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Summary. We study adaptive information for approximation of linear prob-
lems in a separable Hilbert space equipped with a probability measure u. it
is known that adaption does not help in the worst case for linear probiems.
We prove that adaption also does nor help on the average. That is, there
exists nonadaptive information which is as powerful as adaptive inior-
mation. This result holds for “orthogonally invariant™ measures. We pro-
vide necessary and sulficient conditions for a measure to be orthogonally
invariant. Examples of orthogonally invariant measures include Gaussian
measures and. in the finite dimensional case, weighted Lebesgue measures.

Subject Clussifications: AMSMOS): 68C25. CR: F2.1.

Introduction

We explain the setting of the problem using a simple integration example.
1 .
Suppose one seeks an approximation to | f(ndt knowing n values of f at

0

points t,. N(f)y=[f(r,). fits)....f(r)]. and knowing that f belongs to a given
class F of functions. If the points t,.1......r, are given simultaneously then N
=N"" is called nonaduptive information. If the second point t, depends on the
previously computed value f(¢,l ie. r,=¢.{f(r,) and if the point ¢, depends
on the previously computed values f(e,) .../, _ ) ie. =t (f . fle,_
then N = NY is called aduptive information.

The structure of adaptive information is much richer than the structure of
nonadaptive information. Therefore one might hope that adaptive information
can be much more powerful than nonadaptive information, ie., an approxima-
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tion that uses adapuive information has much smaller error than an approxi-
matton that uses nonadaptive information.

What do we mean by error? It depends which model we have in mind.
Consider first the worst case model. In this model the ercor of an algorithm o
tfor our simple example) 15 defined by

Jinde =N (L.h

C—, —

elo. Ny=sup
feF

By an ulgorithm we mean any mapping ¢ which maps N(f) into R. Then

riN)y=infel(p, N) (L2
&

is called the radius of information and ¢ is optimal iffe(@. Ny=r(N).
Does adaption help in the worst case? That is, does there exist a choice of
points £, =¢,( f(fy) ... f(t;_ ) such that

FINT) <F(N"")?

A surprising answer is no. at least for some classes F. More preciseiy. if the
class F is convex and balanced (ie.. feF implies —feF) then there exist
points ¢* such that the nonadaprive information N™"( f)=[f(t]) ... f(t})] is as
powerful as the adaptive information N Le.,

rINM S PN

This was established in [1] for arbitrary linear functionals. It was generalized ‘
to arbitrary linear operators and information consisting of linear functionals in
{2} and [12. Theorem 7.1. Chap. 2]. A further generalization may be found in
[til

[t 15 also known that there are nonlinear problems such that adaption does
not help in the worst case: see [3. 8. 9. {4] and [17].

We stress that 1n the worst case there do exist nonlinear problems for
which adaption 1s fur more powerful. An example of such a problem is zero
finding for scalar functions which change sign at the endpoints of the interval
[u.b]. Then the optimal nonadaptive information has radius (b —upi2(n+1)
‘whereas the optimal adaptive information is bisection information which has
radius 1h -0 27" "1 see [12, Theorem 2.1, Chap. 8] and [7].

As long as F is convex and balanced. adaption does not help in the worst
case for linear problems. One may think that this is due 10 a model assump-
ton. ie. that the error of an algorithm is determined by its performance for
the hardest /. One might hope that with a more realistic definition of error. the
converse result would be true, 1e., adaption helps, perhaps even significantly,
for lincar problems.

[t seemns natural to propose the average ¢rror of an algorithm as a more
reulistic measure of its performance. Technically, this means that we replace
supremum in 1.1} by integral, 1.e.

| PN
LI .\;.:{_; HJinde—otNiEy ;udf)j (L3
Flo

f
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where p 15 a probability measure on F Note that even for our stmpie 2vampie.
F usually lies in an infinite dimensional space and therefore the analysis of
(1.3) requires measure theory n infinite dimensional spaces. Thus the analysis
of average case error is much harder than the analysis of worst case error.
Define
rHNi=infe' (0. N) L4
L}

as the average radius of information.
Does adaption help on the average? That is, does there exist a choice of
points r,=¢:(f(¢,), ... fir;_ ;) such that

PN < F(N")?

The surprising answer is no for linear problems. This was established in [10]
for a finite dimensional Hilbert setting with a weighted Lebesgue measure and
with a general error criterion. ln this paper we show that adaption does not
help on the average f(or linear problems in infinite dimensional Hilbert spaces
with an “orthogonally invariant” measure u. Orthogonal invariance of ¢ means
that the measure of a Borel set is invariant under certain linear orthogonal
mappings. Examples of orthogonally invariant measures include Gaussian mea-
sures. For the finite dimensional case with u absolutely continuous with respect
to the Lebesgue measure, orthogonal invariance coincides with a weighted
Lebesgue measure, see Corollary 3.1. Thus this coincides with measures studied
in [10].

Our result holds for adaptive information operators which are measurable
and which consist of arbitrary inner products. In particular. it holds for
adaptive information operators used in practice which are usually continuous
almost everywhere, We illustrate this point by an integration example. Usually
the next point ¢, _,. at which f is to be evaluated. depends on whether fur. v
Sty ... f1r) tor some of them) satisfy a certain Boolean condition, te.

L fu,, if Cond(firh. ... flrn=true.
et Iu:.[ if Cond(fir,y . ... F i pn={false.
for some u, , and da. .. Then r,_,. as a function of the previously computed

information. is a piecewise constant function. Thus it is_not continuous but it i3
continuous almost evervwhere for a reasonable choice of measure. See for
sxample, the discussion on adaptive integration in [3, pp. 126-130].

We have given a number of references dealing with adaptive information
for nonlinear problems in the worst case. There exist no such paper for the
average case model. We hope that the study of nonlinear problems in the
average case model will be one of the foci of future research.

We stress. by all means. that the worst and average case models are not the
only interesting models 1o be studied. An asymptotic model. in which the total
number of evaluations is not fixed a priori, should be anaiyzed. The question
as to whether adaption helps for linear problems in the asymptotic case is
analyzed in (J.M. Trojan. in preparation). The answer is once more no. Some
preliminary study indicates that adaption does not help in the asymptouc
average case. Results for this model will be reported in the future.
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Why are we interested in the guestion whether adaption 15 more powerful
then nonadaption? There are a number of reasons which include:

1 Intrinsic mathematical interest. Adaption corresponds to certain non-
linear operators whereas nonadapuion corresponds to linear operators. Math-
ematically the sentence “adaption does not help™ means that this nonlinearity
is no more powerful than linearity.

t1) Reducnon of the search for optimal information. [f adaption does not
help then we only have to look at the very special and relatively easy non-
adaptive case to find optimal information.

{1i) Speedup for parallel computations. Nonadaptive information is na-
turally decomposable and can be computed very efficiently in parallel. Adap-
tive information is nor decomposable an is ill-suited for parallel computations.
For instance, for the integration example if a function evaluation costs unity
and there are n processors then nonadaptive information costs unity and
adaptive information costs n.

A more detailed discussion of this subject may be found in [13].

We briefly summarize the contents of this paper. In Sect. 2 we formulate the
problem, introduce the concept of orthogonal invariance and state the main the-
orem of this paper. The proof of the theorem requires some properties of orthog-
onally invariant measures. Therefore Sects. 3 and 4 deal with characterization
and properties of orthogonally invariant measures. In particular, we prove that
orthogonal invariance of u is equivalent to orthogonal invariance of its pro-
jections tnto [inite dimensional subspaces. We also characterize orthogonal
invariance for the finite dimensional case. We prove that the measure of a
Borel set 1s invariant under a certain nonlinear mapping. This is basic to the
proof in Sect. § that the spline algorithm i1s an optimal average error algorithm,
The proof of the main theorem is given in Sect. 5.

2. Adaptive Information

Let F, and F. be real separable Hilbert spaces. Let S: F, —F, be a linear
continuous operator. Our aim 15 to approximate S/ for any / from F. We
assume that nstead of £ we know N/ Here N 15 an aduptive information
operator defined by

Nifr=[ong o foga iy e fog vy, Yoo (2.h

where v, =i g v =t fgdy.oxv, 0 gdy, ..y, ) is an element of F, and
f+.+1 15 the inner product of F,. The essence of (2.1) is that the choice of
g v, ... v, ) may depend on the (i — 1) previously computed inner products.

For brevity we shall write

". 12.2)

IA

gifi=g (v, ...ox,_ ) 1280

e
=
I
1

To stress that N s adapuve we shall sometimes write V=N If cach g, /)
Jdoes not depend on /. el g(f)=g, for some g, from F,. then V is called
nonadaptive and denoted by .V = N7 je.,

Nergfi=(ihgoan g fgnl (2.3
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Note that nonadaptive nformation is a linear operator whereds adaptne
information is 1n general nonlinear. Without loss of generajity we assume thit
g, (f) g1 ... g0 /) are linearly independent for each / from F,.

Knowing N(f) we approximate S/ by @i N f)) where ¢ 1s a mapping tfrom
N(F,) into F,. We call such ¢ an (idealized) ulgorithm. We wish to approxi-
mate §/ with an average error as small as possible. The average error of ¢ s
defined as

e o, N ={ | iSf—otN( ) udf i} 2.4

[

s

Here u is a probability measure defined on Borel sets of F, and the integral in
{2.4) is understood as the Lebesgue integral. We assume that an algorithm o 15
chosen such that (2.4) is well defined. ie. ISf—w@iN(f).~ is a measurable
function. This assumption is not restricted as is shown in [13]. Let

3 N)= inf ¢"¥p.N) (2.

@eB(N)

[
s

be the average radius of information where ®(N) denotes the class of wll
algorithms using N for which the average error is well defined.

The main problem addressed in this paper is to show that for a wide class
of measures. adaptive information is not stronger than correspondingly chosen
nonadaptive information. Thus the much more complicated structure of adap-
tive information operators does not supply more knowledge about linear
problems than the relatively simple structure of nonadaptive information oper-
ators.

This result holds for "orthogonally invariant™ measures u. This concept will
be defined below. We assume that | *f *u(df)< + x. Without loss of gener-

Fy
ality we can assume that the mean element of the measure u is zero. Le.

Jfoxvud =0, “xsF,, and | (fx)udf1>0,  7xeF, x=0.
F,

F

Let 5, be the covariance vperaror of y. 1.e.. S 1 F, — F, and

(S.xoyr= o nudf). vxopef,. (2.6)
£,

The operator §, is a linear seif-adjoint. pesitive definite operator and has finite
trace. [f dimF, =+ x then S,(F,) is a proper dense subset of F, and S %:
S_F,y—F, is a linear unbounded operator. See [4.6] and aiso [16]. Lat

ey, =Sy Yx o ysSF,). (2.7

Then ix =} ix.x), =} 157" wxn
We say uis orthogonally incariant iff

wQBy=1uB) 12.3)
for any Borel set B and any linear mapping Q. Q: F, —~ F,. of the form

Qf =2f S h—f (2.9)
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for any h such that 'S hm=1or h=0. For h=0. Qf = —f and 12.5) means that
w—By=wB) where —-B=.1: —f=B}. Note that f=§, 1F t implies  that
Qf=S (F))und
QF S= 20 h =S L2 S h =1
=(S; Y= S 1
Thus the mapping Q is orthogonal in the norm '« . This explains why u is
called orthogonally invariant.

It is shown in [16] that Gaussian measures are orthogonally invariant as
well as measures of the form

witBY= | w(ISTYf hitdf)
B

for some measurable function w assuming that F, is finite dimensional and 4 is
the Lebesgue measure.
Note that Q resembles a Householder matrix. [t is easy to check that

Q'=1. Q-'=0Q. (2.10)

This important property will be extensively used in this paper. In Sect.3 we
characterize orthogonally invariant measures in detail.

We shall show in Sect. 3 that without loss of generality we can assume that
(S,gf) g =g, Let

u=sup{z MWAVAREE feFl}.

=1

For simplicity assume that « is obtained for f* ie
Y oSSzt f=sup ¥ SSgf00 (2.1

Letgr=g,01" By VU7 we mean
AN EE (WA S NS RO A ¢n] 12.12)

Note that N7 1s wmaduptive and 1s obtained by fixing ¢,(f) in the adapuive
information N

We say that Nni=[{ifig (fn...tfigafn) is measurable ff g1 is
measurable, ie. g7 '(B) s a Borel set for a Borel set B of R'™'. i=23....n
We are reads to state the main result of this paper.

Theorem 2.1. Lot u be un orthogonally invariant meusure. Let N* be meuasurable
aduptive viormation. Then

PN Z AN (2,13

Thus adaption does not help on the average for linear problems. As we
already mentioned in the introduction it does not heip for the worst case
model
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The proof of Theorem 2.1 depends heavily on the properties of vrthog-
onally mvartant measures. In Sect. ¥ we characterize orthogonally :mvariant
measures. The results of Sect. 3 are of intrinsic interest. [n Sect. 4 we derne
properties of orthogonally invariant measures. Section 3 contains the proof of
Theorem 2.1 The proof is based on two results on orthogonally nvariant
measures. The [first result is that for orthogonally invariant measures. the
measure of a set is invariant under a certain nonlinear mapping. The second s
that the measures pf.N%) ~' are orthogonally invariant and independent of N*.
Assuming these two results, the reader can skip Sects.3 and 4 and turn 1o
Sect. 3.

3. Orthogonal Invariance of Measure

We show in this section which measures are orthogonally invariant. Our
analysis will be first done for a finite dimensional case, dim(F,)< + ». We
find, in particular. a condition for g to be orthogonally invariant whenever u is
absolutely continuous with respect to the Lebesgue measure 4. Next we consid-
er the general case. dim(F )< + . We show that orthogonal invariance of u is
equivalent to orthogonal invariance of its finite dimensional projections.
ti) Assume in this subsection that m=dim(F )< + x. Then the operator S_
is bounded and
T=S;% F —F, (3.1

is well defined. By n®#n we mean a linear operator from F, into F, such that
im@mufr=1fmn. Let @ be of the form (29). Then Qf =T {2n®n-HTf
where n=S*h and #v=1 or n=0. Hence, the measure u is orthogonally
ivariant iff

WT = 2p@n—-NTB=uiB) 132

for any Borel set B and any # such that '5i=1 or n=0.

We characterize orthogonally invariant measures g which are absolutels
continuous with respect to the Lebesgue measure 2. Recall that u s absolutely
continuous w.r.L. 10 2 idenoted by u< /) iff 21B1=0= i BI=0 for every Borel
set B. If u< . then the Radon-Nikodym theorem. see e.g. [6]. guarantees the
existence of a nonnegative measurable mapping g: £, = R _ such that

(o)
]

wlBy={ gt f124df ). ) (3.
I

For simplicity we assume that ¢ is continuous almost evervwhere. i.2.. there
exists a set 4, 4(F, —4)=0. such that f= 4 implies that ¢ is continuous at /.

Theorem 3.1. The meusure u is orthogonally invariant ilf

gitp=gut) torany f (g4 suchthat f, .= fo... T {3d

Proof. Suppose u 1s orthogonally invariant. Take f, and f. from 4 such that
fv o= 12, Detine n=Tut, =V fi-fy, for f,=—f,. and n=0 for t, =

=
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—t..Let Q=T-"2n 2y -NOT. We have 2Tt Tt 0= 1, ~1. 7 and Qy,
= /.. Then (3.2) vields wiQBy=1wB) for any Borel set B. Observe that .det Qr
=1. This and 13.3) vield

Vigtfr—210f 1y adfr=0. 7B -—Borel set. (3.3
8
Note that ¢ —gQ is continuous at f, and gt {1 —g(Qf)=g( f,} —g( f,). Suppose
that gt f,)—gtf>)=0. Due to continuity of g —gQ at f,. there exists a positive r
such that for fzB={feF,: f—f 1 <r} we have signig())-gIQf N =constant.
Since 21B)>0 we have

Vg —gQ M Aldf)=0

8
which contradicts (3.5). Hence gt f,) =gt f.) as claimed.

Assume now that (3.4) holds. Then for an orthogonal Q in the norm -1,

we have |detQl=1 and

wQBY= | gifiadfy= [ gufradh

Q8 Q(Brm 4
= | g@NHidNH= | goNidf).
8~Qu) B~Q(4)n A

Note that fe4~Q(4) implies @fs4. Since Qf i, =!f1, then (3.4) yields
g(@f1=g(f). Thus we have

plQB= | g Nadf1<uB) (3.6)
BrQiii~ 4
for any Borel set B. Setting B=Q(C) we have u(C) £u(Q(ON for any Borel set
C. Hence utQiBit=u(B). This means that u ts orthogonally invariant.

The condition (3.4) means that g depends on the norm of f . More
precisely. let XY= f _:f=4} Define w: R _ —R _ such that

() gt x=X. AT
wlixji= . J.
0 x£X

where /24 and f _=x Due to 134, w is well defined. For f£4 we have

wi f _y=gtf) Since

*

wBi= | gtHradfi= | owe [ )ad)
B-4 8-4

=yl o )Adf)
8

Thus we have proven

Corollary 3.1. The meusure u s orthogonally incariant iff

wBr=)wt + sdf). 7 B-Borel set. 3.3
B

The measures considered in [10] are of the form 13.8) and therefore they are
orthogonally mvanant
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(ii) We now turn to the general case dimiF g - » [ dimiF 1= — v then
T=5;° is unbounded and for f£S}1F.). T/ 1s not well defined. Therefore the
results of subsection (1) do not hold.

We exhibil relations between orthogonal invariance of g and orthogonal
invariance of its finite dimensional projections. Let [,.[,.... be orthonormal
eigenelements of the covariance operator 5. Le.

S, = 3.9
where /,2/,2.... Let X _=lin(,.7,.....5,) and let B, be an orthogonal
projection,

P.F,—X,. {3.10)

Let u,, be the projection of the measure u onto X, ie.
u (By=puiP ' B) t3.1h

for any Borel set B in X_, see [6]. We are ready to prove

Theorem 3.2. The measure u is orthogonally invariant iff the measures u. are

orthogonally invariant form=1,2,.... O

Proof. Assume that u is orthogonally invariant. For any m, take a mapping
Q: X, — X of the form (2.9, ie.

Of =2(f.h)S h~f

where S_ is the covariance operator of the measure u,, and heX . (S h. hi=1

or h=0. First of all we show that §_x=5,x. x=X . [ndeed, for x,ysX, we
have
1S 1= VAL XM f i tdf =V (B fLXUP, fovuidf)
X.. Fy
=(5,P,x. P, y)=(S_ x. 1.
Since X 15 an invariant subspace of S_. S, x=X_ and S x=§,x. YxsX,. as

claimed. Thus Q can be extended to the space F, with S replaced by §,. Let B
be a Borel set in X,. Note that

P 'QB=QF;'B. 13.12)

Indeed. if f=P'QB then f=Qb~f, where b=B and f,eX. Since Qf, = —1,.
we have f=Q(b—/,12Q(P ' B). Assume now that feQP-'B. Then r=0ib
-1y where b=B and j,=X;. Thus f=Qb —/,eP"'QB as claimed.

From (3.11). 13.12) and orthogonal invariance of u we have

2 AOBY=wP ' QBY=w QP ' By=puiP ' By =yu_ B ERRY

Thus g, s orthogonally invariant which completes this part of the proof.
Let «., be orthogonally invariant. Let Q be of the form (29), 1e. Qf
=21 .S i —f for some h such that (S_h hy=1 or h=0. Define

Z=\B: B s a Borel setin F,. ui@B)=u(B)}. (3.14
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Observe that Z 15 a s-field. Indeed. i B2Z and B -~ B =0 for 1= then
QB,~QB,=V since Q is one-to-one. Then

I (Q;‘ B‘)=,u‘;;;1 QB;)= _thBJ:xi “‘BJ:HL‘;;L B,).

.
=1

1

Thus ) B,cZ. Of course 0=Z and BeZ implies that F, —B&Z. Hence Z is a

[
a-field as claimed.

We now show that cach closed ball B={f: f-a <r} with agX _ for
some mg,, belongs to Z. Recall that Qf =2(f.mS h—f where (S h.h)=1 or h
=0. If h+0 then take an index j such that Ph#0. Define h;=cPh where ¢
=tS,Ph. Py [[h=0.set h;=0. Then h X and (S,h . h)=10f h;=0.

Define the mapping Q,: X, — X, by

QN1 =2f h)S,h;~.

Note that Q; is of the form (2.9) for the space ;. We have h,—h and
Q,(/1=Q(f) asj tends to + x. We now prove that

.

N U P 'Q,RBI=QB. (3.13)
i=1 j=i

Indeed. let x belong to the left hand side of (3.15). Then there exists a
subsequence j,— - % such that xsP~'Q, (P, B). Thus P, x=Q (P b,) where
b, =B. From this we have

lei)ll'Y-:}?l-bJ-E[).‘tB'

[f j,Zm, then Pb—-ua = Ptb—u) £ b—u <gr for any b from B. Thus
P B=Band Q, P xeB. Since B is closed then O, F v —~QxeB and xeQB. This
shows that the left hand side of (3.13) 15 contained in QB. From (3.15) we have

wQBZlimu (. P~'0,PB)2limwP 'QPB

- J=:

=lm u,1Q,P B
Since u, 1s orthogonully invarant then

wiQ PBy=p (PB =P~ 'PB Z uiB)
Thus
wlQByz B (3.16)

To prove the opposite inequality we show that

~ ~ P"'Q,PB (3.17)

=1 y=2

QB=



where B =110 t—u Sr—«) Indeed. x=0QB means that x=0Qh und h—-u <r
Note that @, PQh tends to Q h=h as j—— 7. Thus there exusty an indev +.
=j,thr such that Q,PQb—u Sr+afor j2y, Hence Q PQbzB,. Since Q .\
=X, then Q,PQh=PQ PQbcP B . Since Q; =1 we have PQbeQ, P B, and

!

OheP 'Q,PB, for jzi, Thus x=Qbe (| P7'Q,P,B, which completes the
proof of (3.17). From this we have 1= do

wEB < limu(() B 'Q,P,B,) < lim wP~'Q,RB,)

(Rl 4 J=
=lim u4,(Q,PB,)=hm u(FB,. (3.1%)

We now show that
B,=() P 'PB,. (3.19)

ial

Since B,=P~'PB,, ¥i. it is enough take xe () P~'PB, and show that x=B,.
ial

We have FxeF B, and since Pa=u for iZm, we get PxsB,. Note that Px

tends to x and B, is closed which yields that xeB, as claimed. Since

P-1P_,B,=P~'PB, then (3.19) yiclds

u(B)=1lim p(PB,).

=

This and (3.18) yield .
u(Q BI<u(B,). (3.20)

Note that (3.20) holds for any positive ¢ Let c=k~' with k tending to

infinity. Since B="'\1 By-. and wBi=Ilim wiB,..) we have from (320
k=1 k—x

w @B gutB). This and (3.16) vield
wi@Br=u(B)

for any closed ball with center lying in X' for some m,.
Thus B=Z. Since any closed ball A=}/ f—u Srt=" {2 f=Pu <r
i=1
= (I =FP)a} and Z 15 a o-field. 4 belongs 1o Z. Hence Z contains all closed

balls and therefore it contains all Borel sets. Hence
QB =1 B)

for any Borel set B. Since Q is an arbitrary mapping of the form (2.9). this

proves that g is orthogonally invariant. This completes the proof. —

4. Properties of Orthogonally Invariant Measures

The prool of Theorem 2.1 depends on properties of the orthogonally invariant
measure g which will be obtained 1n this section.
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Let
NMon=htgumotgarn o n] (413
be measurable adaptive informauton. This means that g,in....g.1*v are
measurable and are of the form (2.2). Assume that (5 g( /). g /=0, 7/2F,.
1We show in Sect. § that this assumption is not restrictive,)
Define the mapping D: F, — F, by
Difr=2% (fgfnS,.g1f1—f. {4.2)
t= 1

The mapping D plays an important role in our analysis. Observe that D is
measurable. For nonadaptive information. ie. g(f)=g, . D is linear. For
adaptive information D is nonlinear. The mapping D has four important
properties

NA(D(f =N/, (4.3)

D-'=D, (4.4)

DU, =S YSfeS,F). (4.5)

Difi=-[lU=-258.N®g(fNf. VfeF, (4.6
=1

where (x® ()= £ vix. [ndeed. observe that
Difreifn=2figifn=tfigtfn=cfigtfn. i=L2...n
Since g,(f1is of the form (2.2) we have g (D(fh=g¢g,.
2D =g uDf g =g Hif g n=2.1f)

and similarly ¢(Difn=g(f). Thus N Difhv=N*/1) which proves (4.3). To
show (4.4) observe that

DD =2 S 4D gD S g (DN =D(f)
=2 Y (L e S, e )=Dif1=1=Dif)
=

Thus D*i /y=f which implies that D~ ' f)=Di ) as claimed.
To show (4.3) observe that fsS,(F,) implies Dif)eS, 1F) and Di))y, is
well defined. We have

Dify 2=(S-"Dif)Difn= (3 v (jlg‘(,l))g,lA/‘)—S:‘leU))
I
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43 cluimed. Finally observe that

=S g1 1&g/ =S Bet s
=/=2g.00S g0 ) =20, gASNS, 8,00

and the repetitive use of this property vields (4.6).

Property (4.3} means that the mapping D does not change information. 1e.
the elements / and Di(f) are indistinguishable under - Property 14.4) means
that D* is the tdentity operator. Property (4.5) means that D is orthogonal in
the norm !,  and Property (4.6) states the factorization of the operator D.

We show that orthogonal invariance of the measure u implies that the
mapping D does not change the measure of a Borel set.

Theorem 4.1, If u is orthogonally invariant then

u(D(B))=puiB) 13.7)

Sor any Borel set B.

Proof. The elements g,(+) which form the adaptive information N° are of the
form (2.2). ie. g:R-'—F,. For y=0ruyc oy, JeRY denote gy
=g¥(.-...¥,_ ). Since g, are measurable. they can be approximated by piece-
wise constant mappings.

gin=limg (y., VysR"-' 4.3
k
and ¢ ,(v)=g,,  for ¥&d, ; where 4, are disjoint Borel sets of R"-' whose

union 1s R"-' ;=12 .. n,. Since g (y)=g, and (S g.(). g,y =0, ; we may
assume the same properties for g, ,. ie.

AV =g,.
S1.40=8, ‘ 149)
1Sug,,k(.\').gj‘,(tyn=o“,
for any vsR"~' and any k=1.2,.. .
Define the mapping
Dk‘j '=2 S 'u’:guk.[)s_‘gz.k.]--l. ‘4 10)
=]
for N1 f1e4, ,. Due 10 (4.8) we have
Diyy=limDury  7f=F,. 4111
3
Observe that D, is piecewise linear. From (4.9) we have
Dasfi=-TTu —25.8.,@8. )/ AAATE . 1412
=1
We now show that
DiBIcEL: ;N D YB) (413

iml kmy
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for any open set B of F,. Indeed. let x=D(B). Then x=Di /1. f=B. Since D* =1,
J =Dux). Due 1014111 D, (x) approaches Dix)= f=B. Since B is open. D,tx)cB
for k2k,. Thus xeD_ '(B) for all k2k,. This proves 14.13).

Note that D, is measurable. Therefore D '(B) and E are Borel sets. From
{4.13) we have

wiDIBNSulEy=1im u ( N D; ‘(B)) < lim @Dy "B (4.14)
P 3 k=i / k—-zx

Let B, ;=(N9~'4, ;. The sets B, , are disjoint Borel sets and their union is
F,. Then M‘
utD7YBY= Y u(D;YBAB, ).
j=1
Note that D (B~ B, =D }(Bn B, ) where

n

D, (/1=2 V (f 8 )S.8in,—f= :ﬂ‘”—zsugs.k.j®gi.k.ﬂf

for f=F,. The mapping D,“ is linear and (4.9) yields that Df ;=1. Thus D/
=D, ;. Orthogonal invariance of g yields that u(C)=pui —C) and QO =u(?
for am Borel set C and Q=1 -2S_h®h where (S h, hy=1. Thus we have

uiD;YBA Bk.j))=uka JABNB, )

ial

=#(l_l ( _2Sugi.k.;®gi.k.j)B®Bk.j)

=..=uB"B,
Hence

wDB=Y uBAB, )=ulB).
=1
Thus we have
ulD(BN < By (413

for any vopen set B.
Take now a closed set B. Define B,={feF :disttf.Bi<ls}. s=1.2,....

Then B, is open. B=B,_, =B, and B= ﬂ B,. Due to this and (4.15) we have

s= 1
wDIBWE i DIB ) S utB)).
Thus w(D(Bn £lim uiB,) = utB). Hence (4.15) holds also for closed sets.
Tuke now un‘open set B. Then F| — B is closed and
1 —wtDBY=uDIF, =B SulF, —B=1—-wB).
Thus w1 By<uID(B). This and (4.13) give
ul DB = uB) (4.16)
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for any open set B Since the set of B for which 14.16) holds is 4 #-t1eld and
contains all open sets. it contains all Borel sets. This completes the proof

Theorem 4.1 will be used in the proof of the main result to change
variables. That is (4.7) implies that

VH( iutdfy= | HIDfyutdf)
B DB
for any measurable function H and any Borel set B.
In order to prove Theorem 2.1 we need one more result. Let N* be given
by (4.1). Define the probability measure p,(-. N¥) as

P A NY=pUNY A =pl{feF,: N°(fi1e4}) (417

where 4 is a Borel set of R". The measure y,, called the probability induced by
N4 tells us the probability that N( f)e 4.

We prove that the measure u, is independent of N and g, is orthogonally
invariant with mean zero and the identity covariance operator.

Theorem 4.2. There exists a probability measure u, defined on Borel sets of R”
such that

A, NIy=pu, (A), VAeB(R", (418

for any measurable adaptive information N° of the form (4.1).

1
—

Proof. We first consider nonadaptive information operators. Let

NUO=LUL IS L 201
Nafr=0fnnfin e fn)l

where (S, .. 1) =18 n.n)=0,, We prove

Lemma 4.1. There exists a linear one-to-one mapping Q. Q: F, — F,. such thar
Ny =N.0 14191

w Q@ 'By=wB. YBeB(F,) _ 13.20)

Proof. Let X=hn{S¥ ... S:].Sn.....S!n ). Let p=dimX. Of course
PR u w i “ a'tn

pe(n.2n]. There exist elements [ (... {0, v ..o 0,2 F, 50 that {S5n,}7_,
and {5 }f_ | are orthonormal bases of X. Define the mapping H: F, —F,.

P
Hf: I (jlsu(”l+;l));l _f'
1

’ p
Since Stn, =Y (S, .S: 0S¥ . wegetn, =Y (n,.S,;) and

=1 (=1

° p
Hn, = S M S n)s. — S M. S,2dei—m=1 (+20
t=1

121
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for K=1.2.....p. Wz define the mapping Q as

Qf =H"f=1 tL2S,0+ 4=/

i

s

To prove 14191 note that N, =N.Q is equivalent to ( £ [ )=1Qf n)=tf.0*n,)
=(/. Hn,). This holds since Hn, = (see (4.21)).
To prove (4.20) we decompose H as

H=S:tH,S}

P
where H,f=Y (fS¥(n;+ NS}  —f Note that H,S}(F,)=S}(F,) and there-
tal

fore S *(H S} is well defined. Let X* be an orthogonal complement of X, F,
=X®X* Then fcX~ implies ( £.Stn)=(£,S1;)=0 and

H, f=-f. VfeX* (4.22
From {4.2]1) we have

H Sin =S¥, k=L22...p

Thus H, as well as —H restricted to X are orthogenal mappings onto X. We

decompose —H, in X using a Householder transiormation. i.e.. there exist
elements x,£.X such that x,=0or .x, =1 and

~H,f=D,D,-...-D,f. vfsX. (4.23)

where D, =1-2x ®x,.

For feX- we have (f.x)=0 and we get D\D,-....D,f=f Thus. (4.23)
holds also for f=.X- due to (4.22). Hence we proved that H, = -D,D,- ,
and

H=-$:*D,D,-...-D,S}
= —187:D,§})-...1§7*D,S)
= -0:01...0;
where Qf=/-24 25 h and h =5-*v. Observe that Q. =[-2S h Dh, Thus
we get
Q= —Qpr-l""'Ql‘
Note that Q' =0,. Thus Q is one-to-one and
Q‘l = —QIQZ Q,r

The orthogonal invariance of u yields u(Q B)=uiBy=ut —B) for any Borel set
B of F,. We have therefore

WQ " Bi=w—=Q, .. Q,Br=uiQ, ....Q By=wQ, ...-Q,8

=...=u(B)

—_

which proves (4.20) and completes the proof of Lemma 4.1. =
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Define the measure u, Jas
ugrAhH=g 4. N0 7 4zBIR". 1424
From Lemma 4.1 we immediately get

g A Na=w N P =00 TN )
=u(N Py =u (AN = AL 7 AsBRY.

Thus (4.18) holds for any nonadaptive information of the form (4.11.,
Take now any measurable adaptive information N* Using (4.8) and (49
define

\"klj)-:[{f' gl.k.y)‘ ‘];gl.k.j)‘ (/v gn.k.j)]

for N fieA, ;- Then
N fi=him N f),  7feF,.
k

Let 4 be an open set of R™. Then

T x
(NS ES Y ) NN (3.25)

i=1 k=1
Indeed. if fe(lN))~14) then y=N*(fr1ed. Lat y =N(f) Then limy, =yed

Since 4 is open, v, 24 for k2k,. Thus feN"'(r)= N A for b2k, This
means that /= E as claimed. From (4.23) we have

AN = p N T AN S plE)

=tim g (D NTHAY) S lim ol N A

(-1 ha k=

Observe that
"
WwNTHAN= © NS AN A
-1

1=
Since N, on each 4, , coincides with nonadaptive information. we have

pNTHAAN A I =pAn A )
and :
e
wN AN = Y wdn A =g A
FEIRY
Thus
AN S ) 14.26)

for any open set 4. Take now a closed set 4 and define 4= vsR* "'

distiv. 1<l st v=02 on Then A= 4, =4, A= 4. Since {4, is open
we have due 1o 14.26), !

p A N =N T AN S N T AN S04,
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AN Shmop 4 =p. 0.
s

Hence (4.26) holds also for closed sets 4. Repeating the last part of the proof
of Theorem 4.1 we complete the proofl of (4.18). O

Theorem 4.2 will be used to compute | H(Nf)utdf) for any measurable H

£
and N of the form (4.1). Due to (4.18) we have

Y HINDudf )= | H(yu,idy)
e

£

Theorem 4.3. The measure u, of Theorem 4.2 is orthogonally invariant with mean
cero and the identity covariance operator. [

Proof. We first show that

(m“l,x;=mj’n (v, u(dy)=0, Vx=[x,,x,,....x,]JeR" (4.27)
Take [,.l.,....J, from F, such that (5,5 5;)=0; ;. Define
NO=ULI0LED 5] {4.28)
Let g= S_ x;;;- Since m, =0, we have
oy
0= [ 1fomidn1= | T i fpuidf)
We change variables by setting v=[y,.....v,]=N(f). Theorem 4.2 states that

uN~'=yu, regardless of V. Thus

0=1 N xrudy= | ix ovigidy)
F, i=1 F,
which proves 4.27). This yields m, =0 as claimed.
To show that S =1, we show that

Vxny, Dppdy =i, YxoceR™ (4.29)
2n
For g= we have

T

11

Yoand h=Y o

1 '

(S.gch= Y ffiuidf=§ (v, xip e, dy.
F: R"

Since (S,g.h= N (S, 1. ) =1x.2).14.29) follows.
We  now prove that u, is orthogonally invariant, ie.

utQiBh =u\B., 7 BzB(R"



Lan Acaption Help on the Neeraze” ~

where Qv =Itv.x)x—r. y=R" x =1 or x=0. Define the mapping

Df=2fg)S.g—f 71sF,.

x =1 or g=0. Observe that

1

where, as before, g=3Y x, ;. Then (S g.g)= ¥

=l t

N-'QB=DN-'B, VBeB(R". (+.20)

[ndeed. feN~'QB iff NfsQB iff QNf=B since Q*=/. Similarly f=DN !B ilf
NDf=B since D> =[. Note that

OQNf=2Nf.x)x=Nf=2(f,g)Ix =N/,
NDfF=2(f NS, 9-Nf=21f.ghx-Nf

which proves (4.30). From Theorem 4.2, (4.30) and orthogonal invariance of u.
we have
p QBN =p(N "' Q(BY=pu(DN~'B)=uiN "'B)=pu (B

as claimed. This completes the proof of Theorem 4.3.

5. Proof of the Main Result

Using properties of orthogonally invariant measures we are ready to prove
that adaption does not help on the average.

The proofl consists of two steps. The first step is to show that the spline
algorithm that uses N° has minimal average error among all algorithms that
use ¥° The second step is to estimate from below the average radius of
information tor equivalently the average error of the spline algorithm.

Let

Napn=UfgamMmufigamn . ifig i fnl

be 4 measurable adaptive information operator of the form (2.1) and 42.2). Thus
g (g0 f) are measurable. First of all we show that without loss of
generality we can assume that

(S.8.(/hgfn=6,, 3.1

Indeed. as in [16] Iet i/ ....n(f) be an orthonormal basis of the linear
space lin (5,g,(f)....S_g.f ). Then there exists a nonsingular matrix M such
that

DL g e U f 2 I N] = N4 M (3.2)

where g /1=S7*n/vand (S,g.(/). g,/ N=4,,. Thus, knowing N*(f) we cun
compute (/. g1 /). The mappings g are ualso measurable. The zlements g, 1)
then play the role of g1 /). This explains (5.1).

Deline

thn

€

c=aiN(fn="N (fig(fnS,g)) {

=1
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Note that Nimr=N"17 1 e, ¢ interpolates £ Furthermore. take 7235 (F,) such
that N tn= N4 7). Then

2 _ 2 l_" -1 _
h .= 06-h ~ 6 =S, 0. h—-5).

Since th—a.g(/N=0 we have 1S7'e.h—c1=0 and h» = 6 ,. Thus & has
mintmal norm  + , among elements which interpolate f and lie in S (F ). Such
an element is called a spline interpolating f. Let

GINUN=SaN( =S (fig S NSS, g f) (5.4

i=l

be the spline algorithm.
We say an algorithm ¢ is an optimal average error algorithm iff

e.ng(o' ‘\'.1' =I’“g(.‘\m).

Theorem 5.1. If u is orthogonally invariant then the spline algorithm @* is an
optimal average error algorithm and

e NV =) S — | QNN udf). T (3.5)
F, F;

Proof. The proof is essentially the same as the proof of Theorem 4.3 of [16].
For completeness we provide a sketch of it.
Orthogonal invariance of u and (4.3) yield

§oSf=—oN“iyy mdfi=1 SD(1=otN )7 uidf)
3 £,

where ¢ 15 an algorithm and D 1s the mapping defined by 14.21; see Theorem
4.1. Thus
Mo N =t Sr—olNq S
F

~ SD( =N fn ud) 15.6)
Singe

St= Nt S= Sr=SDity T€h Sr=oiNH — SDU =0 N )t

SH ST=o(N N S+ SDUH =N Y
we et
Lt N 2 et N,
This means that v an opumal average crror algorithm. To prove (3.3

note that
d= St=@UIN 11N S = SDUif =N G

= St = SDU =2 0NN S =2USL NI =28D U o N

Since Dtrr=2atNt =1 then DU =207 1N* 11 n—J and

a= St S= SDuf) =2 2N
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This and 13,60 with o =0 vield i3 5

Proot of Theorem 2.0, The radius r 181 is given by (3.5 [ order to eviimate
it Irom below, note that Theorem 4.2 yields

U ooUN D Fadf= 1 @ty Tty
s

£,
= Y )y 1SS gk SS g tynu tdy) (37)
LY R’“
where, as in Sect. 4. g(3)=¢,(},. ¥s..... ¥, _ ) Deline the mapping
Qy=y—=2My.e)e,=y—=2ye. yvsR"
where ¢, is the ith unit vector. Then Qe,= —¢, and Qe;=¢, This yields gQ 1)
=g,y for j<i. Since u, is orthogonally invariant we have
a=§ y,;¥A58,8(3).5S,g,(yhu,dy)
R
=) ¥3,1Qe,.Qe)SS,g Q¥ SS g Q¥ Nu,ldy)
&
= —u
Hence a=0 and 13.7) becomes
oo Na NP udf =S § oy S8, g Fudy. (3.3
F, i= | R"
For i < define the mapping
Ov=v—2th.vih.  h=te,—e)} 2  reR"
Note that h =1und Qe¢,=¢, for j<iand Q¢, =¢_. Then g0 vi=g ) and
VP SS,g ) Cpdvi= 0 vl SS,gav) Cugtdy
&~ R
From this. (3.8y and (2.11) we have
_|' GUNT N Cadfy = \ v: S 'SS, g Tuidy)
F. R" 1=l
Sisup SS_g(xih | yiupdn=Y SSguft (39
viR? RrR" [
For the nonadaptive information N7, see (2.12). we have
Voo Tudni= Y ] vy (SS gr S8 glm
F. =1 R
=V SS.gr. 15100

1= 1
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From (3.3) of Theorem 3.1. (791 and 12.10) we have

PN =N N 2 LSS fudf1= Y SS g ¢
F 1= 1

=rUHNEY
This completes the proof. J

- .
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