (globals used as r-
values do not cause any changes to their values, and can thus be safely ignored). Once the name of the global variable
has been determined, we scan the code to determine its type. If it is a basic type (e.g., integer, float, character), a
fixed-size array of a basic type, or a statically allocated structure, we define a temporary variable of the same type
in the enclosing function and save/restore its original value as needed. In the example shown in Figure 5, variable

2Care must be taken when handling this, to avoid an endless loop on the signal handler if another such signal is raised while in the handler.
We validated our approach on OpenBSD and Linux RedHat.



int func()
{

char *buf;
buf = pmalloc(100);

...
if (sigsetjmp(global env, 1) == 0) {

other func(buf); /* Indented */
}

...
pfree(buf);
return 0;

}

/* Global definitions */
sigjmp buf global env;

Figure 3. Saving state for recovery.

int func()
{
char *buf;
sigjmp buf curr env;
sigjmp buf *prev env;
buf = pmalloc(100);

...
if (sigsetjmp(curr env, 1) == 0) {

prev env = global env;
global env = &curr env;
other func(buf); /* Indented */
global env = prev env;

}
...
pfree(buf);
return 0;

}

Figure 4. Saving previous recovery context.

“global” is used in other func().
Unfortunately, dynamically allocated global data structures (such as hash tables or linked lists) are not as straight-

forward to handle in this manner, since their size may be determined at run time and thus be indeterminate to a static
lexical analyzer. One possibility is to modify the dynamic memory allocator to record additional information as to
the size of each memory chunk, and combine this with lexical analysis of the data structure definition to determine
which fields are pointers. This would likely have a significant impact on performance, however, especially for large
data structures such as hash tables. Another possible solution is to provide a framework for programmer assisted
code annotation. Through this mechanism, developers could identify functions that “touch” global or otherwise sen-
sitive data structures so that they can be handled with care in the transformation process. Special handling of these
data structures could translate to skipping the enclosing function completely or adding data structure constraints
that can be used to effectively repair inconsistent data structures and enable the program to continue to operate
successfully[?]. We plan to address this issue in future work.

2.3 Dynamic Defensive Postures

‘Eternal vigilance is the price of liberty.’
- Wendell Phillips, 1852

Unfortunately, when it comes to security mechanisms, vigilance takes a back seat to performance. Thus, although
our mechanism can defend against all buffer overflow attacks and (as we shall see in Section 3) maintains service
availability in the majority of cases, this comes at the cost of performance degradation. Although such degradation
seems to be modest at least for some applications (about 20% for Apache, see Section 3), it is conceivable that
other applications may suffer a significant performance penalty, if all buffers are instrumented with our system (for
example, a worst-case micro-benchmark measurement indicates a 440% slowdown). One possibility we already
mentioned is the use of static analysis tools to reduce the number of buffers that need to be instrumented; however,
it is very likely that a significant number of these will be remain unresolved, requiring further protection.

However, our scheme makes it possible to selectively enable or disable protecting specific buffers in specific func-
tions, in response to external events (e.g., an administrator command, or an automated intrusion detection system).
In the simplest case, an application may execute with all protection disabled, only to assume a more defensive
posture as a result of increased network scanning and probing activity. This allows us to avoid paying the cost
of instrumentation most of the time, while retaining the ability to protect against attacks at a fast pace. Although
this strategy entails some risks (specifically, its exposure to a successful directed attack without prior warning or
other indications), it may be the only alternative when we wish to simultaneously achieve security, availability, and



/* Global variables */
int global;

int func()
{

char *buf;
sigjmp buf curr env;
sigjmp buf *prev env;
buf = pmalloc(100);
int temp dyboc global;

...
if (sigsetjmp(curr env, 1) == 0) {
temp dyboc global = global;
prev env = global env;
global env = &curr env;
other func(buf); /* Indented */
global env = prev env;

} else {
global = temp dyboc global;

}
...

pfree(buf);
return 0;

}

Figure 5. Saving global variable.

int func()
{

char *buf;
sigjmp buf curr env, *prev env;
char buf[100];
if (dyboc flag(827))
buf = pmalloc(100); /* Indented */

else
buf = buf;

...
if (dyboc flag(1821)) {
if (sigsetjmp(curr env, 1) == 0) {
prev env = global env;
global env = &curr env;
other func(buf);
global env = prev env;

}
} else {
other func(buf);

}
...

if (dyboc flag(827)) {
pfree(buf); /* Indented */

}
return 0;

}

Figure 6. Enabling DYBOC conditionally.

performance.
The basic idea is to only use pmalloc() and pfree() if a flag instructs the application to do so; otherwise, the

transformed buffer is made to point to a statically allocated buffer. Similarly, the sigsetjmp() operation is performed
only when the relevant flag indicates so. This flagging mechanism is implemented through the dyboc flag() macro,
which takes as argument an identifier for the current allocation or checkpoint, and returns true if the appropriate
action needs to be taken. Continuing with our previous example, the code will be transformed as shown in Figure 6.

Note that there are three invocations of dyboc flag(), using two different identifiers: the first and last invocation
use the same identifier, which indicates whether a particular buffer should be pmalloc()’ed or be statically allocated;
the second invocation, with a different identifier, indicates whether a particular transaction (function call) should be
checkpointed. We use different identifiers to allow for the mixing of allocation and use of buffers across the program
code: different invocations of the same function from different locations in the code will get assigned different
identifiers, allowing them to be protected independently, at a very high level of granularity.

To implement the signaling mechanism, we use a shared memory segment of sufficient size to hold all identifiers
(1 bit per flag). dyboc flag() then simply tests the appropriate flag. A second process, acting as the notification
monitor is responsible for setting the appropriate flag, when notified through a command-line tool or an automated
mechanism. Turning off of a flag requires manual intervention by the administrator. We are not concerned about pos-
sible memory leaks due to the obvious race condition (turning off the flag while a buffer is already allocated), since
we expect the administrator to restart the service under such rare circumstances, although these can be addressed
with additional checking code. Another mechanism that can be used to address memory leaks and inconsistent data
structures is that of recursive restartability [13]. We plan to investigate the effects of this recovery mechanism in
future work.



2.4 Worm Containment

Recent incidents have demonstrated the ability of self-propagating code, also known as “network worms,” to infect
large numbers of hosts, exploiting vulnerabilities in the largely homogeneous deployed software base [7, 57, 39] (or
even a small homogeneous base [49]), often affecting the offline world in the process [33]. Even when a worm
carries no malicious payload, the direct cost of recovering from the side effects of an infection epidemic can be
tremendous. Thus, countering worms has recently become the focus of increased research, generally focusing on
content-filtering mechanisms combined with large-scale coordination strategies [40, 52].

Despite some promising early results, we believe that this approach will be insufficient by itself in the future.
We base this primarily on two observations. First, to achieve coverage, such mechanisms are intended for use
by routers (e.g., Cisco’s NBAR); given the routers’ limited budget in terms of processing cycles per packet, even
mildly polymorphic worms (mirroring the evolution of polymorphic viruses, more than a decade ago) are likely
to evade such filtering, as demonstrated recently in [16]. Network-based intrusion detection systems (NIDS) have
encountered similar problems, requiring fairly invasive packet processing and queuing at the router or firewall.
When placed in the application’s critical path, as such filtering mechanisms must, they will have an adverse impact
on performance. Second, end-to-end “opportunistic” encryption in the form of TLS/SSL or IPsec is being used by
an increasing number of hosts and applications. We believe that it is only a matter of time until worms start using
such encrypted channels to cover their tracks. Similar to the case for distributed firewalls, these trends argue for an
end-point worm-countering mechanism.

The mechanism we have described allows us to create an autonomous mechanism for combating a scanning worm
that does not require snooping the network. We utilize two instances of the application to be protected (e.g., a web
server), both instrumented as described above. The production server (which handles actual requests) is operating
with all security disabled; the second server, which runs in honeypot mode, is listening on an un-advertised address.
A scanning worm such as Blaster, CodeRed, or Slammer (or an automated exploit toolkit that scans and attacks any
vulnerable services without human intervention) will trigger an exploit on the honeypot server; our instrumentation
will allow us to determine which buffer and function are being exploited by the particular worm or attack. This
information will then be conveyed to the production server notification monitor, which will set the appropriate flags.
A service restart may be necessary, to ensure that no instance of the production server has been infected while the
honeypot was detecting the attack.

As a result, targeted services can automatically enable those parts of their defenses that are necessary to defend
against a particular attack, without incurring the performance penalty at other times, and cause the worm to slow
down. Note that there is no dependency on some critical mass of collaborating entities, as is the case with several
other schemes: defenses are engaged in a completely decentralized manner, independent of other organizations’
actions. Wide-spread deployment would cause worm outbreaks to subside relatively quickly, as vulnerable services
become immune as they are being exploited. This system can protect against zero-day attacks [34], for which no
patch or signature is available.

3 Experimental Evaluation

To test the capabilities of our system, we conducted a series of experiments and performance measurements.
In the first, rather contrived scenario, we constructed a simple file-serving application that had a buffer overflow
vulnerability and contained superfluous services where we could test against stack-smashing attacks. The server,
written in C, used a simple two-phase protocol where a service is requested (different functions) and then the
application waits for network input.

A buffer overflow attack was constructed that overwrites the return address and attempts to get access to a root
shell. Specific to the set of actions that we have implemented thus far, we recompile the TXL-transformed code, and
run a simple functionality test on the application (whether it can correctly serve a given file). The test is a simple
script that attempts to access the available service. This application was an initial proof-of-concept for our system,
and did not prove the correctness of our approach. More substantial results were acquired through the examination
of the applications provided by the Code Security Analysis Kit (CoSAK) project.



3.1 CoSAK Data

To determine the validity of our execution transactions hypothesis, we examined a number of vulnerable open-
source software products. This data was made available through the Code Security Analysis Kit (CoSAK) project
from the software engineering research group at Drexel university. CoSAK is a DARPA-funded project that is
developing a toolkit for software auditors to assist with the development of high-assurance and secure software
systems. They have compiled a database of thirty open source products along with their known vulnerabilities and
respective patches. This database is comprised of general vulnerabilities, with a large number listed as susceptible
to buffer overflow attacks. We applied DYBOC against this data set; the results are illustrated in Appendix A. Note
that some of these applications are not in fact network services, and would thus probably not be susceptible to a
worm. However, they should serve as a representative sample of buffer overflow vulnerabilities.

As illustrated in the appendix, our tests resulted in fixing 14 out of 17 ”fixable” buffer overflow vulnerabilities,
with 82% success rate. The remaining 14 packages were not tested because their vulnerabilities were unrelated (non
buffer-overflow). In the remaining 3 cases (those for which our hypothesis appeared not to hold), we manually in-
spected the vulnerabilities and determined that what would be required to provide an appropriate fix are adjustments
to the DYBOC tool to cover special cases, such as handling multi-dimensional buffers and pre-initialized arrays;
although these are important in a complete system, we felt that our transaction execution hypothesis was validated
with the initial experiment.

It is interesting to note that the majority of the vulnerabilities provided by the CoSAK dataset were caused by calls
to the strcpy() routine. Examination of the respective security patches showed that for most cases the buffer overflow
susceptibility could be repaired by a respective strncpy(). Furthermore, most routines did not check for return values
and did not include routines within the routines, thus providing fertile ground for use of our pmalloc() approach.

3.2 Execution Transactions

In order to validate our hypothesis on the recovery of execution transactions, we experimentally evaluate its effects
on program execution on the Apache web server. We run a profiled version of Apache against a set a concurrent
requests generated by ApacheBench and examine the subsequent call-graph generated by these requests with gprof.

The call tree is analyzed in order to extract leaf functions. The leaf functions are, in turn, employed as poten-
tially vulnerable transactions. As mentioned previously, we treat each function execution as a transaction that can
be aborted without incongruously affecting the normal termination of computation. Armed with the information
provided by the call-graph, we run a TXL script that inserts an early return in all the leaf functions, simulating an
aborted transaction.

This TXL script operates on a set of heuristics that were devised for the purpose of this experiment. Briefly,
depending on the return type of the leaf function, an appropriate value is returned. For example, if the return type is
an int, a −1 is returned; if the value is unsigned int, we return 0, etc. A special case is used when the function returns
a pointer. Specifically, instead of blindly returning a NULL, we examine if the pointer returned is dereferenced
further down by the calling function. In this case, we issue an early return immediately before the terminal function
is called. For each simulated aborted transaction, we monitor the program execution of Apache by running httperf
[41], a web server performance measurement tool. Specifically, we examined 154 leaf functions.

The results from these tests were very encouraging; 139 of the 154 functions completed the httperf tests success-
fully: program execution was not interrupted. What we found to be surprising, was that not only did the program
not crash but in some cases all the pages were served correctly. This is probably due to the fact a large number
of the functions are used for statistical and logging purposes. Furthermore, out of the 15 functions that produced
segmentation faults, 4 did so at start up.

3.3 Performance

To understand the performance implications of our patch-generation engine and protection mechanism, we ran
a set of performance benchmarks. We first measure the worst-case performance impact of DYBOC in a contrived
program; we then ran DYBOC against the Apache web server and measure the overhead of our system with full
protection enabled.



Micro Benchmark The first benchmark is aimed at helping us understand the performance implications of our
DYBOC engine. For this purpose, we use an austere C program that makes an strcpy() call using a statically
allocated buffer as the basis of our experiment.

After patching the program with DYBOC, we compare the performance of the patched version to that of the
original version by examining the difference in processor cycles using the Read Time Stamp Counter (RDTSC),
found in Pentium class processors. The results illustrated by Figure 7 indicate the mean time, in microseconds
(adjusted from the processor cycles), for 100,000 iterations. The performance overhead for the patched, protected
version is 440%, a value that is expected given the complexity of the pmalloc() routine relative to the simplicity of
calling strcpy() for small strings.

Figure 7. Micro-benchmark results. Figure 8. Apache benchmark results.

Macro Benchmark We also used DYBOC on the Apache web server, version 2.0.49. Apache was chosen due to
its popularity and source-code availability. Basic Apache functionality was tested, omitting additional modules. The
purpose of the evaluation was to examine the overhead of preemptive patching of a software system. The tests were
conducted on a PC with a 2GHz Intel P4 processor and 1GB of RAM, running Debian Linux (2.6.5-1 kernel).

We used ApacheBench [4], a complete benchmarking and regression testing suite. Examination of application
response is preferable to explicit measurements in the case of complex systems, as we seek to understand the effect
on overall system performance.

Figure 8 illustrates the requests per second that Apache can handle for 6000 concurrent requests. There is an
20.1% overhead for the patched version of Apache over the original, which is expected since the majority of the
patched buffers belong to utility functions that are not heavily used. This result is very encouraging, as it validates
the assumption that a software system can be preemptively patched without incurring a prohibitive performance hit.
Furthermore, this result is an indication of the worst-case analysis, since all the protection flags were enabled.

Space Overhead Of further interest are the increases in the number of lines and binary size of the patched version.
The line count for the server files in the original version of Apache is 226,647, while the patched version is 258,061
lines long, representing an increase of 13.86%. Note that buffers that are already being allocated with malloc() (and
de-allocated with free()) are simply translated to pmalloc() and pfree() respectively, and thus do not contribute to an
increase in the line count. The binary size of the original version was 2,231,922 bytes, while the patched version
of the binary was 2,259,243, an increase in the order of 1.22%. Similar results are obtained with OpenSSH 3.7.1.
Thus, the impact of our approach in terms of additional required memory or disk storage is minimal.



4 Related Work

Modeling executing software as a transaction that can be aborted has been examined in the context of language-
based runtime systems (specifically, Java) in [46, 45]. That work focused on safely terminating misbehaving threads,
introducing the concept of “soft termination”. Soft termination allows threads to be terminated while preserving the
stability of the language runtime, without imposing unreasonable performance overheads. In that approach, threads
(or codelets) are each executed in their own transaction, applying standard ACID semantics. This allows changes to
the runtime’s (and other threads’) state made by the terminated codelet to be rolled back. The performance overhead
of their system can range from 200% up to 2,300%. Relative to that work, our contribution is twofold. First, we apply
the transactional model to an unsafe language such as C, addressing several (but not all) challenges presented by
that environment. Second, by selectively applying transactional processing, we substantially reduce the performance
overhead of the application. However, there is no free lunch: this reduction comes at the cost of allowing failures to
occur. Our system aims to automatically evolve a piece of code such that it eventually (i.e., once an attack has been
observed, possibly more than once) does not succumb to attacks.

Safe Languages and Compilers Safe languages eliminate various software vulnerabilities altogether by intro-
ducing constructs that programmers cannot misuse (or abuse). Unfortunately, programmers do not seem eager to
port older software to these languages. Java has arguably overcome this barrier, and other safe languages that are
more C-like (e.g., Cyclone [27]) may result in wider use of safe languages. In the short and medium term however,
“unsafe” languages (in the form of C and C++) are unlikely to disappear, and they will in any case remain popular
in certain specialized domains, such as embedded systems.

One step toward the use of safe constructs in unsafe languages is the use of “safe” APIs (e.g., the strl*() API [38])
and libraries (e.g., libsafe [9]). While these are, in theory, easier for programmers to use than a completely new
language (in the case of libsafe, they are completely transparent to the programmer), they only help protect specific
functions that are commonly abused (e.g., the str*() family of string-manipulation function in the standard C library).
Vulnerabilities elsewhere in the program remain open to exploitation.

Source Code Analysis Increasingly, source code analysis techniques are brought to bear on the problem of
detecting potential code vulnerabilities. The simplest approach has been that of the compiler warning on the use of
certain unsafe functions, e.g., gets(). More recent approaches [24, 54, 31, 48, 21] have focused on detecting specific
types of problems, rather than try to solve the general “bad code” issue, with considerable success. While such
tools can greatly help programmers ensure the safety of their code, especially when used in conjunction with other
protection techniques, they (as well as dynamic analysis tools such as [35, 32]) offer incomplete protection, as they
can only protect against and detect known classes of vulnerabilities.

MOPS [15, 14] is an automated formal-methods framework for finding bugs in security-relevant software, or
verifying their absence. They model programs as pushdown automata, represent security properties as finite state
automata, and use model-checking techniques to identify whether any state violating the desired security goal is
reachable in the program. While this is a powerful and scalable (in terms of performance and size of program to
be verified) technique, it does not help against buffer overflow or other code-injection attacks. RacerX [22] uses
flow-sensitive, inter-procedural analysis to detect race conditions and deadlocks, geared towards debugging of large
multi-threaded systems.

CCured [42] combines type inference and run-time checking to make C programs type safe, by classifying pointers
according to their usage. Those pointers that cannot be verified statically to be type safe are protected by compiler-
injected run-time checks. Depending on the particular application, the overhead of the approach can be up to 150%.
MECA [56] allows a programmer to annotate code such that specific security properties of the program can be
verified automatically. The focus is to allow for easy annotation of large amounts of code with little effort, by
inferring missing annotations from existing ones. In [26], the authors model C string manipulations, which account
for many (although not all) buffer overrun vulnerabilities, as linear programs. They then use model solvers based on
linear programming that are efficient and accurate. ARCHER [55] symbolically executes the code and checks, using
a database about program variables and their current state, whether accesses to buffers are within bounds.

Compiler Tricks Perhaps the best-known approach to countering buffer overflows is StackGuard [19]. This is a



patch to the popular gcc compiler that inserts a canary word right before the return address in a function’s activation
record on the stack. The canary is checked just before the function returns, and execution is halted if it is not the
correct value, which would be the case if a stack-smashing attack had overwritten it. This protects against simple
stack-based attacks, although some attacks were demonstrated against the original approach [12], which has since
been amended to address the problem.

A similar approach [28], also implemented as a gcc patch, adds bounds-checking for pointers and arrays without
changing the memory model used for representing pointers. This helps to prevent buffer overflow exploits, but at
a high performance cost, since all indirect memory accesses are checked, greatly slowing program execution. A
somewhat more efficient version is described in [47]. Stack Shield [53] is another gcc extension with an activation
record-based approach. Their technique involves saving the return address to a write-protected memory area, which
is impervious to buffer overflows, when the function is entered. Before returning from the function, the system
restores the proper return address value. Return Address Defense (RAD) [44] uses a redundant copy of the return
address to detect stack-overflow attacks. Its innovation lies in the ability to work on pre-compiled binaries using
disassembly techniques, which makes it usable for protecting legacy libraries and applications without requiring
access to the original source code. These methods are very good at ensuring that the flow of control is never altered
via a function-return. However, they cannot detect the presence of any data memory corruption, and hence are
susceptible to attacks that do not rely on the return address.

ProPolice [23], another patch for gcc, is also similar to Stack Guard in its use of a canary value to detect attacks
on the stack. The novelty is the protection of stack-allocated variables by rearranging the local variables so that char
buffers are always allocated at the bottom of the record. Thus, overflowing these buffers cannot harm other local
variables, especially function-pointer variables. This avoids attacks that overflow part of the record and modify the
values of local variables without overwriting the canary and the return-address pointer.

MemGuard [19] makes the location of the return address in the function prologue read-only and restores it upon
function return, effectively disallowing any writes to the whole section of memory containing the return address. It
permits writes to other locations in the same virtual memory page, but slows them down considerably because they
must be handled by kernel code. StackGhost [25] is a kernel patch for OpenBSD for the Sun SPARC architecture,
which has many general-purpose registers. These registers are used by the OpenBSD kernel for function invocations
as register windows. The return address for a function is stored in a register instead of on the stack. As a result,
applications compiled for this architecture are more resilient against normal input-string exploits. For deeply-nested
function calls, the kernel will have to perform a register window switch, which involves saving some of the registers
onto the stack. StackGhost removes the possibility of malicious data overwriting the stored register values by using
techniques like write-protecting or encrypting the saved state on the stack. FormatGuard [17] is a library patch for
eliminating format string vulnerabilities. It provides wrappers for the printf() family of functions that count the
number of arguments and match them to the specifiers.

Another related approach is that of program shepherding [30], where an interpreter is used to verify the source and
target of any branch instruction, according to some security policy. To avoid the performance penalty of interpre-
tation, their system caches verified code segments and reuses them as needed. Despite this, there is a considerable
performance penalty for some applications. A somewhat similar approach is used by libverify [9], which dynami-
cally re-writes executed binaries to add run-time return-address checks.

PointGuard [18] encrypts all pointers while they reside in memory and decrypts them only before they are loaded
to a CPU register. This is implemented as an extension to the GCC compiler, which injects the necessary instructions
at compilation time, allowing a pure-software implementation of the scheme. Another approach, address obfusca-
tion [11], randomizes the absolute locations of all code and data, as well as the distances between different data
items. Several transformations are used, such as randomizing the base addresses of memory regions (stack, heap,
dynamically-linked libraries, routines, static data, etc.), permuting the order of variables/routines, and introducing
random gaps between objects (e.g., randomly pad stack frames or malloc()’ed regions). Although very effective
against jump-into-libc attacks, it is less so against other common attacks, due to the fact that the amount of possible
randomization is relatively small (especially when compared to our key sizes). However, address obfuscation can
protect against attacks that aim to corrupt variables or other data.



RISE [10] and Instruction Randomization [29] introduce a virtual machine layer that uses a randomized instruction
set to deny an attacker the ability to exploit a vulnerability.

5 Conclusion

The main contribution of this paper is the introduction and validation of the execution transaction hypothesis,
which states that every function execution can be treated as a transaction (in a manner similar to a sequence of
database operations) that can be allowed to fail, or forced to abort, without affecting the graceful termination of the
computation. We validate this hypothesis by examining a number of open source software packages with known
vulnerabilities.

For that purpose, we developed DYBOC, a tool for instrumenting C source code such that buffer overflow attacks
can be caught, and program execution continue without any adverse side effects (such as forced program termina-
tion). DYBOC allows a system to dynamically enable or disable specific protection checks in running software,
potentially as a result of input from external sources (e.g., an IDS engine), at an very high level of granularity. This
enables the system to implement policies that trade off between performance and risk, retaining the capability to
re-evaluate this trade-off very quickly. This makes DYBOC-enhanced services highly responsive to automated in-
discriminate attacks, such as scanning worms. Finally, our preliminary performance experiments indicate that: (a)
the performance impact of DYBOC in contrived examples can be significant, but (b) the impact in performance is
significantly lessened (less than 10%) in real applications, and (c) this performance impact is further lessened by
utilizing the dynamic nature of our scheme.

Our plans for future work include enhancing the capabilities of DYBOC by combining it with a static source-code
analysis tool, extending the performance evaluation, and further validating our hypothesis by examining a larger
number of open source applications.
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Appendix A. CoSAK Data

System
Name System Call

Functions
within

functions
Works? Return value?

bash strcpy() None Yes No

crond strcpy() None Yes No

elm strcpy() None Yes Yes

lukemftp None(pointers) None No No

lynx sprintf() Yes Yes No

mailx strcpy() Yes Yes No

netkit-ftp None(pointers) - No No

netkit-ping Memcpy() None Yes No

nmh sprintf(), strcpy() None Yes No

screen Format String None No No

sharutils sscanf() None Yes Yes

stunnel fdprint() None Yes Yes

sysklogd read() None Yes Yes

telnetd sprintf() None Yes No

wu-ftpd strcat() None Yes No

wu-ftpd sprintf() None Yes No

zgv-1 strcpy() None Yes No

 
The column ”Functions within functions” indicates whether the vulnerable system call used in the application

invoked another function as part of the parameters to the call. The column ”Return value” indicates whether the
vulnerable system call’s return value was checked upon returning from the call. The significance of these columns
is pertinent to the application of our pmalloc() heuristic.


