Cucs-77-83

OM THE DESIGN OF SARALLEL PRODUCTION SYSTZH

MACEINES: WHAT'S IN A LIP?

SALVATORE J. STOLFO

CUCsS-77-83

On the Design of Parallel Production System Machines:
What's In a LIP?®

Salvatore J. Stolfo
Department of Computer Science
Columbia University
New York City, N. Y. 10027

Abstract

In 2 general manner we discuss the appropriateness of three classes of parallel computers for one Al
programming methodology, Production Systems. The three classes considered are coarse-grain, fine-grain
and very fine-grain parallel processors. We conjecture that each class is suitable for different Production
System formalisms. Using current technology, we further project execution rates for two of these classes

in the range of 10,000 Working Memory transactions per second.

*This research has been supported by the Defense Advanced Research Projects Agency through
contsact NOO0SI-84-C-0165, as well as zrants from Intel, Digital Equipment, Hewlett-Packard, Valid Logic
Systems. AT&T Beil Laboratories and [BM Corzorations and the New Ycrk State Science and Technology

- Foundation. W2 zratefully acknowiedge their support.

Table of Contents

1 Introduction
2 Production Systems
2.1 Constraining the PS formalism
2.1.1 Temporal Redundancy and the RHS
2.1.2 Global WM Tests
2.1.3 Static WM data elements
2.2 Proposed definition of a LIP
3 Suitability of Three Classes of Parallel Computers
3.1 Coarse-grain
3.2 Fine-grain
3.3 Very fine-grain
4 Is Parallel Computation a Panacea

On Parallel PS Machines 3-1-84

O 00 O O wa e s e WO 1D

—
(=)

1 Introduction

A considerable amount of interest has been generated recently in specialized machine architectures
designed for the very rapid execution of Artificial Intelligence (Al) software. The Japanese Fifth
Generation Machine Project, for example, promises to deliver over the next decade a functioning device
capable of computing solutions of large PROLOG programs at execution rates in the hundreds of
thousands to perhaps millions of logical inferences per second (LIPS). Such a device will require high-
speed hardware executing a large number of primitive symbol manipulation tasks many times faster than
today's fastest computers. This rather ambitious goal has led some researchers to suspect that a
fundamentally different computer organization is necessary to achieve this performance. Thus, parailel
processing has assumed an important position in current Al research.

Several architectures have been proposed comprising a number of concurrent processors cooperatively
executing symbol manipulation tasks. These proposed machines cover a wide spectrum of design issues. In
this brief note we concentrate on two such issues: the number of concurrent processors employed in the
device and their complezity (relative functionality and storage capacity).

In a general manner we shall discuss the appropriateness of three classes of parallel computers for one Al
programming methodology, production systems. The three classes we shall consider are:

- coarse-grain devices based on one hundred very powerful (asynchronous) processors with large
local memeries, in the range of one megabyte of storage capacity.

- fine-grain devices based on ten thousand simpler (either synchronous or asynchronous)
processors each with small local memories, in the range of ten thousand bytes.

- very fine-grain devices based on one million very weak (synchronous) processors with tiny
local memories, in the range of one hundred bytes.

[ssues related to interconnection topology, shared versus local memory, cost, wirability, size and breadth
of application will not be discussed in this paper although such issues are central factors in the design of a
computing device, Rather, we shall consider only the suitability of each general class of device to
particular types of production system programs.

Production system efficiency is typically measured in terms of the number of recognize/act cycles
axecuted per second. Unfortunately, this measure is inappropriate when considering different possible
production system formalisms. For example, some production systems permit a rather small number of
actions on each cycle, whereas other systems may permit many thousands of actions. In order to compare
the performance of different devices while executing various inference procedures, we have chosen to use
the measure of LIPS, typically used when comparing logic-based systems.

Although production systems are generally not thought of as logic-based programming systems, such as
PROLOG, the similarity of the two models of computation is sufficient to be able to make the same
general comments about each. We intend to elucidate the meaning of the ill-defined term LIPS in this
context. It is our conjecture that, when suitably constrained in meaning, as we propose here, for at least
two of the classes, tens of thousands of LIPS is indeed achievable now. This gives us confidence that
hundreds of thcusands of LIPS will be achievable in the coming decade as hardware advances will
undoubtedly continue to develop. '

We begin with a description of the general production system paradigm in question.

On Parallel PS Machines 3-1-3+4

tw

2 Productlon Systems

In general, a Production System (PS) [Newell 1973, Davis and King 1975, Rychener 1976, Forgy 1982] is
defined by a set of rules, or productions, which form the Production Memory (PM), together with a
database of assertions, called the Working Memory (WM). Each production consists of a conjunction of
pattern elements, called the left-hand side (LHS) of the rule, along with a set of actions called the right-
hand side (RHS). The RHS specifies information that is to be added to (asserted) or removed from WM
when the LHS successfully matches against the contents of WM.

Pattern elements in the LHS may have a variety of forms which are dependent on the form and content of
WM elements. In the simplest case, patterns are lists composed of constants, variables (prefixed with an
equals sign) or embedded sublists of pattern elements. An example production, borrowed from the blocks

world, i3 illustrated in figure 1.

Figure 1: An Example Production.

(Goal (Clear-top-of Block})

(Isa =x Block)

(On-top-of =y =x)

(Isa =y Block) ->
delete{On-top-of =y =x)
assert(On-top-of =y Table)

If the goal is to clear the top of a block,
and there is a block (=x)
covered by something (=y)
which is also a block,
then
remove the fact that =y is on =x from WM
and assert that =y is on top of the table.

In operation, the production system repeatedly executes the following cycle of operations:

1. Match: For each rule, determine whether the LHS matches the current eavironment of WM:
each pattern element is matched by some WM element with variables consistently bound
throughout the LHS. All matching instances of the rules are collected in the conflict set of

rules.
9. Select: Choose exactly one of the matching rules according to some predefined criterion.

3. Act: Add to or delete from WM all assertions specified in the RHS of the selected rule or
perform some operation.

During the selection phase of prcduction system execution, a typical interpreter provides conflict
resolution strategies based on the recency of matched data in WM, as well as syntactic discrimination.

On Parallel PS Machines 3-1-84

Other resolution schemes are possible, but for the present paper such issues will not significantly change
our analysis, and hence will not be discussed.

We shall only consider the parallel execution of PS programs with very large rule bases and WM's, say ten
thousand productions and one thousand WM elements, with the goal of accelerating the rule firing rate of
the recognize/act cycle as well as the number of WM transactions performed. We shall not consider other
possible parallel activities as, for example, the concurrent execution of muitiple PS programs.

On first glance it appears that each phase of the PS cycle is suitable for direct execution on parallel
hardware, with the greatest opportunity for a speed-up in the match phase. (Indeed, Forgy [1979] notes
that some PS interpreters spend over 90% of their time executing the match phase of operation.) This
requires a partitioning of PM and WM among the available processors: some subset of processors would
store and process the LHS of rules, while another possibly intersecting subset of processors would store
and process WM elements. Thus, we envisage a set of processors concurrently executing pattern matching
tests for 2 number of rules assigned to them. Similarly, once a conflict set of rules is formed, high-speed
selection can be implemented in parallel as a logarithmic time algebraic operation. (For pedagogical
reasons, we ignore the selection phase in our subsequent analysis.) Finally, the RHS of a rule can be
processed by a parallel update of WM. We summarize this approach by the following abstract algorithm..

1. Assign some subset of rules to a set of (distinct) processors.

2. Assign some subset of WM elements to a set of processors
(possibly distinct from those in step 1).

Repeat until no rule is active:

3. Broadcast an instruction to all processors storing rules
to begin the match phase, resulting in the formation of a
local conflict set of matching instances.

1. Considering each maximally rated instane¢s within each
processor, compute the maximally rated rule within the
entire system. Report its instantiated RHS.

5. Broadcast the changes to WM reported in step 4 to all
processors, which update their local WM accordingly.

end Repeat;

This very simple view of the parallel implementation of the PS cycle forms the basis of our subsequent
analysis.

2.1 Constralning the PS formailsm

There are many ways one can modify the general PS formalism. Each such constraint offers a number of
advantages, as well as challenges, for a parallel computing device to efficiently execute the recognize/act
cycle. These design modifications will be the parameters for our observations concerning the parallel
implementations of production systems on various devices.

On Parallel PS Machines 3-1-34

2.1.1 Temporal Redundancy and the RHS

In some formalisms the number of actions specified in the RHS of a rule is bounded by a small number.
Thus, WM changes very little on each cycle, a fact which has been well exploited in systems such as OPS
[Forgy 1982|. This temporal redundancy has led to the development of clever algorithms which efTiciently
link WM modifications with those rules which may be affected by such changes, thus reducing the effort
in the match phase of execution.

In a less restricted formalism, a large number of changes to WM may be more appropriate for certain
classes of PS applications. Thus, although the RHS of a rule may have a small number of action
specifications, the resuiting changes to WM may be quite large. [t may be advantageous to have available
a construct which deletes all WM data elements matching a certain specification. For example, delete all
elements matching (red =x). Similarly, a constructor operator which creates a large number of data
elements may also be useful. For example, for each WM element matching (red =x), create an element
(edible =x). i

As noted, the former approach leads to a more efficient match phase by focusing the effort on a smaller.
number of productions. In the latter case, however, it wouid seem that little opportunity exists to restrict

the scope of the match operation.

2.1.2 Global WM Tests

Typical PS implementations restrict the form of pattern elements in the LHS to match only a single WM
data element. Thus, pattern variables are usually considered ezistentially quantified and the resulting
tests of WM are restricted to a small number of data elements. One can envisage more powerful pattern
matching tests specified in the LHS of a rule, for example by including universally quantified pattern
variables as well as tests which may compute some value based on the entire contents of WM. One may
wish to specify a conditional test in the LHS of a rule which succeeds if the number of WM elements
matching some pattern is greater (less) than some value. Note that in the temporally redundant case
such tests can be computed only by repetitive application of a group of rules which calculate the desired

result over many PS cycles.

2.1.3 Statle WM data elements

WM data elements have also been restricted in many PS formalism. Thus, typically a given WM element
must have the same form and content throughout its lifetime, i.e. it cannot contain variables which may
be replaced later with more complex objects. This fact is exploited in systems such as OPS to efficiently
compile a network of primitive pattern matching tests from the LHS of rules. Such primitive pattern
matching tests include equivalence of constants, length of lists and consistency of bindings to variables.

In the more general case, for example logic-based formalisms such as PROLOG, WM elements are general
first order literals, and thus may contain arbitrary first order terms. In this case pattern matching must be
generalized to logical unification, rather than simple one way pattern matching.

2.2 Proposed deflnition of a LIP

The distinction between temporally redundant and non-temporally redundant PS formalisms, incidentally,
“mMiay help to eradicate the confusion concerning the proper definition of “LIPS™. A LIP may be defined as

On Parallel PS Machlnes 3-1-34

assertion or denial of a fact), or a single invocation of the RHS of a rule. In terms
ms, the distinction exists between the satisfaction or denial of a literal,
(which might require the satisfaction or denial of many literals).

a single change to WM (
of logic-based programming syste
or the satisfaction of a non-unit clause

In the case of temporally redundant PS programs, the difference is nearly indistinguishable: the invocation
of 2 RHS asserts or denies a small number of WM elements. In the least restrictive case, however, a single
rule invocation may lead to many thousands of WM changes. It is our preference to choose the former
definition since the number of LIPS in question remains the same under both PS formalisms. Thus, in
subsequent sections we consider a single LIP to be an aasertion or deletion of an individual WM element
which represents a single -fact. This definition gives us confidence that devices executing tens of
thousands of LIPS are indeed achievable using current technology.

On Parailel PS Machines 3-1-34

3 Sultablility of Three Classes of Parallel Computers

In parallel processing useful computation is performed, in general, by a number of processors calculating
values which are subsequently communicated to adjacent processors for another phase of computation.
Communication is relatively inexpensive when communicants are in close proximity as in fine and very
fine-grain machines. We observe that in coarse-grain machines, typically, communication costs are high

and should be minimized.

“Furthermore, communication can only be performed between consenting parties. Thus, neighboring
processors must synchronize with eachother prior to communicating. In coarse-grain machines careful
thought must be given to synchronization to minimize the number of waiting processors so that scarce
system resources do not go underutilized. Conversely, fine and very fine-grain machines do not require
careful consideration of “load balancing’ since (cheap) processors are in plentiful supply.

However, we must not underplay the role of computation in parallel processing. That is, each instruction
cycle of a coarse-grain machine may perform much more useful work when executing a PS interpreter
than either a fine or very fine-grain device. Thus, it may take a fine grain machine 4 instruction cycles, or
32 for a very-fine grain device, to compute the same value as a single coarse-grain instruction, assuming-
uniform clock periods over each class. (We choose instruction cycles of 1, 4 and 32 as a rough estimate of
the relative power between 32-bit, 8-bit and 1-bit processors executing symbol manipulation instructions:

for example, comparing 32-bit words.)

In the following the reader should be cognizant of the fact that the name of the game is speed. The
question to be decided is which parallel device is best suited to capturing the inherent parallelism in each
of the described PS formalisms. It should be noted that all three classes can execute each of the PS
models mentioned, but for some classes performance may not differ substantially with a single sequential
device. Due to the lack of empirical data in existence today,*® our conjectures are based on our intuitions
of the relative amounts of communication, computation and inherent concurrency involved with each
formalism. Our conjectures are offered as a basis for further scientific study of this curcial area of

research.

In our subsequent analysis each class has been “normalized” to include a 100 megabyte total storage
capacity so that differences in machine performance depend only on the number of processors and their
complexity. No figures depicting any of the device classes have been included in this paper so that no one
proposed machine can be used to confuse the situation. Furthermore, the reader will note that we have
purposefully included few references concerning parallel computers so that no proposed machine can be
claimed to have been inaccurately classified in our analysis. We have, however, ventured to make such a

classification only for our own device.

3.1 Coarse-grain

A coarse-grain parallel computer, as noted, consists of say 100 hundred powerful processors each with a
megabyte of local memory. Note that with large memories, each processor can store and execute large

and complicated programs.

Let us first consider how we might partition rules and WM elements on such a machine.

*The author is unaware of any PS programs that have been written to date consisting of 10,000 rules.
However, at least one such large-scale system is known to be currently under development, but statistics
=do not yet exist characterizing its performance.

On Parallel PS Machlnes 3-1-84

it |

We may think of localizing all of WM in one processor, leaving the remaining processors with the task of
matching independent sets of rules. This approach, though, may be unworkable (especially in the absence
of pipelining) due to the bottleneck created when multiple processors attempt to access a single shared
data structure. [t seems likely that many processors would lay idle while waiting for their WM requests to

be satisfied.

Alternatively, we may localize PM in one processor, while distributing WM to the other members of the
ensemble. The best that can be achieved in this case is 100-way parallel access to WM, but the match
phase would be sequential in nature. A speed-up of matching individual pattern elements might be
achievable, but only at the expense of iterating over the rules in PM.

The most appropriate scheme, therefore, is to attempt a partitioning of both PM and WM throughout the
system. Thus, in such a device, PM would be distributed among the processors in 100 distinct partitions.
The number of rules in each processor’'s memory is therefore one hundredth the total number of rules in
the system. (In our stated example of a 10,000 rule system, 100 rules exists in each partition.) A local
copy of a portion of WM as well as the interpreter executing the recognize/act cycle would also be
resident within each processors memory. Note that localizing WM in this fashion results in no cost for
communication of match operations between different processors.

To achieve the maximum for parallel matching of rules, “‘similar” productions (productions with common
patterns and thus likely to be active at the same time) would be resident in separate partitions. This
partitioning forces a great deal of WM redundancy, however, and in the simplest case, an exact copy of
WM appears in each processor’'s memory.

During the match phase, each processor calculates a local conflict set of rules which is subsequently
processed in a distributed manner by the selection phase. Once a single rule is selected for execution, the
actions specified in the RHS are communicated to all of the processors

It is our conjecture that such a device is best suited to rapdily executing temporally redundant PS’s that
do not include global WM tests. To achieve mazimum performance for the temporally redundant caase,
WM elements would necessarily be static. Furthermore, global WM tests would be implemented by
iterative procedures and, thus, such tests would not be appropriate.

Our case can be strengthened by considering two key points. First, since communication is expensive in
coarse-grain machines, the RHS actions to be communicated must be small, favoring temporal
redundancy. Secondly, each processor, as a sequential device, has access to a local WM stored as a
conventional data structure, and thus would best process changes to WM that were few in number.
Otherwise, a considerable amount of sequential execution would result within each processor from such

large numbers of changes.

We now consider performance. Forgy's analysis [Forgy 1982] of the Rete algorithm for OPS execution
notes that rule firing rates, in the best case for serial processors, are affected logarithmically by the
number of rules in PM. Thus, 1C0 partitions of PM reduces the number of rules in each processor to
|[PM|/100. In our stated example, we may achieve (in the worst case for parallel processors) a speed-up
of 1og5(10,000)/log,(100)=2. Forgy's analysis also shows a worst case firing rate dependency for serial
machines which is linear in the number of rules in PM. Thus, for coarse-grain systems, the speed up
achievable may be as high as a factor of 100. This provides a considerable range of possible performance
lactors, i.e. from 2 to 100. Forgy notes, though, that the expected performance is linear. hence lavoring

factors near 100.

Let us now assume that each RHS specifies 5 WM changes on average. Thus, to achieve 10,000 LIPS, a
coarse-grain pasallel processor would necessarily execute 2000 recognize/act cycles per second. That is to
saxv, each processor of the 2nsemble must sustain a cyele rate of 2000 per second for a 100 rule system.

Cn Parallel PS Machines 3-1-84

Statistics recently reported® for various PS programs indicate that a 3000 rule system executed on
conventional minicomputers operates at 10-20 cycles per second. Hence, the expected performance of a
PS with 100 rules is roughly 300-600 cycles per second. This is a factor of 3-6 slower than necessary to
achieve 10,000 LIPS. It is our belief, though, that advances in hardware, as well as speed-ups obtained
from improved PS compilers recently anounced (OPS83 [Forgy 1984, for example), can presently produce
a factor of 5 to 10 over the kinds of general purpose machines for which statistics presently exist. This
gives us confidence that indeed 10,000 LIPS is attainable for coarse-grain parallel machines.

3.2 Fline-graln

A fine-grain parallel computer consists of say 10,000 simple processors each with small local memories, in
the range of perhaps 10 thousand bytes. Although memory capacity is significantly restricted, it is indeed
possible to store programs for production matching, as well as a relatively small number of rules and WM
elements. Note, though, that a much larger number of partitions of PM are possible for such a device.

However, in this device not only may rules be distributed in a manner similar to the coarse-grain case, but
WM elements as well may be fully distributed to a distinct set of processors. This provides the
opportunity of parallel matching of rules, as well as parallel access to WM, thus substantially improving
the time to match a single pattern against, or calculate a global condition of a large store of facts. Since
processors are closely coupled physically in [ine-grain machines, communication of pattern matching
operations is rather inexpensive. (This capability has been exploited in the DADO machine [Stolfo and

Shaw 1982: Stolfo 1983|, for example.)

It is our conjecture that fine-grasn devices are best susted to PS programs which allow large changes to
WA on each cycle. Since WM is distributed, large global tests of conditions of WM are also efficiently
handled. Furthermore, since local memortes may contain substantial programs, code performing logical
unification rather than simple pattern matching may also be distributed to those processors storing WM
elements, allowing for rapid parallel unification. Thus, WM elements may contain general first order
terms. (Indeed. these observations form the basis of the implementation of a logic-based system, similar to
PROLOG, on the DADO machine.) We note, though, that fine-grain machines may also implement
temporally redundant PS's with efficiency equal to that of coarse-grain machines.

How might we achieve 10,000 LIPS for such a machine? We observe that if we distribute the rule set in
100 partitions, we may perform at the same rate™as our coarse-grain example in the worst case for parallel
processors. However, as noted 4 machine instructions may be required to compute the same result as a
single processor of the coarse-grain class. In order to get back our factor of 4 in performance, we would
necessarily require roughiy 3300 partitions, each containing 3 rules (log,(100)/loga(3)=~4), or 33 times
as many partitions. (Recail the logarithmic dependency in Forgy’s serial best case analysis.) The
resulting 3300 partitions leaves a balance of at most 6700 processors storing WM elements, which will
substantially improve the time to match individual patterns against WM. We have ignored this obvious
performance gain in our analysis. The serial worst case analysis (again, equal to Forgy's expected
performance), however, indicates that only a total of 400 partitions (each containing 25 rules} would be
necessary to achieve comparable execution rates to that of coarse-grain machines. (We note further that
the size of each partition is smaller than those assumed in the coarse-grain case making it more likely that
such partitions will “fit"”" within each processor's local memory.) We {ind it likely, therefore, that fine-
grain machines can also achieve execution rates in the range of 10,000 LIPS.

*Parsonal communication with various members of the technical staffs of AT&T Bell Laboratories and
Digital Equipment Corporation.

On Parallel PS Machlines 3-1-84

3.3 Very flne-grain

A very (ine-grain parallel computer consists of say 1,000,000 extremely simple processors each with 100
Sytes of local memory. Since local memory is so severely restricted, we note that no substantial programs
can be stored and executed by an individual processor. Such devices are typically driven by a more
powerful control processor issuing a single stream of instructions to the smaller processors which operate
on different data in lock-step fashion. This mode of operation has been referred to as SIMD execution in

the literature on parallel processing.

It seems unlikely that distributing rules to such processors will result in any substantial gains in
performance since the indeterminant nature of the match phase for each rule would be difficult to
implement in SIMD mode. We note, however, that Forgy [1980] reports on a parallel implementation of
PS’s for the SIMD-based [LLIAC IV machine, although the ILLIAC IV can be considered a member of the
coarse-grain class. Indeed, Forgy's attempt to implement PS's on the ILLIAC IV produced disappointing
results, even though the ILLIAC IV processors had enough capacity to store WM elements along with
partitioned subsets of rules. The poor performance reported is based on the inability of the SIMD mode of
operation to concurrently execute different conditional branches while matching pattern elements. Thus, in
general, very fine-grain devices cannot process PM in parallel, but rather the match phase would be
implemented by the control processor while iterating over each rule,

WM, however, may be fuily distributed throughout the system allowing extremely rapid access to the
stored facts. Thus, global tests of WM are efficiently handled. Although each LHS is processed
sequentially, individual patterns are matched very quickly. However, WM elements must be static in
nature since the single stream of instructions may operate only on data of uniform size and structure,

[t is our conjecture that very fine-grain devices may not be suitable for PS applications at all, beyond
those which have very small PM's and very large WM’s. The best application domain of very fine-grain
machines in our mind is represented by relational data base query processing or other applications
requiring fast searches of large stores of uniform data. As such, we find little reason to attempt to project
the performance of very fine-grain devices for PS applications with large rule bases.

By way of summary, we list our results in tabular form as follows:

Class Coarse Fine Very fine
No. processors 100 10,000 1,000.000
Type PS Temporal Both Neither
Redundant

Global WM tests No Yes Yes
Static WM Yes No Yes
No. PM partitions 100 400-3300 --
LIPS ~10,000 ~10,000 --

On Parallel PS Machines 3-1-84

10

4 Is Parallel Computation a Panacea

We conclude with a final question and observation. Recently, some researchers have asked, ““Is parallel -
computation a panacea for AI?" Indeed, should Al be interested in parallel processing at all?

We believe that this is the wrong question to pose. Rather, we should ask “How may Al fulfill its promise
in a cost-effective manner?” Parallel computers may not lead us to the promised land in and of
themselves, but in our opinion they will get us there less expensively.

It is easy to confuse what is possible and practical for a parallel computer to achieve. For example, it is
inviting to think of using vast parallel resources for searching a combinatorial solution space, typical of Al
problem-solvers, in parallel. At best, this will only reduce the complexity of the search by a small constant
decrease in the exponent. Thus, if 27 states are to be visited while searching, with 1000 processors (or
roughly 210) in the best case we can search in time proportional to ‘2“/210, or 20°'Y. Parallel processors
continue, therefore, to be plagued by exponential search times as their serial forebears. ’

Rather, parallel computers can be directed to the tasks of decreasing the ‘“‘cycle time” of AI programs,
thus dramatically increasing the effective number of LIPS. It is our thesis that large PS programs, for

example, can be significantly accelerated.

Our case in point is the DADO2 machine [Stoifo and Shaw 1982; Stolfo 1983|, presently under
construction at Columbia University. DADOZ2 is small prototype of a fine-grain device, comprising 1023
commercially available, 8-bit microprocessors. Over the next 2 years or so, DADO2 promises to execute
various PS programs with at least a 10-fold speed-up used in conjunction with certain conventional
machines. DADO?2, however, is of the same hardware complexity as the conventional devices in question.
Thus, a factor of two in hardware complexity produces a projected factor of 10 in speed. (It is interesting
to note, though, that DADO? need only produce a lactor of at least 2 in performance to be cost-effective.)

As our [inal observation, we note that the cost-effectiveness of parallel computing will allow Al to fulfill
its promise less expensively. Thus, Al should be very interested in parallel computing!

On Parsllel PS Machines 3-1-84

11

REFERENCES

Davis, R. and J. King,
An Overview of Production Systems. Technical Report, Staaford

University Computer Science Department, 1975.

Forgy. C. L., On the Efficient [mplementation of Production
Systems, Ph.D. Thesis, Carnegie-Mellon University, 1979.

Forgy, C. L., A Note on Production Systems and ILLIAC IV,
Technical Report 130, Department of Computer Science,
Carnegie-Mellon University, 1980.

Forgy. C. L., Rete: A Fast Algorithm for the Many Pattern/ Many Object
Pattern Match Problem, Artificial Intelligence 19, 1982.

Forgy, C. L., The OPS83 Reference Manual, Department of Computer
Secience, Carnegie-Mellon Un_iversit,y, 1984.

Newell, A., "“Production Systems: Models of Control Structures”,
In W. Chase (editor), Visual Information Processing,
Academic Press, 1973.

Ry:hener, M., Production Systems as a Programming Language for
Artificial Intelligence Research. Ph.D. thesis, Department of Computer
Science, Carnegie-Mellon University, 1976.

Stolfo, S. and D. E. Shaw, DADO: A Tree-Structured .\«_I_achine
Architecture for Production Systems, Proc. AAAI Pittsburgh, 1982.

Stoifo, S., The DADO Parallel Computer, Technical Report,
Department of Computer Science, Columbia University, 1983.

