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Abstract

Large amounts of (often valuable) information are stored
in web-accessible text databases. “Metasearchers” pro-
vide unified interfaces to query multiple such databases at
once. For efficiency, metasearchers rely on succinct statisti-
cal summaries of the database contents to select the best da-
tabases for each query. So far, database selection research
has largely assumed that databases are static, so the associ-
ated statistical summaries do not need to change over time.
However, databases are rarely static and the statistical sum-
maries that describe their contents need to be updated pe-
riodically to reflect content changes. In this paper, we first
report the results of a study showing how the content sum-
maries of 152 real web databases evolved over a period of
52 weeks. Then, we show how to use “survival analysis”
techniques in general, and Cox’s proportional hazards re-
gression in particular, to model database changes over time
and predict when we should update each content summary.
Finally, we exploit our change model to devise update sched-
ules that keep the summaries up to date by contacting data-
bases only when needed, and then we evaluate the quality of
our schedules experimentally over real web databases.

1 Introduction

A substantial amount of information on the web is stored
in databases and is not indexed by search engines such as
Google. One way to provide one-stop access to the informa-
tion in text databases is throughmetasearchers, which can
be used to query multiple databases simultaneously. Theda-
tabase selectionstep of the metasearching process, in which
the best databases to search for a given query are identified, is
critical for efficiency, since a metasearcher typically provides
access to a large number of databases. The state-of-the-art
database selection algorithms rely on aggregate statistics that
characterize the database contents. These statistics, which
are known ascontent summaries[15] (or, alternatively, asre-
source descriptions[3]), usually include thefrequencyof the
words that appear in the database, plus perhaps other sim-
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ple statistics such as the number of documents in the data-
base. These summaries, which provide sufficient informa-
tion to decide which databases are the most promising for
evaluating a given query, are the focus of this paper.

So far, database selection research has largely assumed
that databases are static. However, real-life databases are not
always static and the statistical summaries that describe their
contents need to be updated periodically to reflect database
content changes. Defining schedules for updating the data-
base content summaries is a challenging task, because the
rate of change of the database contents might vary drastically
from database to database. Furthermore, finding appropriate
such schedules is important so that content summaries are
kept up to date but without overloading databases unneces-
sarily to regenerate summaries that are already (at least close
to) up to date.

In this paper, we start by presenting an extensive study
on how the content of 152 real web databases evolved over
a period of 52 weeks. Given that small changes in the da-
tabases might not necessarily be reflected in the (relatively
coarse) content summaries, we examined how these sum-
maries change over time. Our study shows that summaries
indeed change and that old summaries eventually become ob-
solete, which then calls for a content summary update strat-
egy. To model content changes, we resort to the field of
statistics named “survival analysis.” Using the Cox propor-
tional hazards regression model [10], we show that database
characteristics can be used to predict the pattern of change of
the summaries. Finally, we exploit our change model to de-
velop summary update strategies that work well even under
a resource-constrained environment. Our strategies attempt
to contact the databases only when needed, thus minimiz-
ing the communication with the databases. To conclude the
discussion, we report the results of an extensive experimen-
tal evaluation over our 152 real web databases, showing the
effectiveness of our update strategies.

In brief, the contributions of this paper are as follows:

• In Section3, we report the results of our extensive ex-
perimental study on how the content summaries of 152
real web databases evolved over a period of 52 weeks.

• In Section4, we use survival analysis techniques to dis-
cover database properties that help predict the rate of
change of database content summaries.
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D1, with |D1|=51,500
w f(w, D1)
algorithm 7,210
cassini 5
saturn 2

D2, with |D2|=5,730
w f(w, D2)
algorithm 2
cassini 3,260
saturn 3,730

Table 1.A fragment of the content summaries of two data-
bases.

• In Section5, we show how to update content summaries
by exploiting our change model. The resulting strate-
gies attempt to contact the databases only when strictly
needed, thus avoiding wasting resources unnecessarily.

Finally, Section6 discusses related work, while Section7
provides further discussion and concludes the paper.

2 Background

This section introduces the notation and necessary back-
ground for this paper. We first define the notion of a “content
summary” for a text database and briefly summarize how da-
tabase selection algorithms exploit these summaries (see [18]
for an expanded version of this discussion). Then, we review
how to obtain database content summaries via querying.

Definition 1: Thecontent summaryC(D) of a databaseD
consists of:

• The actual number of documents inD, |D|, and

• For each wordw, the number ofD documentsf(w, D)
that includew.

For efficiency, a metasearcher should evaluate a query
only on a relatively small number of databases that are rel-
evant to the query. The database selection component of a
metasearcher typically makes the selection decisions using
the information in the content summaries, as the following
example illustrates:

Example 1: Consider the query[cassini saturn]and two da-
tabasesD1 andD2. Based on the content summaries of these
databases (Table1), a database selection algorithm may in-
fer thatD2 is a promising database for the query, since each
query word appears in manyD2 documents. In contrast,D1

will probably be deemed not as relevant, since it contains
only up to a handful of documents with each query word.

Database selection algorithms work best when the con-
tent summaries are accurate and up to date. The most desir-
able scenario is when each database either (1) is crawlable,
so that we can (periodically) download its contents and gen-
erate content summaries, or (2) exports these content sum-
maries directly and reliably (e.g., using a protocol such as
STARTS [14]). Unfortunately, the so-calledhidden-webda-
tabases [16], which abound on the web, are not crawlable and

only provide access to their documents via querying; further-
more, no protocol is widely adopted for web-accessible da-
tabases to export metadata about their contents. Hence, other
solutions have been proposed to automate the construction
of content summaries from hidden-web databases that do not
export such information.

Callan and Connell [4] presented an algorithm for build-
ing (approximate) content summaries of hidden-web text da-
tabases via document sampling. This algorithm first extracts
a small document sample (of about 300 documents) from a
given databaseD via single-word queries. The document
sample is then treated as a small database whose content
summary is used to approximate that ofD’s. (Alternative
query-based techniques [17] use different querying strate-
gies.) In this paper, we use the document sampling and con-
tent summary approximation strategy from [4], and we use
the “hat” notation to refer to an approximate content sum-
mary:

Definition 2: Theapproximate, sample-based content sum-
maryĈ(D) of a databaseD consists of:

• An estimateˆ|D| of the number of documents inD, and

• For each wordw, an estimatêf(w, D) of f(w, D).

TheĈ(D) estimates are computed from a sample of the doc-
uments inD as described in [4].

Next, we present the results of our study that examined
how content summaries of 152 text databases changed over
a period of 52 weeks.

3 Studying Content Changes of Real Text Da-
tabases

One of the goals of this paper is to study how text database
changes are reflected over time in the database content sum-
maries. First, we discuss our dataset in detail (Section3.1).
Then, we report our study of the effect of database changes
on the content summaries (Section3.2). The conclusions of
this study will be critical later in the paper, when we discuss
how to model content summary change patterns.

3.1 Data for our Study

Our study and experiments involved 152 searchable data-
bases, whose contents were downloaded weekly from Oc-
tober 2002 through October 2003. These databases have
previously been used in a study of the evolution of web
pages [23]. The databases were –roughly– the five top-
ranked web sites in a subset of the topical categories of the
Google Directory,3 which, in turn, reuses the hierarchical
classification of web sites from the Open Directory Project.4

3http://directory.google.com
4http://dmoz.org

http://directory.google.com
http://dmoz.org


Domain com edu gov misc org
% 47.3% 13.1% 17.1% 6.8% 15.7%

Table 2.Distribution of domains in our dataset.

(Please refer to [23] for more details on the rationale be-
hind the choice of these web sites.) From these web sites,
we picked only those sites that provided a search interface
over their contents, which are needed to generate sample-
based content summaries (see Section2). Also, since we
wanted to study content changes, we only selected databases
with crawlable content, so that every week we can retrieve
the databases’ full contents using a crawler. A complete
list of the sites included in our experiments is available at
http://webarchive.cs.ucla.edu/ . Table2 shows the
breakdown of web sites in the set by high-level DNS do-
main, where themisccategory represents a variety of rela-
tively small domains (e.g.,mil, uk, dk, andjp).

We downloaded the contents of the 152 web sites every
week over one year, up to a maximum of 200,000 pages
per web site at a time. (Only four web sites were af-
fected by this efficiency-motivated page-download limita-
tion: hti.umich.edu , eonline.com , pbs.org , and
intelihealth.com .) Each weekly snapshot consisted
of three to five million pages, or around 65 GB before com-
pression, for a total over one year of almost 3.3 TB of history
data.

We treat each web site as a database, and created –each
week– the complete content summaryC(D) of each data-
baseD by downloading and processing all of its documents.
This data allowed us to study how the complete content sum-
maries of the databases evolved over time. In addition, we
also studied the evolution over time ofapproximatecontent
summaries. For this, we used query-based sampling (see
Section2) to create every week an approximate content sum-
maryĈ(D) of each databaseD.5

3.2 Measuring Content Summary Change

We now turn to measuring how the database content sum-
maries –both the complete and approximate versions– evolve
over time. For this, we resort to a number of metrics of con-
tent summary similarity and quality from the literature. We
discuss these metrics and the results for the 152 web data-
bases next.

For our discussion, we refer to the “current” and complete
content summary of a databaseD asC(D), whileO(D, t) is
the complete summary ofD as oft weeks into the past. The
O(D, t) summary can be considered as an (old) approxima-
tion of the (current)C(D) summary, simulating the realis-
tic scenario where we extract a summary for a databaseD

5To reduce the effect of sampling randomness in our experiments, we
create five approximate content summaries of each database each week, in
turn derived from five document samples, and report the various metrics in
our study as averages over these five summaries.

5 10 15 20 25 30 35 4
t

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Weighted Recall
Unweighted Recall

±
 .95% Confidence Interval


45 500

Figure 1.The recall of content summaryO(D, t) with re-
spect to the “current” content summaryC(D), as a function
of time t and averaged over each databaseD in the dataset.

and keep it unchanged fort weeks. In the following defini-
tions, Wo is the set of words that appear inO(D, t), while
Wc is the set of words that appear inC(D). Valuesfo(w, D)
andfc(w,D) denote the document frequency of wordw in
O(D, t) andC(D), respectively.
Recall: An important property of the content summary of
a database is its coverage of the current database vocabu-
lary. An up-to-date and complete content summary always
has perfect recall, but an old summary might not, since it
might not include, for example, words that appear only in
new database documents. Theunweighted recall (ur)of
O(D, t) with respect toC(D) is the fraction of words in the
current summary that are also present in the old summary:
ur = |Wo∩Wc|

|Wc| . This metric gives equal weight to all words
and takes values from 0 to 1, with a value of 1 meaning that
the old content summary contains all the words that appear
in the current content summary, and a value of 0 denoting no
overlap between the summaries. An alternative recall met-
ric, which gives higher weight to more frequent terms, is
the weighted recall (wr)of O(D, t) with respect toC(D):
wr =

P
w∈Wo∩Wc

fc(w,D)P
w∈Wc

fc(w,D) . We will use analogous definitions

of unweighted and weighted recall for a sample-based con-
tent summaryÔ(D, t) of databaseD obtainedt weeks into
the past with respect to the current content summaryC(D)
for the same database.

Figure1 focuses on complete content summaries. Specif-
ically, this figure shows the weighted and unweighted re-
call of t-week-old summaries with respect to the “current”
summary, as a function oft and averaged over every pos-
sible choice of “current” summary. In Figure1 (as well as
in all subsequent figures), we report our results with a 95%
confidence interval. Predictably, both the weighted and un-
weighted recall values decrease ast increases. For example,
on average, 1-week-old summaries have unweighted recall of
91%, while older, 25-week-old summaries have unweighted
recall of about 80%. The weighted recall figures are higher,
as expected, but still significantly less than 1: this indicates

http://webarchive.cs.ucla.edu/
hti.umich.edu
eonline.com
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Figure 2.The weighted recall of “old” sample-based content
summaries with respect to the “current” ones, as a function of
the timeT between updates and averaged over each database
D in the dataset, for different scheduling policies (τ = 0.5).
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Figure 3.The unweighted recall of “old” sample-based con-
tent summaries with respect to the “current” ones, as a func-
tion of the timeT between updates and averaged over each
databaseD in the dataset, for different scheduling policies
(τ = 0.5).

that the newly introduced words have low frequencies, but
constitute a substantial fraction of the database vocabulary
as well.

The curves labeled “Naive” in Figures2 and3 show the
corresponding results for approximate, sample-based content
summaries. (Please ignore the other curves for now; we will
explain their meaning in Section5.) As discussed in Sec-
tion 2, hidden-web text databases, which are not crawlable,
require that content summaries be approximated via sam-
pling, so studying sample-based summaries is important. As
expected, the recall values for the sample-based summaries
are substantially smaller than the ones for the complete sum-
maries. Also, the recall values of the sample-based sum-
maries do not change much over time, because the sample-
based summaries are not too accurate to start with, and do not
suffer a significant drop in recall over time. This shows that
the inherent incompleteness of the sample-based summaries
“prevails” over the incompleteness introduced by time.

Another interesting observation is that recall figures ini-
tially decrease (slightly) for approximately 20 weeks, then
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Figure 4.The precision of content summaryO(D, t) with re-
spect to the “current” content summaryC(D), as a function
of time t and averaged over each databaseD in the dataset.

remain stable, and then, surprisingly, increase, so that a 50-
week old content summary has higher recall than a 20-week
old one, for example. This unexpected result is due to an in-
teresting periodicity: some events (e.g., “Christmas,” “Hal-
loween”) appear at the same time every year, allowing sum-
maries that are close to being one year old to have higher
recall than their younger counterparts. This effect is only vis-
ible in the sample-based summaries that cover only a small
fraction of the database vocabulary, and is not observed in
the complete summaries, perhaps because they are larger and
are not substantially affected by a relatively small number of
words.
Precision: Another important property of the content sum-
mary of a database is the precision of the summary vocabu-
lary. Up-to-date content summaries contain only words that
appear in the database, while older summaries might include
obsolete words that appeared only in deleted documents. The
unweighted precision (up)of O(D, t) with respect toC(D)
is the fraction of words in the old content summary that
still appear in the current summaryC(D): up = |Wo∩Wc|

|Wo| .
This metric, likeunweighted recall, gives equal weight to
all words and takes values from 0 to 1, with a value of 1
meaning that the old content summary only contains words
that are still in the current content summary, and a value of
0 denoting no overlap between the summaries. The alterna-
tive precision metric, which –just as in theweighted recall
metric– gives higher weight to more frequent terms, is the
weighted precision (wp)of O(D, t) with respect toC(D):
wp =

P
w∈Wo∩Wc

fo(w,D)P
w∈Wo

fo(w,D) . We use analogous definitions of

unweighted and weighted precision for a sample-based con-
tent summaryÔ(D, t) of a databaseD with respect to the
correct content summaryC(D).

Figure4 focuses on complete content summaries. Specif-
ically, this figure shows the weighted and unweighted preci-
sion of t-week-old summaries with respect to the “current”
summary, as a function oft and averaged over every pos-
sible choice of “current” summary. Predictably, both the
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Figure 5.The weighted precision of “old” sample-based con-
tent summaries with respect to the “current” ones, as a func-
tion of the timeT between updates and averaged over each
databaseD in the dataset, for different scheduling policies
(τ = 0.5).
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Figure 6.The unweighted precision of “old” sample-based
content summaries with respect to the “current” ones, as a
function of the timeT between updates and averaged over
each databaseD in the dataset, for different scheduling poli-
cies (τ = 0.5).

weighted and unweighted precision values decrease ast in-
creases. For example, on average, a 48-week-old summary
has unweighted precision of 70%, showing that 30% of the
words in the old content summary do not appear in the data-
base anymore.

The curves labeled “Naive” in Figures5 and6 show the
corresponding results for approximate, sample-based content
summaries. (Again, please ignore the other curves for now;
we will explain their meaning in Section5.) As expected, the
precision values decrease over time, and do so much faster
than their corresponding recall values (Figures2 and3). For
example, almost 20% of the words in a 15-week-old sample-
based content summary are absent from the database. For the
precision results, the periodicity that appeared in the recall
figures is not visible: the sample-based content summaries
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Figure 7.The KL divergence of content summaryO(D, t)
with respect to the “current” content summaryC(D), as a
function of timet and averaged over each databaseD in the
dataset.

contain many more “obsolete” words that do not appear in
the database anymore. Hence, a small number of words that
appear periodically cannot improve the results.
Kullback-Leibler Divergence: Precision and recall mea-
sure the accuracy and completeness of the content sum-
maries, basedonly on the presence of words in the sum-
maries. However, these metrics do not capture the accu-
racy of the frequency of each word as reported in the con-
tent summary. For this, theKullback-Leibler divergence[19]
of O(D, t) with respect toC(D) (KL for short) calculates
the “similarity” of the word frequencies in the old content
summaryO(D, t) against the “current” word frequencies in
C(D): KL =

∑
w∈Wo∩Wc

pc(w|D) · log pc(w|D)
po(w|D) , where

pc(w|D) = fc(w,D)P
w′∈Wo∩Wc

fc(w′,D) is the probability of ob-

servingw in C(D), andpo(w|D) = fo(w,D)P
w′∈Wo∩Wc

fo(w′,D)

is the probability of observingw in O(D, t). The KL di-
vergence metric takes values from 0 to infinity, with 0 indi-
cating that the two content summaries being compared are
equal. Intuitively, KL divergence measures how many bits
are necessary to encode the difference between the two dis-
tributions.

Figure 7 focuses on complete content summaries and
shows that the KL divergence of old content summaries
O(D, t) increases ast increases. This confirms the previ-
ously observed results and shows that the word frequency
distribution changes substantially over time. The curve la-
beled “Naive” in Figure8 shows the KL divergence for
sample-based content summaries of increasing age. (Again,
please ignore the other curves for now; we will explain their
meaning in Section5.) The KL divergence of the old sum-
maries increases with time, indicating that approximate con-
tent summaries become obsolete just as their complete coun-
terparts do.
Conclusion: We studied how content summaries of text da-
tabases evolve over time. We observed that the quality of
content summaries (both complete and sample-based) deteri-
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Figure 8.The KL divergence of “old” sample-based content
summaries with respect to the “current” ones, as a function of
the timeT between updates and averaged over each database
D in the dataset, for different scheduling policies (τ = 0.5).

orates as they become increasingly older. Therefore, it is im-
perative to have a policy for periodically updating the sum-
maries to reflect the current contents of the databases. We
turn now to this important issue and show how we can use
“survival analysis” for this purpose.

4 Predicting Content Summary Change Fre-
quency

In the previous section, we established the need for up-
dating database content summaries as the underlying text
databases change. Unfortunately, updating a content sum-
mary involves a non-trivial overhead: as discussed, the con-
tent summaries of hidden-web databases are constructed by
querying the databases, while the summaries of crawlable
databases are constructed by downloading and processing all
the database documents. Therefore, in order to avoid over-
loading the databases unnecessarily, it is important to sched-
ule updates carefully. In this section, we present our “sur-
vival analysis” modeling approach for decidingwhento up-
date content summaries. First, Sections4.1 and 4.2 review
the necessary background on survival analysis and the Cox
regression model from the literature [21]. Then, Section4.3
shows how we can use this material for our own scenario, to
model content summary changes.

4.1 Survival Analysis

Survival analysis is a collection of statistical techniques
that help predict the time until an event occurs [21]. These
methods were initially used to predict the time of survival
for patients under different treatments, hence the name “sur-
vival analysis.” For the same reason the “time until an event
occurs” is also calledsurvival time. For our purposes, the
survival time is the number of weekst such that an old da-
tabase content summaryO(D, t) is “sufficiently different”

from the current summaryC(D). (We formally define the
survival time of a database in Section4.3.)

Survival times can be modeled through asurvival function
S(t) that captures the probability that the survival time of an
object is greater than or equal tot. In the survival analysis
literature, the distribution ofS(t) is also described in terms
of a hazard functionh(t), which is the “rate of failure” at

time t, conditional on survival until timet: h(t) = −
dS(t)

dt

S(t) .
A common modeling choice forS(t) is theexponential dis-
tribution, whereS(t) = e−λt, and so the hazard function
is constant over time (h(t) = λ). A generalization of the
exponential distribution is theWeibull distribution, where
S(t) = e−λtγ

, and so the hazard function varies over time
(h(t) = λγtγ−1).6

We could use the exponential distribution to model the
survival time of a database. This choice is reinforced by re-
cent findings that indicate that the exponential function is a
good model to describe changes in webdocuments[1, 6].
However, we will see in Section4.3that the exponential dis-
tribution does not accurately describe changes for summaries
of webdatabases, so we will use the Weibull distribution in-
stead.

As described so far, the survival functionS(t) and the
hazard functionh(t) are used to describe a single database,
and are not “instantiated” since we do not know the values of
the configuring parameters. Of course, it is important to esti-
mate the parameters of the survival functionS(t) for each da-
tabase, to have a concrete, database-specific change model.
Even more imperative is to discoverpredictor variablesthat
can influence the survival times. For example, when ana-
lyzing the survival times of patients with heart disease, the
weight of a patient is a predictor variable and can influence
the survival time of the patient. Analogously, we want to pre-
dict survival times individually for each database, according
to its characteristics. Next, we describe the Cox proportional
hazards regression model that we use for this purpose.

4.2 Cox Proportional Hazards Regression Model

TheCox proportional hazards regression model[10] is a
technique widely used in statistics for discovering important
variables that influence survival times. It is a non-parametric
model, because it makes no assumptions about the nature or
shape of the hazard function. The only assumption is that the
logarithm of the underlying hazard rate is a linear7 function
of the predictor variables.

Let x be a predictor variable, andxA andxB be the val-
ues of that variable for two databasesA andB, respectively.
Under the Cox model, the hazard functionshA(t) andhB(t)

6The exponential distribution corresponds to the case whereγ = 1.
7The “linearity” or “proportionality” requirement is essentially a “mono-

tonicity” requirement (e.g., the higher the weight of a patient, the higher the
risk of heart attack). If a variable monotonically affects the hazard rate, then
an appropriate transformation (e.g.,log(·)) can make its effect linear.



can be expressed for databasesA andB as:

hA(t) = eβxAh0(t) ⇒ ln hA(t) = ln h0(t) + βxA (1a)

hB(t) = eβxBh0(t) ⇒ ln hB(t) = ln h0(t) + βxB (1b)

whereh0(t) is a baseline hazard function, common for all
the members of the population. The Cox model can be gen-
eralized forn predictor variables:log h(t) = log h0(t) +∑n

i=1 βixi, where thexi’s are the predictor variables, and
theβi’s are the model coefficients. The algorithm presented
by Cox [10] shows how to compute theβi values.

The Cox model, as presented so far, seems to solve the
same problem addressed by multiple regression. However,
the dependent variable (survival time) in our case is not nor-
mally distributed, but usually follows the exponential or the
Weibull distribution – a serious violation for ordinary multi-
ple regression. Another important distinction is the fact that
the Cox model effectively exploits incomplete or “censored”
data, from cases that “survived” the whole study period. Ex-
cluding these cases from the study would seriously affect the
result, introducing a strong bias in the resulting model. Those
observations are calledcensoredobservations and contain
only partial information, indicating thatthere was no failure
during the time of observation. The Cox model effectively
uses the information provided from censored cases. (For
more information, see [10].)

The Cox proportional hazards model is one of the most
general models for working with survival data, since it does
not assume any specific baseline hazard function. This model
allows the extraction of a “normalized” hazard functionh0(t)
that is not influenced by predictor variables. This allows for
easier generalization of the results, sinceh0(t) is not de-
pendent on the distribution of the predictor variables in the
dataset used to extracth0(t). The only requirement for the
applicability of Cox’s model is that the predictor variables
follow the “proportional hazard” (PH, or linearity) assump-
tion, which means that for two individual groupsA andB

the hazard ratiohA(t)
hB(t) is constant over time.

An interesting variation of the Cox model that overcomes
the PH assumption is thestratified Cox model[26], which
is used to account for variables that do not satisfy the pro-
portionality assumption. In this case, the variables that do
not satisfy the proportionality assumption are used to split
the dataset into different “strata.” Theβi Cox coefficients
remain the same across the different strata, but each stratum
now has different baseline functionsh0(t).

Next, we describe how we use the Cox regression model
to represent changes in text database content summaries.

4.3 Using Cox Regression to Model Content Sum-
mary Changes

Before using any survival analysis technique for our prob-
lem, we need to define “change.” A straightforward defini-
tion is that two content summariesC(D) andO(D, t) are

“different” when they are not identical. However, even a
small change in a single document in a database will proba-
bly result in a change in its content summary, but such change
is unlikely to be of importance for database selection. There-
fore, we relax this definition and say that two content sum-
maries are different whenKL > τ (see Section3.2 for the
definition of KL divergence), whereτ is a “change sensitiv-
ity” threshold.8 Higher values ofτ result in longer survival
times and the exact value ofτ should be selected based on the
characteristics of the database selection algorithm of choice.
We will see how we can effectively use the Cox model to
incorporateτ in our change model. Later, in Section5, we
show that we can define update schedules that adapt to the
chosen value ofτ .

Definition 3: Given a value of the change sensitivity thresh-
old τ > 0, the survival time of a databaseD at a point in
time –with associated “current” content summaryC(D)– is
the smallest timet for which the KL divergence ofO(D, t)
with respect toC(D) is greater thanτ .

Computing Survival Times: Using the study of Section3
as well as Definition3, we computed the survival time of
each content summary for different values of thresholdτ .
For some databases, we did not detect a change within the
period of the study. As explained in Section4.2, these “cen-
sored” cases are still useful since they provide evidence that
the content summary of a database with the given character-
isticsdid not changewithin the allotted time period and for
the thresholdτ of choice. The result of our study is a set
of survival times, some marked as censored, that we use as
input to the Cox regression model.

Feature Selection: After extracting the survival times, we
select the database features that we pass as parameters to the
Cox model. We use two sets of features: a set of “current”
features and a set of “evolution” features. Thecurrent fea-
tures are characteristics of the database at a given point in
time. For example, the topic of the database and its DNS do-
main arecurrent features of a database. On the other hand,
we extract theevolutionfeatures by observing how the data-
base changes over a (training) time period. For the remainder
of the discussion –and because of space constraints– we fo-
cus on the features for the important case of approximate,
sample-based content summaries. Analogous features can
be defined for crawlable databases, for which we can extract
complete summaries.

The initial set ofcurrent features that we used was:

• The thresholdτ .
8We use KL divergence for our change definition (as opposed to pre-

cision or recall) because KL depends on the whole word-frequency distri-
bution. As our later experiments show, an update policy derived from the
KL-based change definition improves not only the KL divergence but also
precision and recall.



• The logarithm of the estimated size of the database,
where we estimate the size of the database using the
“sample-resample” method from [25].

• The number of words in the current sampleĈ(D).

• The topic of each database, defined as the top level cat-
egory under which the database is classified in the Open
Directory. This is a categorical variable with 16 distinct
values (e.g., “Arts,” “Sports,” and so on). We encoded
this variable as a set of dummy binary variables: each
variable has the value 1 if the database is classified un-
der the corresponding category, and 0 otherwise.

• The domain of the database, which is a categorical vari-
able with five distinct values (com, org, edu, gov, misc).
We encoded this variable as a set of 5 binary variables.

To extract the set ofevolution features, we retrieved
sample-based content summaries from each database every
week over a period of 10 weeks. Then, for each database we
compared every pair ofapproximatesummaries that were ex-
tracted exactlyk weeks apart (i.e., on weekst andt + k) us-
ing the precision, recall, and KL divergence metrics. Specif-
ically, the features that we computed were:

• The average KL divergenceκ1, . . . , κ9 between sum-
maries extracted with time difference of1, . . . , 9 weeks.

• The average weighted and unweighted precision of
summaries extracted with time difference of1, . . . , 9
weeks.

• The average weighted and unweighted recall of sum-
maries extracted with time difference of1, . . . , 9 weeks.

After selecting the initial set of features, we trained the
Cox model using the variables indicated above. We validated
the results using leave-one-out cross validation.9 The results
of the initial run indicated that from thecurrent features, the
number of words and the topic of the database are not good
predictor variables, while from theevolutionfeatures, pre-
cision and recall are not good predictor variables; the KL
features are good predictors, and strongly and positively cor-
related with each other.
Given these results, we decided to drop the number of words
and the topic variables from thecurrent set, keeping only
the thresholdτ , the database size, and the domain. Also, we
dropped the recall and precision features from theevolution
set, keeping only theκ1 feature: given its presence, features
κ2 throughκ9 were largely redundant. Furthermore, we re-
duced the training time from 10 to three weeks. To examine
whether any of the selected features –other than thresholdτ ,
which we always keep– are redundant, we trained Cox using
(a) size andτ ; (b) κ1 and τ ; and (c)κ1, size, andτ . We
describe our findings next.

9Since each database generates multiple survival times, we leave out one
databaseat a time for the cross-validation.

Features βs βκ βτ

size,τ 0.179 - -1.313
κ1, τ - 8.3 -1.308

κ1, size,τ 0.094 6.762 -1.305

Table 3.The coefficients of the Cox model, when trained for
various sets of features.

Training the Cox Model: After the initial feature selec-
tion, we trained the Cox model again. The results indicated
that all the features that we had selected are good predic-
tor variables10 and strongly influence the survival time of the
extracted summaries. However, the domain variable did not
satisfy the proportionality assumption, which is required by
the Cox model (see Section4.2): the hazard ratio between
two domains was not constant over time. Hence, we resorted
to thestratified Cox model, stratifying on domain.11

The result of the training was a set of coefficientsβs, βκ,
andβτ for features size,κ1, andτ , respectively. We show
the Cox coefficients that we obtained in Table3. The pos-
itive values ofβs andβκ indicate that larger databases are
more likely to change than smaller ones and that databases
that changed during training are more likely to change in the
future than those that did not change. In contrast, the nega-
tive value forβτ shows that –not surprisingly– higher values
of τ result in longer survival times for content summaries.

Given the results of the analysis, for two databasesD1

andD2 from the same domain, we have:

ln S1(t) = exp(βs ln(|D1|) + βκκ11 + βτ τ1) · ln S0(t)
ln S2(t) = exp(βs ln(|D2|) + βκκ12 + βτ τ2) · ln S0(t)

whereS0(t) is the baseline survival function for the respec-
tive domain. The baseline survival function corresponds to a
“baseline” databaseD with size|D| = 1 (i.e., ln(|D|) = 0),
κ1 = 0, andτ = 0.

Under the Cox model, the returned baseline survival func-
tions remain unspecified and are defined only by a set of val-
uesS0(t1), S0(t2), . . . , S0(tn). In our experiments, we had
five baseline survival functions, one for each domain (i.e.,
com, edu, org, gov, misc). To fit the baseline survival func-
tions, we assumed that they follow the Weibull distribution
(see Section4.1), which has the general formS(t) = e−λtγ

.
We applied curve fitting using a least-squares method (in
particular the Levenberg-Marquardt method [22]) to esti-
mate the parameters of the Weibull distribution for each do-
main. For all estimates, the statistical significance was at the
0.001% level. Table4 summarizes the results.

An interesting result is that the survival functions do
not follow the exponential distribution (γ = 1). Previous
studies [6] indicated that individual webdocumentshave

10For all models, the statistical significance is at the 0.001% level accord-
ing to the Wald statistic [21].

11This meant that we had to compute separate baseline hazard functions
for each domain.



Features Domain λdom γdom

com 0.0211 0.844
edu 0.0392 0.578

size,τ gov 0.0193 0.701
misc 0.0163 1.072
org 0.0239 0.723
com 0.0320 0.886
edu 0.0774 0.576

κ1, τ gov 0.0245 0.795
misc 0.0500 1.014
org 0.0542 0.715
com 0.0180 0.901
edu 0.0205 0.585

κ1, size,τ gov 0.0393 0.780
misc 0.0236 1.050
org 0.0274 0.724

Table 4.The parameters for the baseline survival functions
for the five domains. The baseline survival functions describe
the survival time of a databaseD in each domain with size
|D| = 1 (ln(|D|) = 0), with average distance between the
sample summariesKL = 0 and for thresholdτ = 0.

lifetimes that follow the exponential distribution. Our re-
sults, though, indicate that content summaries, with aggre-
gate statistics aboutsets of documents, change more slowly.

Modeling Conclusions: We have presented a statistical
analysis of the survival times of database content summaries.
We used Cox regression analysis to examine the effect of dif-
ferent variables in the survival time of database content sum-
maries and showed that the survival times of content sum-
maries follow the Weibull distribution, in most cases with
γ < 1 (i.e., they tend to remain unchanged for longer time
periods as their age increases). We summarize our results in
the following definition:

Definition 4: The functionSi(t) that gives the survival func-
tion for a databaseDi is:

Si(t) = exp (−λit
γdom) , with (2a)

λi = λdom

(|Di|βs · exp (βκκ1i) · exp (βτ τi)
)

(2b)

where|Di| is the size of the database,κ1i is the KL diver-
gence of the samples obtained during the training period,βs,
βκ, andβτ are the Cox coefficients from Table3, λdom and
γdom are the domain-specific constants from Table4, andτi

is the value of the change threshold forDi (Definition3).

Definition4 provides a concrete change model for a data-
baseD that is specific to the database characteristics and to
the change sensitivity, as controlled by the thresholdτ . An
interesting result is that summaries of large databases change
more often than those of small databases, as indicated by the
positive value ofβs, which corresponds to the database size.
Figure9 shows the shape ofS(t) for different domains, for
a hypothetical databaseD with |D| = 1000 andκ1 = 0.1,
and forτ = 0.5. This figure shows that content summaries
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Figure 9.The survival functionS(t) for different domains
(|D| = 1, 000, τ = 0.5, κ1 = 0.1).

tend to vary substantially across domains (e.g., compare the
“misc” curve against the “gov” curve).

5 Scheduling Updates

So far, we have described how to compute the survival
functionS(t) for a text database. In this section, we describe
how we can exploitS(t) to schedule database content sum-
mary updates and contact each database only when neces-
sary. Specifically, we first describe the theory behind our
scheduling policy (Section5.1). Then, we present the exper-
imental evaluation of our policy (Section5.2), which shows
that sophisticated update scheduling can improve the quality
of the extracted content summaries in a resource-restricted
environment.

5.1 Deriving an Update Policy

A metasearcher may provide access to hundreds or thou-
sands of databases and operate under limited network and
computational resources. To optimize the overall quality of
the content summaries, the metasearcher has to carefully de-
cide when to update each of the summaries, so that they are
acceptably up to date during query processing.

To model the constraint on the workload that a meta-
searcher might handle, we defineF as the average number of
content summary updates that the metasearcher can perform
in a week. Then, under aNaivestrategy that allocates up-
dates to databases uniformly,T = n

F represents the average
number of weeks between two updates of a database, where
n is the total number of databases. For example,T = 2
weeks means that the metasearcher can update the content
summary of each database every two weeks, on average.

As we have seen in Section4.3, the rate of change of
the database contents may vary drastically from database to
database, so theNaive strategy above is bound to allocate
updates to databases suboptimally. Thus, the goal of our
update scheduling is to determine the update frequencyfi



Di λi T = 40 T = 10
tomshardware.com 0.088 46 weeks 5 weeks
usps.com 0.023 34 weeks 12 weeks

Table 5.Optimal content-summary update frequencies for
two databases

for each databaseDi individually, in such a way that the
function

∑n
i=1 Si(t) is maximized, while at the same time

not exceeding the number of updates allowed. In this case,
we maximize the average probability that the content sum-
maries are up to date. One complication is that the sur-
vival function Si(t) changes its value over time, so differ-
ent update scheduling policies may be considered “optimal”
depending on whenSi(t) is measured. To address this is-
sue, we assume that the metasearcher wants to maximize
the time-averagedvalue of the survival function, given as:
S̄ = limt→∞ 1

t

∫ t

0

∑n
i=1 Si(t)dt. This formulation of the

scheduling problem is similar to that in [7] for the problem
of keeping the index of a search engine up to date. In short,
we formulate our goal as the following optimization prob-
lem.

Problem 1: Find the optimal update frequencyfi for each
databaseDi such thatS̄ is maximized under the constraint∑n

i=1 fi = n
T .

Given the analytical forms of theSi(t) functions in the pre-
vious sections, we can solve this optimization problem us-
ing theLagrange-multiplier method(as shown for example
in [7, 24]). Cho et al. [7] investigated a special case of this
optimization problem whenγ = 1 (i.e., when the rate of
change is constant over time), and observed the following:

1. Whenλi (which can be interpreted as denoting “how
often the content summary changes”) is small relative
to the constraintF , the optimal revisit frequencyfi be-
comes larger asλi grows larger.

2. Whenλi is large compared to the resource constraintF ,
the optimal revisit frequencyfi becomes smaller asλi

grows larger.

In our solution to the above generalized optimization
problem, we also observed similar trends even whenγ 6= 1
(i.e., when the rate of change varies over time). As an exam-
ple, in Table5 we show the optimal update frequencies for
the content summaries of two databases,tomshardware.
com and usps.com . We can see that, whenT is small
(T = 10), we updatetomshardware.com more often
thanusps.com , sinceλi is larger fortomshardware.
com. However, whenT is large (T = 40) the optimal update
frequencies are reversed. The scheduling algorithm decides
thattomshardware.com changes “too frequently” and is
not beneficial to allocate more resources to try to keep it up
to date. Therefore, the algorithm decides to update the con-
tent summary fromtomshardware.com less frequently,

and instead focus on databases likeusps.com that can be
kept up to date. This trend holds across domains and across
values ofγ.

5.2 Experimental Results

In Section4.3, we showed how to compute the form and
parameters of the survival functionSi(t), which measures
the probability that the summary of a databaseDi is up to
datet weeks after it was computed. Based on Cox’s model,
we derived a variety of models that computeSi(t) based on
three different sets of features (see Tables3 and4). Now, we
use these models to devise three update policies, using the
approach from Section5.1and the following feature sets:

• κ1, size,τ : We use all the available features.
• size andτ : We do not use the history of the database,

i.e., we ignore the evolution featureκ1 and we use only
the database size and the change sensitivity thresholdτ .

• κ1 andτ : We use only the history of the database and
the thresholdτ . We consider this policy to examine
whether we can work with databases without estimat-
ing their size.12

We also consider theNaivepolicy, discussed above, where
we uniformly update all summaries everyT weeks.13

Quality of Content Summaries under Different Policies:
We examine the performance of each updating policy, by
measuring the average (weighted and unweighted) precision
and recall, and the average KL divergence of the generated
approximatesummaries. We consider different values ofT ,
whereT is the average number of weeks between updates.

Figures 2 and 3 show the average weighted and un-
weighted precision of the approximate summaries, obtained
under the scheduling policies that we consider. The results
indicate that, by using any of our policies, we can keep the
recall metrics almost stable, independently of the resource
constraints. Figures5 and6 show the average weighted and
unweighted precision of the approximate summaries, respec-
tively. Again, our three scheduling policies demonstrate sim-
ilar performance, and they are all significantly better than the
Naivepolicy. The difference with theNaivepolicy is statis-
tically significant, even when the summaries are updated rel-
atively frequently (i.e., even for small values ofT ). Finally,
Figure8 shows that our updating policies keep the average
KL divergence of the approximate summaries almost con-
stant even for a large number of weeksT between updates.

An interesting observation is that the three policies that we
propose demonstrate minimal differences in performance,

12The size estimation method that we use [25] relies on the database re-
turning the number of matches for each query. This method becomes prob-
lematic for databases that do not report such numbers with the query results.

13Due to space constraints, the results presented in this paper focus on
sample-based content summaries. We also ran analogous experiments for
the complete content summaries, and the results were similar.
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Figure 10.The precision of the updates performed by the
different scheduling algorithms, as a function of the average
time between updatesT and forτ = 0.5.

and these differences are not statistically significant. Addi-
tionally, all techniques are significantly better than theNaive
policy. This indicates that it is possible to work with a
smaller set of features, without decreasing performance. For
example, we may ignore the evolution featureκ1 and avoid
computing the history of a database, which involves frequent
sampling of the database for a (small) period of time.

Precision of Update Operations: To measure how “pre-
cise” the updates scheduled by our policies are, we define an
update as “precise” if it contacts a database when the new
summary of the database is different from the existing sum-
mary according to the definition of change in Section4.3. We
measured the precision of the update operations as the ratio
of the precise updates over the total number of updates per-
formed. Figure10 shows the precision results as a function
of T and forτ = 0.5. For this value ofτ and for the data-
bases in our dataset, very low values ofT (i.e.,T < 10) are
unnecessary, since then the databases are contacted too often
and before they have changed sufficiently. A decrease in the
value ofτ cause the curves to “move” towards the left: the
summaries change more frequently and then the updates be-
come more precise. For example, forτ = 0.25 andT = 10,
precision is approximately 40%, while forT = 25 it is ap-
proximately 80%.

Interestingly, the update precision can be predicted ana-
lytically, using the target function̄S described in Section5.1.
The average probability of survival (our target function) cor-
responds in principle to the percentage of non-precise up-
dates. This result is intuitive, since our target function essen-
tially encodes the probability that the summary of the data-
base has changed. Therefore, during scheduling, it is possi-
ble to select a value ofT that achieves (approximately) the
desired update precision.

Conclusion: As a general conclusion, we have observed
that our scheduling policies allow for better quality of the

extracted content summaries, even under strict constraints
on the allowable update frequency. Also, our modeling ap-
proach allows us to predict the precision of our update oper-
ations, in turn allowing the metasearcher to tune the update
frequency and efficiently keep the content summaries up to
date.

6 Related Work

We are not aware of prior work to experimentally measure
database content summary evolution over time or to schedule
updates to the content summaries to maintain their freshness.
However, several previous studies have focused on various
aspects of the evolution of the web and of the related prob-
lem of web crawling. Ntoulas et al. [23] studied the changes
of individual web pages, using the same dataset as we did in
this paper. Ntoulas et al. concluded that 5% of new content
(measured in “shingles”) is introduced in an average week in
all pages as a whole. Additionally, [23] observed a strong
correlation between the past and the future degrees of the
changes of a web page and showed that this correlation might
be used to predict the future changes of a page. For exam-
ple, by measuring how much a page changed in the past one
week, we might predict how much the page would change in
the next one week quite accurately. In this paper (Section3),
we investigated this high-level idea more formally through
survival analysis and modeled the change behavior of web
databases using the Cox proportional hazard model. This
model was then used for designing the optimal scheduling
algorithm for summary updates. Lim et al. [20] and Fetterly
et al. [13] presented pioneer measurements of the degree of
change of web pages over time, where change was measured
using the edit distance [20] or the number of changed “shin-
gles” [13] over successive versions of the web pages. Other
studies of web evolution include [1, 5, 27, 11, 2], and focus
on issues that are largely orthogonal to our work, such as
page modification rates and times, estimation of the change
frequencies for the web pages, and so on.

Web crawling has attracted a substantial amount of work
over the last few years. In particular, references [7, 9, 12, 8]
study how a crawler should download pages to maintain
its local copy of the web up to date. Assuming that the
crawler knows the exact change frequencies of pages, ref-
erences [7, 9] present an optimal page downloading algo-
rithm, while [12] proposes an algorithm based on linear pro-
gramming. Cho and Ntoulas [8] employ sampling to detect
changed pages. All this work on web crawling mainly fo-
cuses on maintaining a local copy of the web as up-to-date as
possible, which requires maximizing the fraction of remote
pages whose local copy is up to date. Our goal is different:
we want to maximize the freshness of the content summaries
that describe the various web sites, so that we produce more
accurate database selection decisions.

Olston et al. [24] proposed a new algorithm for cache syn-



chronization in which data sources notify caches of impor-
tant changes. Cho et al. [6, 7] proposed optimal algorithms
for web-page cache synchronization. The definition of “di-
vergence” or “change” in [24] is quite general and can be
applied to our context. Their high-level optimization goal
is also similar to ours. However, the proposed push model
might not be applicable when data sources are “uncooper-
ative” and do not inform others of their changes as is the
case on the web. The algorithms proposed in [6, 7] are
proven to be optimal when web-page changes follow a Pois-
son process. Unfortunately, the changes of database content
summaries do not follow a Poisson process, and our update
scheduling algorithm was derived based on a more general
assumption.

7 Conclusions

We presented a study –over 152 real web databases– of the
effect of time on the database content summaries on which
metasearchers rely to select appropriate databases where to
evaluate keyword queries. Predictably, the quality of the
content summaries deteriorates over time as the underlying
databases change, which highlights the importance of up-
date strategies for refreshing the content summaries. We
described how to use survival analysis techniques, in par-
ticular how to exploit the Cox proportional hazards regres-
sion model, for this update problem. We showed that the
change history of a database can be used to predict the rate
of change of its content summary in the future, and that sum-
maries of larger databases tend to change faster than sum-
maries of smaller databases. Finally, based on the results of
our analysis, we suggested update strategies that work well
in a resource-constrained environment. Our techniques adapt
to the change sensitivity desired for each database, and con-
tact databases selectively –as needed– to keep the summaries
up to date while not exceeding the resource constraints.
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