CUCS-74-83

OPTIMAL PARALLEL ALGORITHMS FOR STRING MATCHING

Zvi Galil~*

Tel-Aviv University
Columbia University

*Research supported by National Science Foundation Grant

MCS-8303139.




OPTIMAL PARALLEL ALGORITEMS POR STRING MATCHING

Zvi Galil~*
Tel-Aviv University
Columbia University

Abstract: Let WRAM [PRAM] be a parallel
computar with P PpProcessors (RAM's) which
share a common memory and are allowed sim-
ultaneocus reads and writes {only simultan-
ecus reads]. The only type cof simultan-
eous writes allowed is a simultanecus AND:
several processors may write 0O simul-
taneously into the same memory cell. Let
t be the time bound of the computer. We
design below families of parallel algori-
thms that solve the string matching pro-
blem with inputs of size n (n is the
sum of lengths of the pattern and the text)
and have the following performance in terms
of p, t and n:

1. For WRAM: pt = O(n) for
for p § n/leg n.

2. For PRAM: pt = O(n) for
p < n/logln.
3. For WRAM: t = constant for

P = nl+‘ and any ¢ > O,
4. For WRAM: t = O(log n/log log n)
for p = n.

Similar families are also obtained for the
problem of finding all initial palindromes
of a given string,

1. Introduction.

wWe design parallel algorithms in the
following mcdel: p sychronized processors
(RAM's) share a common memory. Any subset

*Research supported by National Science
Foundation Grant MCS-8303139,

of the processors can simultaneously read
from the same memory location., We some-
times allow simultaneous writing in the
weakest sense: any subset of proces-

Sors can write the value 0 into the same
memory location (i.e., turn off a switch).
We denote by WRAM [PRAM] the model that
allows {does not allow] simultanecus writ-
ing. We also consider (but only briefly)
other models of parallel computation. We
actually design a family of algorithms be-
cause we have a parameter p. The perfor-
mance of the family is measured in terms
of three parameters: p--the number of pro-
cessors, t--the time, and n--the size of
the problem instance.

It is well known that every parallel
algorithm with p processors and time ¢
can be easily converted to a sequential
algorithm of time pt. Hence the analog
of linear-time algorithm in sequential com-
putation is a family of parallel algorithms
with pt = 0(n). We therefore call such
algorithms optimal. Surprisingly, while
there are many problems for which linear-
time algorithms are known, there are very
few problems for which optimal parallel
algorithms are known for a wide range of
p. So few, that we list them here.

Every associative function of n var-
iables can be computed by a PRAM in pt =
O(n) for p < n/log n. (Use a binary tree,
each leaf "treats"” n/p inputs.) For a
certain subset of these functicns includ-
ing the n wvariable OR (AND), f(log n)
time is needed on the PRAM [CD], 30 pt =
O(n) is unattainable for p >> n/log n.
consequently, the only question left is
with how few processors can we compute
these functicons in constant time on a WRAM,
The answer depends on the specific function.
The n variable OR (or AND) function can
be computed by WRAM in pt = n for p $ n
(i.e., in time = 1 with n processors).
The n variable MAXIMUM function can be
computed in pt = O(n) for p { n/log log n

. . . -
and in constant time with n  ° processors



(for every ¢ > 0) (V], [SV].
Optimal parallel algorithms are known

for merging two sorted arrays (for p <
n/log n on a PRAM): merging can be fgn‘ in
constant time even by a PRAM with n-"€
procassors [SV] and in log log n with n
processors (V], (BM]. Recently, optimal
parallel algorithms were designed for the
problem of converting an expression to its
parse tree [BV] and for Selection (Vi],

what is common to all these problems
except Selection is that for each one of
them there is a trivial (sequential) lin-
ear-time algorithm. In this paper we de-
sign optimal parallel algorithms for string
matching. The linear-time algorithm for
string matching is by now very well under-
stood, but at one time, it was Quite a ma-
jor discovery. Unlike the case of computing
n variable functions (where it is trivial)
and merging (where it is quite simple) de~
signing optimal parallel algorithms for
string matching was not immediate.

As for the problems mentioned above,
we designed other parallel algorithms that
perform string matching on WRAM in constant

time with only nl+‘ processors. As in the
cases above the time is proportional to
1/¢. If only n processcrs are available
the time needed is 0(log n/log log n).

The families of algorithms we design
have several appealing features:

l. They are not derived from any of
the variants of the linear-time sequential
algorithms ([{XMP], (BM]). The latter do
not seem to be parallelizable, because
they construct sequent:ally tables which are
used sequentially. So, even giving the
tables for free does not seem to help much.
Two kKnown algorithms are parallelizable
but do not yield optimal parallel algori-
thms: the O(n log n) algorithm in [KMR])
yields t¢p = O(n logzn) and the probabilis-
tic linear-time algorithm in [KR] yields
a probabilistic family with tp = O(n log n).

2. The algorithms we design are all
derived from one algorithm: it 18 an al-
gorithm for WRAM with p = n and t = log n
for the case that the text is twice longer
than the pattern.

3. The algorithms make use of pro-
perties of pericdicities in strings derived
frem the Periodicity Lemma which states
that twe different periocdicities cannot co-
exist long enough (if they do, then there
is a common refinement). Similar proper-
ties were used in a different way to design
a linear-time algorithm for string matching
which uses only constant (five) registers
[GS]. Therefore, we have here an example
for a relationship between sequential space

and parallel time in the lowest lavel.

4. As in the algorithm in (GS], it
is possible to write a very short program
(for sach processor), but a longer explan-
ation is needed mainly because the algo-
rithm uses implicitly properties of perio-
dicities several times.

5. The algorithms use what seems to
be a novel method of communication among
the various processors, as will be indi-
cated below.

String matching is the following pro-
blem. The input consists of two strings,
X (the pattern) and y (the text), oOver
a given alphabet of a fixed size. The ocut-
put is a Boolean array indicating all the
occurrences of x in vy.

In Section 2 we prove several sim-
ple facts on periodicities of strings used
by the algorithm. 1In Section 3 we sketch
the main algorithm which is non optimal
(p = 3n t = log n) and only deals with
a special case (|y| = 2|x| = 2n)., 1In
Section 4 we complete the details of the
algorithm. In Section 5 we show how the
four families of parallel algorithms men-
tioned above are derived from the main
algorithm. 1In Section 6 we briefly dis-
cuss other models of parallel computation
and the problem of finding all initial
palindromes of a given string.

2. pPeriodicity in Strings.

A string u is a period of a string
w 1f w 1is a prefix of uX for some k
or equivalently if w is a prefix of uw.
We call the shortest period of a string
w the period of w, Thus a is the
period 5f aaaaaaa while aa,aaa, etc are
also periods of w. We say that w has
period size P if the length <f the per-
iod of w is P. If w is at least
twice longer than its period we say that
w 1is periodic.

We will consider prefixes of the pat-
tern x Of increasing length. Assume we
consider a prefix u and then a prefix
v. In the case that u 1is periodic we
will say that the periodicity continues
in v if the period of Vv is the same as
the period of u (e.g. u = abcabcab,

v = abcabcabcabcabca) and that the peric-
dicity terminates otherwise (e.g. the same
u, v = abcabcabecd...).

wWe will need some simple facts about

periodicities.

~act 1 (The Periodicity Lemma)(LS]: It

w has two pericds of size ? and Q and
|[w] > P +Q, then w has a period of size
gcd (P,Q).



For a one line proof see [GS].

In the rast of this section an occur-
rence at J will mean an occurrence at
position J in a given fixed string z.

Fact 2: If v occurs at j and j + P,
P < [v‘/z, then (1) v is periodic with a
pericd of length P, and (2) v occurs at
j + P, where P is the period size of V.
The first half of Fact 2 follows from the
alternative definition of period. The se-
cond half of Fact 2 holds since by Fact 1
p must divide ©P.

In the rest of this section we con-

sider a periodic string v = uku', Xk > 1,

u the period of v, u' a proper prefix of
u, and |u| = P. Let L =P, ¢ = [|v|/P].
The next two facts <2llow from a simple
counting of periods.

Fact 3:

1f v occurs at j and j + mP,

m £ k, then uk+mu' occurs at j.

Fact 4; Vv occurs at j, j + P and j + L

k+ .
iff u ‘u' occurs at 3.

Fact 5¢ If v occurs at j and j + 4,
&g (vl -p, then A is a multiple of p.

proof: Otherwise pA = P -+ r, 0 < r < P,

and m < X. Let w = u(k-m)u'. w is a

suffix of v, so it occurs at j + mp. It
is also a prefix of v, sc it occurs at

j +4=3+mP+r. B8y Fact 2, w has

a period of size r in addition to a
periocd of size P. By Fact l, it has a
period of size gcd(P.r) < P which divides
P, Hence P cannot be the period size
of w. g
) We call an occurrence of v at j
important if v does not occur at j + P.

Fact 6 If there are two important occur-
rences of v at r and s, r > s, then
r-s> |v|-P.

Proof: Assume r - s { |v| - P. By Fact 3,

+
r - s = mp, By Pact 4, uk Myt occurs at

r, and hence v occurs at r + P, and the
occurrence at r cannot be important. o]

3. A sketch of the main algorithm.

The input is a string z = X § y of
length 3n + 1. x 1is the pattern, |x| =n,
and y is the text, |y| = 2n. Both are
over a given alphabet of fixed size which
does not contain §. The output is a Boo-
lean array of length 3n + 1 called SWITCH.
The final value of SWITCH(i] is 1 iff an
occurrence of x starts with z,. The WRAM

has 3n + 1 processors. Processor L is
responsible for zi and SWITCH{i].

Given a string u of length f we
say that we test for u at (position) i

(of 2) if we exXecutas AND(u, = 2.,...,U4
1 i L

e .
= zi+1-l)' Such a test finds if u occurs

at i and takes cne unit of time on the
WRAM. The straight forward algorithm that

tests for x at all i's needs n2 proces-
sors. (1)

Let x be the prefix of x of size
2' and let xME) 2 xB ) mg alge-
rithm consists of log n stages. After

stage i SWITCE (j] = 1 if and only if
x(i) occurs at j

j.
We now describe stage i + 1, which
takes a constant (at most six) steps. The
task of the stage is to test whether each

occurrence of x(i)
(i)

currence of y . In case the answer is
negative the corresponding 1 in SWITCH is
turned off.

We divide the array SWITCH into blocks

of size 21-1. We say that property 1
holds if each block has at most cne 1. We
distinguish between two cases: the regular
case, and the periodic case.

The regular case is theone in which
the first block of SWITCH has only one 1
(at position l). By induction, the other
blocks may have at most two l's., In a
block with two 1l's, the 1 at the smaller
position is turned off. (This occurrence

of x(L) is not a beginning of an occurrence
(i+1)
of x .

is followed by an oc-

) As a result, property i

holds. There are 2°° !
sible for the block.

they can test for y(l) at the appropriate
position if they knew which comparisons
they ocught to perform., We will explain
below how this is done. We call it a regu-
lar step.

In the periodic case that follows a
regular case the first block has two l's:
the second of which at position P + 1. It

follows from Fact 2 that x(l) is pericdic
with period size P. In the periodic case
we test whether the periodicity of

i i+ . .
x(L) continues in x(L l). we dc it in two

. el
steps using x(l) as a yardstick. I£ x(L )

has the same pericd we similariy find all
its occurrences., Then we start stage i + 2

Processors respon-
Hence, in two steps

i+l
in the periodic case. If x(x ) doas not
have the same period we turn off {(justifi-



ably) many l's in SWITCE. A3 a result, pro-
perty i holds and we complete the stage
with a regular step. Each part in the dis-
cussion above makes some use Of properties

of periodicities.
puring the algorithm the processors

need to communicats., For global communica-
tion we have a bulletin board, BB, where
some announcements are posted:; s.g. if the
case i8 periodic and the size of the period,
Also, the processors responsible for a
block need to communicate in order to find
which comparisons they cught to make in a
regular step. For this purpose we have
local bulletin boards, lbb's. We can use
an additional array to stores the lbb's,
Alternatively, each lbb can be stored at
the last element of its block. At the end
of each stage one of every two® consecutive
lbb's dies and may transfer scme informa-
tion to the surviving one before it passes
away. (See Figure 1l.)

4. The Details.

The flow chart of the algorithm is
given in Figure 2. In this section we give
the datails of each one of the seven boxes
in the flow chart. The first and last
stage are slightly different and are dis-
cussed at the end of the section.

We enter box 1 after a regular step
in stage 1. Consider blocks numbers
2j-1 and 23j at the end of stage i. They
contain at most one 1. The lbb of the
first block dies at the end of the stage.
The processor responsible for the second

Ibb (number 2j.2°72) looks at the dying
1bb and if it is not empty, it tries to
transfer its contents to its lbb. Two l's
per block are discovered when its lbb is
already nonempty.

Box 1 deals with the case j = 1. If
two l's are discovered in the (new) first
block we are in the periodic case, which
is explained below. Boxes 2, 3 deal with
the case j > 1. If two l's are discovered
the first is turned off by the processor
respensible for the surviving lbb. (It
is the processor that discovers the two
1's.)

To understand box 4, the regular
step, consider Figure 1. If the occurrence

starts at z;+l' then the lbb contains 4.

Processor j in the group that corresponds
to the block makes two comparisons:

X = 2, 7 for ko€ (5427, 3e2te2 )
one of the answers is negative it turns off
the 1 at SWITCH (4+l). This is the only
Place where the concurrent write is used.
The test in box 1 is actually handled

£

differently. Since SWITCH(l) = l, the
processor rasponsible for the second lbb
of stage i (the first of stage i+l)
looks at its lbb, If it is nonempty it
contains P; i.e., x ig periodical with
period size P. The processor posts P on BB.
During the periodic loop (boxes 5,6)
the lbb's are not updated and are not used.
BB will contain P and L s P, wheras

¢t = [2*/pP]. When we enter tox 5 from box 1
i-2 i-1

L o€ (2,3} (2 <P+1<2 ).
Updating L in the loop is easy: L « if
2L - p > 2°*! then 2L - P else 2L.

vat x1*1) be the prefix of x of

siza 20 + L (|xPTH ) & ML o RO
21""l + P). In box 5 we test whether the
periodicity continues in Q(i*l’ by using
x(i) as a yardstick. (Fact 4 v = x(i),
j =1, i(i+l) = uk+‘u')z the first pro-

cesscor tests whether SWITCH(P+l) = 1

and SWITCH(L+l) = 1. Recall that P and
L are posted. The first test is redund-
ant when we come from box 1. Similarly,

in Box 6, we find the occurences of i(ifl)
as follows (Fact 4 v = x' D) gUivll, Jk+e .
processor pj that sees 1 at SWITCH(j)

) e

checks whether SWITCH(P+j) = 1 and

SWITCH(L+j) = 1. If one cf the tests fails

pj turns off the 1. (i)
Recall that an occurrence ¢f v = x

at j is called important if x(L) does
not occur at j+P. Since SWITCH(l) = 1 and
one of SWITCH(P+l), SWITCH(L+l) is zero,

at least one of the occurrences of x(L)
at positions j L + 1 - P is important.
By Facts 5,6, either the occurrence at Ll
is important or there is exactly one im-
portant occurrence at some j 1 < j ¢
L+l-P.

when we test if the periodicity con-
tinues, firset, pl checks SWITCH(P+l). TIf

it is zero, then the occurrence at 1 is
important and Py posts 0 on 8B. Other-

wise it tests SWITCH(P+L). If it is 1,
the periodicity continues. Otherwise,
each processor Dj tests (using SWITCH)

b

whether there is an important occurrence
at j. The unique pj that succeeds posts

j-1 on BB,

Next, each processcr P, with

SWITCH(r) = 1 uses SWITCH and the posted
value of j-1 to check whether there is an
important occurrence of x(L) at r+j-1. If



there is no such an occurrence it turns off
the 1 at SWITCH(r). This is justified

because §(1+1) cannot occur at r, since

in 21*1) there is an important occurrence

of x!) at 4. At this point property i
holds by Fact 6.

Before executing the regular step
(box 4) the lbb's ara restored. Each pro-

cessor p_ with SWITCH(r) = 1 writes r-l in

its lbb. By Claim 2, no conflict occurs.
To be able to do it, each processor knows
in each stage where is its lbb. This infor-
mation can be easily precomputed or updated
dynamically.

The first stage is very simple. Pro-

cessor pj tasts whether zjz:,”l = xlxz. It

the test succeeds, pj turns on SWITCH(J)

and makes the j-th lbb for the second stage
point to the 1. Recall that the size of
the blocks in the second stage is 1.

We now discuss the changes needed for
the last stage, but first we need to elabor-
ate on the other stages. cConsider stage
i+l, and an occurrence of x(L) at j < n.

Lo bt i+l
Assume 3+2L L > n+l, s0 x(L ) cannot occur

at j simply because it is too long, and
the § does not match any symbol of x. 1In
case the first mismatch from the left is
the § the algorithm will not turn off the 1l
at SWITCH (j). (It is as though the §

and the following symbols always match the
symbols compared to them. As a result, a

1 in SWITCH may stand Zor an overhanging
occurrence.

In the last stage,if sroperty i holds,

or if the periodicity terminates (and as a
result of including overhanging occurrences
it means that it terminates before the §)

we execute a regular step without any change.

The only change is in the case that the
periodicity continues. Wwhile in the other
stages it means that the periodicity con-

tinues to x(1*1lin the last stage it con-
tinues only to the §. We find ourself in

this case when L + 2° >n (|i(‘*lﬂ 20x|).

We call an occurrence of x(L) at j special
ifj+2"¢nandj+P+2">n+ 1 (if
the next occurrence of x(L), at j+P is the

first overhanging occurrence). As with im-
portant occurrences the unique pj that finds

a special occurrence at j posts j-1 on
BB. (Note that j = mP + 1 for some m,

Then
at SWITCH(r) checks

whether SWITCH(r+j-1l) = 1 and if not it

m k| . 2
X = uuu'u',u'u" a prefix of u .)
each P, that sees a 1

turns off the 1. If the test succeeds '
it checks whether SWITCH(r+j-l+P) = 1. 1I&£
the tast succeeds we know that x occurs

m+k+
at r (since the tests imply that u lu
occurs at j). If the test fails we still
do not know the answer. Note that in this

case the occurrence at x(L) at r+j-1 is
important and by Fact 6 if we restrict at-
tention to occurrencass at r's such that
the occurrence at r+j-1 is important, then
property i holds. So we activate the
lbb's and use a regular step to test whe-
ther such occurrences of x(L)
occurrences of x.

extend to

5. The Four Families.

S.1 Using only n/log n processors.

The main algorithm can be implemented
with only n/log n processors using the four
Russians trick [AHU] to pack log n symbols
into one number.

Each processor is responsible for s
consecutive symbols in 2z and in SWITCH,
where ¢ = ¢ log n and ¢ depends on the
alphabet size: processor P, will be
responsible for zj, SWITCH(]j) j € At

= ((r-1l)s+l,...,rs}, PFirst, each P, packs

each substring of 2z of length s that
starts with zj, j € Ar, into a new symbol

-~

zj. Then it compares each éj' j €A,

with il and if they are equal it sets

SWITCH(j) = 1. This has the effect of the
first ¢ = log s stages and takes Q(s) =
O(log n) time.

Assume the next ((t+l)-st) stage is in
the regular case. The other stages are as
in the main algorithm. The only differ-
ence 18 that in each regular step the pack-
ed symbols z. are used.

If the {t+l)-st stage is periodical,
then the pericd size P < s/2, and we need
also to pack the bits in SWITCH. Each p

packs the s consecutive segments of
SWITCH starting with each SWITCH(j) j € A_.

wWhen the periodicity continues and we test

for accurrences of i(L*L) we can handle

all the l's in a packed symbol of SWITCH
simultaneocusly using some simple bit vec-
tor operations on the packed symbols., Even
if we disallow bit vector operations, the
n/log n processors can prepare (in time
O(log n)) a table to implement these oper-
ations.



5.2 The general cass.

We now have an algorithm with tp, =

O(n) for py = n/log n. This immediately

yields a family with tp = 0(n) for p
n/log n because of the well known downward
translation. In general, it tpo = £(n),

then we have a family with tp = £(n) for
P < Py’ because having only p Prcocessors,

each one will simulate p,/p processors and

the time will be slowed down by a factor

of po/p.

We still have to deal with the case
in which [x| and |y| are unrelated. Let
n = [x|+|y]| (the length of the input) and
m= |x|. Ifpg 2n/m we divide y into
p/2 equal parts. Let the i-th piece be
the concatenation of the i-th and (i+l)st
parts. There are p pieces and we assign
one processor per piece. The size of a
piece S = 2|y|/(p/2) satisfies 4n/p > S
> 2n/p > m. Each processor looks for all
occurrences of X in its piece in time
O(S) = O0(n/p). Hence in this case, when
we have a small number of processors, we
have an optimal algorithm simply because we
still solve the problem sequentially.

I1£f p > 2n/m (p < n/log m) we break
y into overlapping pieces of size 2m. The
number s of such pieces satisfies
n/m< s < 2n/m < p. We assign p/s
(< m/log m) processors per piece. By the
first paragraph above, all the occurrences
in a piece can be found in time t such
that t'p/s = 0(m), or tp = O(ms) = O(n).

S.3 On _the PRAM,

Ccnsider the main algorithm. The
only case of concurrent write is the

regular step: the ZL-I processors of a

block compute an AND. If we do not allow
concurrent write, we can no longer execute
one stage in constant time. The algorithm

on the PRAM takes time o(loqzn), because
each stage takes O(log n) time.
fortunately, we can implement this

algorithm with only n/logzn processors.
Each processcr is responsible for

logzn symbols or for log n packed symbols.
In a regular step, the processors in a
block make log n comparisons of packed
symbols (in time log n). They record only
whether all the comparisons succeed. Then
using the implicit tree structure, they
'and' their results in time O(log n).

The discussion above yields an alge-

rithm on a PRAM with p = n/].og2 n and

t -o(lcqzn).rho rest is as {n subsection
5.2, The algorithm can be implemented
without simultaneous reads,

5.4 Baving many processors.

Assume |y| = 2[x| = 2n, As was noted

above, with n processcrs we can sglve

string matching in constant (t = 2) time

on the WRAM, We show below that if
1+1/k

pPp=an we can solve string matching
in time O(k). This immediately gives the
third and fourth families: <£for the third,
take ¢ = 1/k and the constant is k. For
the fourth, take k = log n/leg log n. 1In
this case p = n log n, but by packing
symbols we reduce p to n.

In this subsection we use a stronger
varsion of WRAM. 1In case of a write con-
flict the processor with the minimum num-
bear is the one that writes., At the mcment,
if it is not known whether such a WRAM can
be simulated by our weaker type without
time loss, However, in our case, such sim-
ulation is possible.

Assume one subset of p processors
tries to write simultanecusly into a re-
gister and the processor with the minimal
number succeeds. It was observed in [FRW]
that our weaker model of WRAM can do the
same in four steps: the processors are
partitioned into /P groups of size /B,

In the first step each group computes
whether one of its members wants to write.
The result is a Boolean array of size /B.
In the second step the 1l's in that array
that are not first are turned off. This
is possible because there are /p processors
for each 1. Now, the processors in the
corresponding group find in a similar way
the minimal in the group. Such a simula-
tion will easily be extended to our case.
wWhen we have n or mOre processcrs

(i+l)

we can use them to have x more than

twice larger than x(L)
to have less than log n stages.

and as a result,
Specifi-

cally, let p = 3nl+l/<. The processors
are divided into 3n groups of al/k pro-

cassors, FEach group contains one prin-
cipal processor, and is responsible for
one symbol cf 2z and SWITCH. The length

of x(L) is nl/k. In the first stage (find-
ing all occurrences of x(l)) the i-th group
looks for an occurrence at 1i.

The size of the blocks for stage i + 1 is
|x(‘)|/2 = nL/k/z. A regular step is
simple, $ince we have enough processors:
the number of procassors in the groups



corresponding to a block is n(i*l)k/z -

The parts concerning periodicity are
slightly different, because the size of
blocks much more than doubles from one stage
to the next., To test for periodicity, each
principal processor in the first block that
sees 1 writes its group number minus 1
on the sama place of BB. The one with the
minimal group number succeeds, and posts
the period size P,

(1) )

= b sil
Let L, [x'~'/p)ep. L, can be ea %
maintained and is available in stage i + L.

7k

Note that Li+l £ 2n L. To test if the

periodicity continues, the first group

checks whether SWITCH(1+jLi)=l for j=1,...,

221X (1n this case R(*1) . an/kLi+x(i),
30 x(L*l) < |§(L*l)| < 3X(L*l).)

If the test succeeds, a similar test
is used to test which occurrence of x(x) is

extended to an occurrence of i(l*l). If
the test fails, using the stronger form of
concurrent writing the first group £finds

the first j Wi th SWITCH(1+jLi) = 0. The

value of j is posted on B3B8, and next
SWITCH(r) = 1 is not turned off only if the
r-th group finds that SWITCH(r+jLi) = 0,

and for all k < j SWITCH(r+xL.) = 1.

The stronger type of concurrent write
is used only within grcocups. and the memory
locations are different for different
groups. The simulation mentioned above
(for one group) can be obviously extended
to our case., We left out the details of
allccating of processors, For fixed k
chis task is immediate because we can assune

that n = Zkr for some r. 1In the general
case (|x| and |y| unrelated) the number of

proccessors needed is only nml/k and with
P = n the time bound is O(log m/log log m).
6., conclusion

We can implement the main algorithm in
other models for parallel computation:

L. Boolean circuits of size
O(n logzn) and Zepth O(logzn).

2. Fixed connection networks (the
k-dimensional cube) and even net-
works with fixed degree (CCC's
{PV]) in pt = O(n log n).

The details of these implementation are
straightforward., Both use shifting net-
works as building blocks.

There are some questions unresclved;

l. Can we solve string matching on
WRAM with n processors in con-
stant (O(log log n)) time?

2. Can we solve string matching
deterministically on PRAM with
n/leg n (or even n) processors
in O(log n) time? (The parallel
version of [KR) has p = n,

t = O(log n) but is prcbabilis-
tic.)

3. Can we find optimal parallel al-
gorithms for string matching on
fixed connection networks?

Finally, families of parallel algori-
thms corresponding to all the families men-
tioned above can be derived for finding all
initial palindromes of a given string w.
The reduction of the latter problem to
string matching [FP] does not help, be-
cause it makes use of the table of the KMP
algorithm. It is not clear how to compute
efficiently this table in parallel. In-

. rev . .
stead we look for w in w , recording in

SWITCH'also overhanging occurrences, The
main algorithm discovers the initial palin-

dromes of length 2, 22 legg2t, in stage i.

Acknowledgement: I am indebted to Uzi
Vishkin for suggesticns that have led to
several improvements.

References;

(AHU] A.V. Aho, J.E. Hopcroft and J.D.
Ullman, The design and analysis of
computer algorithms, Addison Wesley,
Reading MA, 1974.

{BH] A. Borodin and J.zZ. Hopcroft,
Routing, merging and sorting on
parallel models of computation, Proc.
l4th ACM STOC (1982), pp. 338-344.

R.S. Boyer and J.S. Moore, A fast
string searching algorithm, Comm. ACM
20 (1977), pp. 762-772,

[BV] I. Bar-On and U. Vishkin, Op:imal
parallel generation of a computation
tree form, Manuscript, Department of
Computer Science, Courant Institute,
October 1983.

[BM]

S.A. Cook and C. Dwork, Bounds
on the time for parallel RAM'S to
compute simple functions, Proc. l4th
ACM STOC (1982), pp. 231-233.

M.J. Fischer and M.S. Paterson,
string-matching and other products,
in Complexity and Computation, SIAM-
AMS Proceedings 7 (R.M. Karp, Ed.),

{co)

L¥P]




H’. 1.].3-L25, American Mathematical [pv] F.p
Society, Providence, R.I., 1974. The cube oo PAfata and J. vuilleatn,
nnected-cycles: a vVersa-
(FRW] P.R. Pich, R.L. Ragde and A. Wig- cile network for parallel computas
derson, Relations between concurrent- tion, Preg. 20th IEEE Pocs (1979),
write models of parallel computation, PP. 140-147.
Manuscript, November 1983, (sv] Y. Shiloach and U. Vishkin, Pind-
ing the maximum, nerging and s;t:ing
(GS] Z. Galil and J.I. Seiferas, Time- in a parallel computation model, Lo
space-optimal string matching, JCSS 26 of Algorithms 2 (1981), PP. 88-102.
(1983), pp. 280-29%4, v] L.G. Valiat, Parallelism in com-
[KMP] D.E. Knuth, J.H. Morris and V.R. parison problems, SIAM J. on comput-
Pratt, Fast pattern matching in ing 4 (1975), pp. 348-355.
Serings: 2iMMiJ. comput. £ (1977), (Vi) U. Vishkin, An optimal parallel
Pp. * algorithm for selection, Manuscript,
[KMR] R.M. Karp, R.BE. Miller, and A.L. Department of Computer Science,
Rosenberg, Rapid identification of Courant Institute, December 1983,

repeatad patterns in strings, trees
and arrays, Proc. 4th ACM SToC (l1972),
PP. 125-136.

[KR] R.M, Karp and M.0. Rabin, Effi-
cient randomized pattern-matching
algorithms, a manuscript.

[LS] R.C. Lyndon and M.P. Schutzen-
berger, The equation aM = pNc¢P in a
free group, Michigan Math. J. 9
(1962), 289-298.

(1} 189}
x 1 v |

—
NN\ |

= | NN

SWITCH A S
l o J\:
lob
figure 1. An occurrance of x(i) in z followed by a potential

occurrence of y(i); a block in SWIWTCH and its lbb.




pe:iodical

/‘9101¢1

cthe periodic
loop

fericdicity
sontinues

\ £ind

turn
4u occurences off
(L +1)
x
Figure 2. Stage i+ 1

= property 1 nolds

property
i holds

?




