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Abstract ple statistics such as the number of documents in the data-
base. These summaries, which provide sufficient informa-

Large amounts of (often valuable) information are stored tion to decide which databases are the most promising for
in web-accessible text databases. “Metasearchers” pro- evaluating a given query, are the focus of this paper.
vide unified interfaces to query multiple such databases at So far, database selection research has largely assumed
once. For efficiency, metasearchers rely on succinct statisti-that databases are static. However, real-life databases are not
cal summaries of the database contents to select the best daalways static and the statistical summaries that describe their
tabases for each query. So far, database selection researcttontents need to be updated periodically to reflect database
has largely assumed that databases are static, so the associeontent changes. Defining schedules for updating the data-
ated statistical summaries do not need to change over timebase content summaries is a challenging task, because the
However, databases are rarely static and the statistical sum-rate of change of the database contents might vary drastically
maries that describe their contents need to be updated pefrom database to database. Furthermore, finding appropriate
riodically to reflect content changes. In this paper, we first such schedules is important so that content summaries are
report the results of a study showing how the content sum-kept up to date but without overloading databases unneces-
maries of 152 real web databases evolved over a period ofsarily to regenerate summaries that are already (at least close
52 weeks. Then, we show how to use “survival analysis” to) up to date.
techniques in general, and Cox’s proportional hazards re-  In this paper, we start by presenting an extensive study
gression in particular, to model database changes over timeon how the content of 152 real web databases evolved over
and predict when we should update each content summarya period of 52 weeks. Given that small changes in the da-
Finally, we exploit our change model to devise update sched-tabases might not necessarily be reflected in the (relatively
ules that keep the summaries up to date by contacting data-coarse) content summaries, we examined how these sum-
bases only when needed, and then we evaluate the quality ofmaries change over time. Our study shows that summaries
our schedules experimentally over real web databases. indeed change and that old summaries eventually become ob-
solete, which then calls for a content summary update strat-
egy. To model content changes, we resort to the field of
statistics named “survival analysis.” Using the Cox propor-
tional hazards regression mod&Q], we show that database
) . ) ) characteristics can be used to predict the pattern of change of
_ A substantial amount Qf information on the We_b is stored the summaries. Finally, we exploit our change model to de-
in databases and is not indexed by search engines such &g, summary update strategies that work well even under
Google. One way to provide one-stop access to the informa-, resqrce-constrained environment. Our strategies attempt
tion in text database; IS throughetasgarcherSNhlch can to contact the databases only when needed, thus minimiz-
be used to query multiple databases simultaneouslydahe g the communication with the databases. To conclude the
tabase selectiostep of the metasearching process, in which is.ission, we report the results of an extensive experimen-

the best databases to search for a given query are identified, 831 evaluation over our 152 real web databases, showing the
critical for efficiency, since a metasearcher typically provides effectiveness of our update strategies

access to a Iarge numbgr of databases. The state-_of_—the—art In brief, the contributions of this paper are as follows:
database selection algorithms rely on aggregate statistics that

characterize the database contents. These statistics, which ® In Sectiori3, we report the results of our extensive ex-
are known agontent summarigi 5| (or, alternatively, ase- perimental study on how the content summaries of 152
source descriptionfg]), usually include thérequencyof the real web databases evolved over a period of 52 weeks.
words that appear in the database, plus perhaps other sim-

1 Introduction

e In Sectiord, we use survival analysis techniques to dis-
*Columbia University cover database properties that help_predict the rate of
TUniversity of California, Los Angeles change of database content summaries.




Dy, with [Dy \=51500 D2, with |D2|:5rz)30 only provide access to their documents via querying; further-
w__ f(w, D) w__ f(w, Do) more, no protocol is widely adopted for web-accessible da-
algorithm 7,210 algorithm 2 .

cassini 5 cassini 3,260 tabases to export metadata about their contents. Hence, other
saturn 2 saturn 3,730 solutions have been proposed to automate the construction

of content summaries from hidden-web databases that do not
export such information.

Callan and Connell4] presented an algorithm for build-
ing (approximate) content summaries of hidden-web text da-
tabases via document sampling. This algorithm first extracts
a small document sample (of about 300 documents) from a
given databasé via single-word queries. The document
'sample is then treated as a small database whose content
summary is used to approximate thatofs. (Alternative
query-based techniqued?] use different querying strate-
gies.) In this paper, we use the document sampling and con-
tent summary approximation strategy frodj,[and we use
2 Background the “hat” notation to refer to an approximate content sum-

mary:
ground for ths paper, We frst defin the noton of a-content DEATIon 2 Theapproximate, sample-based content sum-
.y : . : maryC (D) of a databaseD consists of:

summary” for a text database and briefly summarize how da- ) -
tabase selection algorithms exploit these summariesT8e[ © An estimatgD| of the numbe[ of documents Ip, and
for an expanded version of this discussion). Then, we review e For each wordw, an estimatef (w, D) of f(w, D).
how to obtain database content summaries via querying.

Table 1.A fragment of the content summaries of two data-
bases.

e In Sectiorf, we show how to update content summaries
by exploiting our change model. The resulting strate-
gies attempt to contact the databases only when strictly
needed, thus avoiding wasting resources unnecessarily.

Finally, Sectiorig discusses related work, while Sectidn
provides further discussion and concludes the paper.

TheC(D) estimates are computed from a sample of the doc-

Definition 1: Thecontent summary'(D) of a databaseD uments inD as described in4.

consists of: Next, we present the results of our study that examined
e The actual number of documentsiin | D|, and how content summaries of 152 text databases changed over

e For each wordw, the number oD documents (w, D) a period of 52 weeks.

that includew.

. 3 Studying Content Changes of Real Text Da-
For efficiency, a metasearcher should evaluate a query tabases

only on a relatively small number of databases that are rel-

evant to the query. The database selection component of a . ,
metasearcher typically makes the selection decisions using ©ON€ Of the goals of this paper is to study how text database
the information in the content summaries, as the following changes are reflected over time in the database content sum-

example illustrates: maries. First, we discuss our dataset in detail (Se@idn

Then, we report our study of the effect of database changes
on the content summaries (Secti@®). The conclusions of
this study will be critical later in the paper, when we discuss
how to model content summary change patterns.

Example I Consider the querfcassini saturnfnd two da-
tabased); andD,. Based on the content summaries of these
databases (Tab[@), a database selection algorithm may in-
fer that D, is a promising database for the query, since each
query word appears in many, documents. In contrast),

will probably be deemed not as relevant, since it contains
only up to a handful of documents with each query word.

3.1 Data for our Study

Our study and experiments involved 152 searchable data-
bases, whose contents were downloaded weekly from Oc-
Database selection algorithms work best when the con-tober 2002 through October 2003. These databases have

tent summaries are accurate and up to date. The most desifréviously been used in a study of the evolution of web
able scenario is when each database either (1) is crawlable?@9es 3. The databases were —roughly— the five top-
so that we can (periodically) download its contents and gen-fanked We:\b sites in a'sub.set of the topical categories pf the
erate content summaries, or (2) exports these content sum&00gie D!rectorﬁ which, in turn, reuses the hierarchical
maries directly and reliably (e.g., using a protocol such as classification of web sites from the Open Directory Prdfect.
STARTS [14]). Unfortunately, the so-calledidden-wetda- 3nttp://directory.google.com

tabase<1§], which abound on the web, are not crawlable and  “http://7dmoz.org



http://directory.google.com
http://dmoz.org

Domain | com edu gov | misc org 1.00
% 47.3% | 13.1% | 17.1% | 6.8% | 15.7%

Table 2.Distribution of domains in our dataset. _ \X\X\X\I\
0.90 S
(Please refer td23] for more details on the rationale be- T X{

hind the choice of these web sites.) From these web sites,.s T

we picked only those sites that provided a search interface II

over their contents, which are needed to generate sampleeso =

based content summaries (see Sedihn Also, since we TEe

wanted to study content changes, we only selected database’s® ~"Weighted Recall = T
with crawlable content, so that every week we can retrieve T 555 Contdence Inerva sl

the databases’ full contents using a crawler. A complete®” s © 1 2 2 w© 3 w0 4 s
list of the sites included in our experiments is available at  Figure 1.The recall of content summarg (D, t) with re-
http://webarchive.cs.ucla.edu/ . Tablel2 shows the spect to the “current” content summaty( D), as a function
breakdown of web sites in the set by high-level DNS do-  of timet and averaged over each databasi the dataset.
main, where themisc category represents a variety of rela-
tively small domains (e.gmil, uk, dk, andjp).

We downloaded the contents of the 152 web sites every
week over one year, up to a maximum of 200,000 pages
per web site at a time. (Only four web sites were af-
fected by this efficiency-motivated page-download limita-
tion: (hti.umich.edu ,leonline.com | [pbs.org |, and
intelihealth.com .) Each weekly snapshot consiste
of three to five million pages, or around 65 GB before com-
pression, for a total over one year of almost 3.3 TB of history
data.

We treat each web site as a database, and created —ea
week- the complete content summaryD) of each data-

and keep it unchanged foerweeks. In the following defini-
tions, W, is the set of words that appear @D, t), while

W, is the set of words that appearGh{ D). Valuesf,(w, D)

and f.(w, D) denote the document frequency of wardn
O(D,t) andC(D), respectively.

d Recall: An important property of the content summary of
a database is its coverage of the current database vocabu-
lary. An up-to-date and complete content summary always
has perfect recall, but an old summary might not, since it
éﬂight not include, for example, words that appear only in
new database documents. Theweighted recall (ur)of

baseD by downloading and processing all of its documents. O(D, 1) with respect tC(D) is the fract|0_n of words in the
current summary that are also present in the old summary:

This data allowed us to study how the complete content sum- WO | _ = )

maries of the databases evolved over time. In addition, we%" = .| This metric gives equal weight to all words
also studied the evolution over time approximatecontent ~ and takes values from O to 1, with a value of 1 meaning that
summaries. For this, we used query-based sampling (seéhe old content summary contains all the words that appear

Sectior) to create every week an approximate content sum-in the current content summary, and a value of 0 denoting no
maryC(D) of each databasB® overlap between the summaries. An alternative recall met-

ric, which gives higher weight to more frequent terms, is
the wejghted recall (wr)of O(D,t) with respect toC'(D):

(w,D . -
wr = PDEWUOW; {w(%) ). We will use analogous definitions
weW, J e\

We now turn to measuring how the database content sum-of unweighted and weighted recall for a sample-based con-
maries —both the complete and approximate versions— evolvéent summanO(D, t) of databaseD obtainedt weeks into
over time. For this, we resort to a number of metrics of con- the past with respect to the current content sumnaaiip)
tent summary similarity and quality from the literature. We for the same database.
discuss these metrics and the results for the 152 web data- Figurelllfocuses on complete content summaries. Specif-
bases next. ically, this figure shows the weighted and unweighted re-

For our discussion, we refer to the “current” and complete call of t-week-old summaries with respect to the “current”
content summary of a databaBeasC (D), while O(D, t) is summary, as a function df and averaged over every pos-
the complete summary dp as oft weeks into the past. The sible choice of “current” summary. In FiguB(as well as
O(D,t) summary can be considered as an (old) approxima-in all subsequent figures), we report our results with a 95%
tion of the (current)C'(D) summary, simulating the realis- confidence interval. Predictably, both the weighted and un-
tic scenario where we extract a summary for a datatiase weighted recall values decreaset ascreases. For example,
on average, 1-week-old summaries have unweighted recall of
4 . . 91%, while older, 25-week-old summaries have unweighted
create five approximate content summaries of each database each week, in . . ;
turn derived from five document samples, and report the various metrics in €Call of about 80%. The weighted recall figures are higher,
our study as averages over these five summaries. as expected, but still significantly less than 1: this indicates

3.2 Measuring Content Summary Change

5To reduce the effect of sampling randomness in our experiments, we
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Figure 4.The precision of content summa®/( D, ¢) with re-
spect to the “current” content summagy D), as a function
of timet and averaged over each databasi the dataset.

Figure 2.The weighted recall of “old” sample-based content
summaries with respect to the “current” ones, as a function of
the timeT between updates and averaged over each database
D in the dataset, for different scheduling policies=£ 0.5).

03 remain stable, and then, surprisingly, increase, so that a 50-
0340 week old content summary has higher recall than a 20-week
= j\ ﬁ old one, for gxample. This unexpected result i_s due to an in-
8 P P . "_i ~ RV KT teresting periodicity: some events (e.g., “Christmas,” “Hal-
3 R { ' 4 loween”) appear at the same time every year, allowing sum-
§; 0330 N 17 maries that are close to being one year old to have higher
£ K tau AN //f recall than their younger counterparts. This effect is only vis-
-+ K, size, tau \}\ . . 17 ible in the sample-based summaries that cover only a small
0.325 Size; tau T o . . .
-~ Naive j—\—i———f 1 fraction of the database vocabulary, and is not observed in
0,500 | - %,95% Conidence Interval ‘ ‘ ‘ ‘ the complete sur_nmaries, perhaps becguse they are larger and
0 5 10 15 20 25 30 35 40 45 50 are not substantially affected by a relatively small number of
T words.
Figure 3.The unweighted recall of “old” sample-based con-  precision: Another important property of the content sum-

tent summaries with respect to the “current” ones, as a func-
tion of the timeT between updates and averaged over each
databaseD in the dataset, for different scheduling policies
(r =0.5).

mary of a database is the precision of the summary vocabu-
lary. Up-to-date content summaries contain only words that
appear in the database, while older summaries might include
obsolete words that appeared only in deleted documents. The
unweighted precision (umf O(D, t) with respect taC'(D)
that the newly introduced words have low frequencies, butis the fraction of words in the old content summary that
constitute a substantial fraction of the database vocabularysti" appear in the current summaéy(D): up = ‘WIV;VIV‘
as well. : L . . o
TP — This metric, likeunweighted recall gives equal weight to

The curves labeled "Naive n Figur@andd show the all words and takes ve?lues from Ogto 1, veith a va?ue of 1
corresponding results for approximate, sample-based Contenrtneaning that the old content summary only contains words
summaries. (Please ignore the other curves for now; we will
explain their meaning in Sectidd) As discussed in Sec-

that are still in the current content summary, and a value of

tion[_Z, hidden-web text databgses, which are not cra_wlable,gviegfetggi On: r%\é?:ilipv\?ﬁ?;l]e_ejr&st?zs ';Ir:n tr;gilgeks&e'(l;hrzglit”erna
require that C(_)ntent summaries be appr_omr_ngted Via SaM- atric— gives higher weight to more frequent terms, is the
pling, so studying sample-based summaries is important. A.‘Sweightgd precision (wpdf O(D, ¢) with respect toC(D):
expected, the recall values for the sample-based summaries Wwonw, fo(w,D) L
are substantially smaller than the ones for the complete sum¥P = W We use analogous definitions of
maries. Also, the recall values of the sample-based sum-unweighted and weighted precision for a sample-based con-
maries do not change much over time, because the sampletent summanyO(D, t) of a databasé) with respect to the
based summaries are not too accurate to start with, and do natorrect content summay (D).
suffer a significant drop in recall over time. This shows that  Figureldlfocuses on complete content summaries. Specif-
the inherent incompleteness of the sample-based summarieigally, this figure shows the weighted and unweighted preci-
“prevails” over the incompleteness introduced by time. sion of t-week-old summaries with respect to the “current”

Another interesting observation is that recall figures ini- summary, as a function afand averaged over every pos-
tially decrease (slightly) for approximately 20 weeks, then sible choice of “current” summary. Predictably, both the
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Figure 5.The weighted precision of “old” sample-based con-
tent summaries with respect to the “current” ones, as a func-
tion of the timeT between updates and averaged over each
databaseD in the dataset, for different scheduling policies
(r =0.5).
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Figure 6.The unweighted precision of “old” sample-based
content summaries with respect to the “current” ones, as a
function of the timeT" between updates and averaged over
each databasP in the dataset, for different scheduling poli-
cies ¢ = 0.5).

weighted and unweighted precision values decreageras
creases. For example, on average, a 48-week-old summarghows that the KL divergence of old content summaries
has unweighted precision of 70%, showing that 30% of the O(D, t) increases as increases. This confirms the previ-

words in the old content summary do not appear in the data-ously observed results and shows that the word frequency
base anymore.

The curves labeled “Naive” in Figur@and[@ show the
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Figure 7.The KL divergence of content summaéy(D, t)

with respect to the “current” content summaty D), as a
function of timet and averaged over each databasa the
dataset.
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contain many more “obsolete” words that do not appear in
the database anymore. Hence, a small number of words that
appear periodically cannot improve the results.
Kullback-Leibler Divergence: Precision and recall mea-
sure the accuracy and completeness of the content sum-
maries, basednly on the presence of words in the sum-
maries. However, these metrics do not capture the accu-
racy of the frequency of each word as reported in the con-
tent summary. For this, theullback-Leibler divergencfl9]

of O(D,t) with respect toC'(D) (KL for short) calculates

the “similarity” of the word frequencies in the old content
summaryO(D, t) against the “current” word frequencies in

C(D): KL = ¥ cw,aw, Pe(w|D) - log 2=(i7%, where

- fe(w,D) i il -

pe(w|D) = DWEWWWC 7oy IS the probability of ob
fo(w,D)

servingw in C(D), andp,(w|D) = P— 7. D)
w/eWonNWe Jo )

is the probability of observingy in O(D,t). The KL di-
vergence metric takes values from O to infinity, with O indi-
cating that the two content summaries being compared are
equal. Intuitively, KL divergence measures how many bits
are necessary to encode the difference between the two dis-
tributions.

Figure[7 focuses on complete content summaries and

distribution changes substantially over time. The curve la-
beled “Naive” in Figure shows the KL divergence for

corresponding results for approximate, sample-based contensample-based content summaries of increasing age. (Again,
summaries. (Again, please ignore the other curves for now;please ignore the other curves for now; we will explain their
we will explain their meaning in Sectid®) As expected, the
precision values decrease over time, and do so much fastemaries increases with time, indicating that approximate con-
than their corresponding recall values (Figi@end3). For
example, almost 20% of the words in a 15-week-old sample-terparts do.

based content summary are absent from the database. For tHeéonclusion: We studied how content summaries of text da-
precision results, the periodicity that appeared in the recalltabases evolve over time. We observed that the quality of
figures is not visible: the sample-based content summariescontent summaries (both complete and sample-based) deteri-

meaning in Sectio®l) The KL divergence of the old sum-

tent summaries become obsolete just as their complete coun-



] from the current summarg'(D). (We formally define the

R T . survival time of a database in Sectidr3)

0.70 [ - 77 Size. tau ] Survival times can be modeled througblavival function

0,68 [ 27 Conitonee Interval <l S(t) that captures the probability that the survival time of an
- object is greater than or equal to In the survival analysis

- literature, the distribution of(t) is also described in terms

= T T of a hazard functioni(t), which is the “rate of failure” at
L = . . . _— as(t)
- N R 1 time ¢, conditional on survival until time: h(t) = — SO
A common modeling choice fa$(t) is theexponential dis-
tribution, where S(t) = e~*, and so the hazard function
o8y 5 10 15 20 25 30 35 40 45 50 is constant over tlmeh((t) = )\) A generalization of the

. . i exponential distribution is th&Veibull distribution where
Figure 8.The KL divergence of “old” sample-based content Y ; ; ;
S « ” : St) =e , and so the hazard function varies over time
summaries with respect to the “current” ones, as a function of (h(t) = A tV*l)
= "Y .

the timeT between updates and averaged over each database . o
D in the dataset, for different scheduling policies 0.5). We could use the exponential distribution to model the

survival time of a database. This choice is reinforced by re-
) i . . centfindings that indicate that the exponential function is a
orates as they become increasingly older. Therefore, itis 'm'good model to describe changes in wacumentd, 6].
pera'\tive to have a policy for periodically updating the sum- However, we will see in Sectidh.3that the exponential dis-
maries to reflect the current contents of the databases. Wb tion does not accurately describe changes for summaries
turn now to this important issue and show how we can use u¢\yeph databasesso we will use the Weibull distribution in-
“survival analysis” for this purpose. stead.
As described so far, the survival functigi(¢) and the
4 Predicting Content Summary Change Fre-  hazard functiorh(t) are used to describe a single database,
quency and are not “instantiated” since we do not know the values of
the configuring parameters. Of course, it is important to esti-
mate the parameters of the survival functii) for each da-

In the previous section, we established the need for up- g
X . . abase, to have a concrete, database-specific change model.
dating database content summaries as the underlying tex . A . . .

ven more imperative is to discovpredictor variableghat

databases change. Unfortunately, updating a content SUMzan influence the survival times. For example, when ana-

mary involves a non-trivial overhead: as discussed, the con-_ . . : . . .
. . lyzing the survival times of patients with heart disease, the
tent summaries of hidden-web databases are constructed by ". . . . . .
eight of a patient is a predictor variable and can influence

querying the databases, while the summaries of crawlable e survival time of the patient. Analogously. we want to pre-
databases are constructed by downloading and processing aﬂq b ’ 9 Y: P

. ; ict survival times individually for each database, according

the database documents. Therefore, in order to avoid over- " I ) )
: ST to its characteristics. Next, we describe the Cox proportional
loading the databases unnecessarily, it is important to sched; . .
. . p hazards regression model that we use for this purpose.

ule updates carefully. In this section, we present our “sur-

vival analysis” modeling approach for decidimgnento up-
date content summaries. First, SectidnBand [4.2 review
the necessary background on survival analysis and the Cox

regression model from the literatuf2l]. Then, Sectioff.3
shows how we can use this material for our own scenario, to

model content summary changes.

4.2 Cox Proportional Hazards Regression Model

The Cox proportional hazards regression mod&qQ] is a
technique widely used in statistics for discovering important
variables that influence survival times. It is a non-parametric
model, because it makes no assumptions about the nature or
shape of the hazard function. The only assumption is that the
logarithm of the underlying hazard rate is a li¥eamction
. o ) o ) of the predictor variables.

Survival angly5|s is a coIIe;cﬂon of statistical techniques | et pe a predictor variable, and, andz be the val-
that help predict the time until an event occUd][ These  e5 of that variable for two databasésind B, respectively.

methods were initially used to predict the time of survival jnder the Cox model. the hazard functidng(t) andh ()
for patients under different treatments, hence the name “sur-

vival analysis.” For the same reason the “time until an event jThe exponential distribution corresponds to the case whetel.
occurs” is also calledurvival time. For our purposes, the _The "linearity” or “proportionality” requirement is essentially a “mono-

. . . tonicity” requirement (e.g., the higher the weight of a patient, the higher the
survival time is the number of V\{eeksu_c_h that a_n old da- risk of heart attack). If a variable monotonically affects the hazard rate, then
tabase content summacy(D,t) is “sufficiently different” an appropriate transformation (e.lng(-)) can make its effect linear.

4.1 Survival Analysis




can be expressed for databagesnd B as: “different” when they are not identical. However, even a
b B small change in a single document in a database will proba-
ha(t) = e™*ho(t) = Inha(t) =Inho(t) + Bza (18) 1 rasuitin a change inits content summary, but such change
hp(t) = e’*2hy(t) = Inhp(t) = Inho(t) + Bzp  (1b) is unlikely to be of importance for database selection. There-

the members of the population. The Cox model can be gen-maries are different whei' L > 7 (see Sectiof.2 for the

the 3;’s are the model coefficients. The algorithm presented times and the exact value oshould be selected based on the

by Cox [L0] shows how to compute thé values. characteristics of the database selection algorithm of choice.

The Cox model, as presented so far, seems to solve thaVe will see how we can effectively use the Cox model to
same problem addressed by multiple regression. Howeverincorporater in our change model. Later, in SectiBhwe
the dependent variable (survival time) in our case is not nor-Show that we can define update schedules that adapt to the
mally distributed, but usually follows the exponential or the chosen value of.
Weibull distribution — a serious violation for ordinary multi-
ple regression. Another important distinction is the fact that
the Cox model effectively exploits incomplete or “censored”
data, from cases that “survived” the whole study period. Ex-
cluding these cases from the study would seriously affect the
result, introducing a strong bias in the resulting model. Those
observations are calledensoredobservations and contain
only partial information, indicating thahere was no failure ~ Computing Survival Times:  Using the study of Sectid8
during the time of observatiorniThe Cox model effectively ~ as well as Definitiord, we computed the survival time of
uses the information provided from censored cases. (Foreach content summary for different values of threshald
more information, se€élf).) For some databases, we did not detect a change within the

The Cox proportional hazards model is one of the most Period of the study. As explained in Sectid2 these ten-
general models for working with survival data, since it does sored cases are still useful since they provide evidence that
not assume any specific baseline hazard function. This modefhe content summary of a database with the given character-

Definition 3: Given a value of the change sensitivity thresh-
old 7 > 0, the survival time of a databasl at a point in
time —with associated “current” content summaty D)— is
the smallest time for which the KL divergence @b (D, t)
with respect ta” (D) is greater thanr.

allows the extraction of a “normalized” hazard funct?@j‘(t) isticsdid not Change’\/ithin the allotted time periOd and for
that is not influenced by predictor variables. This allows for the thresholdr of choice. The result of our study is a set
easier generalization of the results, sirggt) is not de- of survival times, some marked as censored, that we use as

pendent on the distribution of the predictor variables in the input to the Cox regression model.

dataset used to extrakt(t). The only requirement for the

applicability of Cox’s model is that the predictor variables Feature Selection: After extracting the survival times, we
follow the “proportional hazard” (PH, or linearity) assump- select the database features that we pass as parameters to the
tion, which means that for two individual groupsand B Cox model. We use two sets of features: a setonirfent’

the hazard rati ngg is constant over time. features and a set okVolutiori features. Thecurrent fea-

An interesting variation of the Cox model that overcomes tures are characteristics of the database at a given point in
the PH assumption is thetratified Cox mode]26], which time. For example, the topic of the database and its DNS do-
is used to account for variables that do not Satisfy the pro- main arecurrent features of a database. On the other hand,
portionality assumption. In this case, the variables that doWe extract theevolutionfeatures by observing how the data-
not satisfy the proportionality assumption are used to split base changes over a (training) time period. For the remainder
the dataset into different “strata.” Th& Cox coefficients  Of the discussion —and because of space constraints— we fo-

remain the same across the different strata, but each straturius on the features for the important case of approximate,
now has different baseline functiohg(t). sample-based content summaries. Analogous features can

Next, we describe how we use the Cox regression modelPe defined for crawlable databases, for which we can extract
to represent changes in text database content summaries. complete summaries.
The initial set ofcurrentfeatures that we used was:
4.3 Using Cox Regression to Model Content Sum-

e The threshold-.
mary Changes
8We use KL divergence for our change definition (as opposed to pre-

Before using any survival analysis technique for our prob- cision or recall) because KL depends on the whole word-frequency distri-
bution. As our later experiments show, an update policy derived from the

I_em, we need to define “Change-_" A straightforward defini- | pased change definition improves not only the KL divergence but also
tion is that two content summari€s(D) and O(D,t) are precision and recall.




e The logarithm of the estimated size of the database, Features | [ Br Br
where we estimate the size of the database using the size,r | 0179 - -1.313

“sample-resample” method fror@%. K1, T - 8.3 | -1.308
k1, Size,r | 0.094 | 6.762 | -1.305

e The number of words in the current sampléD).
) ] Table 3.The coefficients of the Cox model, when trained for
e The topic of each database, defined as the top level cat- yarious sets of features.

egory under which the database is classified in the Open
Directory. This is a categorical variable with 16 distinct Training the Cox Model:  After the initial feature selec-

vqlues (e.g., “Arts,” “Sports,” and SO on). We encoded tion, we trained the Cox model again. The results indicated
this variable as a set of dummy binary variables: each it g the features that we had selected are good predic-
variable has the value 1 if the database is classified un-y, \arianle8? and strongly influence the survival time of the

der the corresponding category, and 0 otherwise. extracted summaries. However, the domain variable did not

e The domain of the database, which is a categorical vari- Satisfy the proportionality assumption, which is required by

able with five distinct values (com, org, edu, gov, misc). the Cox model (see Secti@h): the hazard ratio between

. ) to thestratified Cox modektratifying on domaift?
To extract the set okvolution features, we retrieved The result of the training was a set of coefficiefits 5.,

sample-based content summaries from each database every, q 3. for features sizes,, andr, respectively. We show

week over a period of 10 weeks. Then, for each database Weo cox coefficients that we obtained in TaBle The pos-
compared every pair @pproximatesummaries that were x- jive values of3, and 3, indicate that larger databases are
tracted exactly: weeks apart (i.e., on weekandt + k) Us- ore Jikely to change than smaller ones and that databases
ing the precision, recall, and KL dlvergenC(.a metrics. SPecif- {hat changed during training are more likely to change in the
ically, the features that we computed were: future than those that did not change. In contrast, the nega-

e The average KL divergence,, ..., ko9 between sum-  tive value for3, shows that —not surprisingly— higher values
maries extracted with time differencenf. . ., 9 weeks. of 7 result in longer survival times for content summaries.

) ) o Given the results of the analysis, for two databaBgs
e The average weighted and unweighted precision of and D, from the same domain, we have:

summaries extracted with time difference 1f...,9
weeks. InSi(t) = exp(Bsn(|D1]) + Beki, + Br71) - InSo(t)

o The average weighted and unweighted recall of sum- InS2(t) = exp(fsIn(|Da|) + Bxk1, + Br72) - InSo(t)

maries extracted with time differencemf. . ., 9 weeks. i . ) )
whereSy(t) is the baseline survival function for the respec-

After selecting the initial set of features, we trained the (e domain. The baseline survival function corresponds to a
Cox model using the variables indicated above. We validated«p5seline” databas® with size|D| = 1 (i.e.,In(|D|) = 0),

the results using leave-one-out cross validdfidie results ki, = 0, andr = 0.

of the initial run indicated that from theurrentfeatures, the Under the Cox model. the returned baseline survival func-
number of words and the topic of the database are not goodjons remain unspecified and are defined only by a set of val-
predictor variables, while from thevolutionfeatures, pre- uesSo(t1), So(ta),- .., So(tn). In our experiments, we had

cision and recall are not good predictor variables; the KL fiye paseline survival functions, one for each domain (i.e.,
features are good predictors, and strongly and positively COrcom, edu, org, gov, misc). To fit the baseline survival func-
related with each other. tions, we assumed that they follow the Weibull distribution
Given these results, we decided to drop the number of words(See Sectiod-J), which has the general fori(t) = e—*".

and the topic variables from theurrent set, keeping only  \we applied curve fitting using a least-squares method (in
the threshold-, the database size, and the domain. Also, we particular the Levenberg-Marquardt meth@P]) to esti-
dropped the recall and precision features fromehelution  ate the parameters of the Weibull distribution for each do-
set, keeping only the, feature: given its presence, features main. For all estimates, the statistical significance was at the
k2 throughrg were largely redundant. Furthermore, we re- o 0019 level. TablB summarizes the results.

duced the training time from 10 to three weeks. To examine  5p, interesting result is that the survival functions do
whether any of the selected features —other than threshold . follow the exponential distributiomy(= 1). Previous
which we always keep- are redundant, we trained Cox usingsygies [] indicated that individual weldocumentshave

(a) size andr; (b) k; and; and (c)x1, size, andr. We -
describe our findings next. _ OFor all models, the statistical significance is at the 0.001% level accord-
ing to the Wald statisti¢Z21].

9Since each database generates multiple survival times, we leave out one 11This meant that we had to compute separate baseline hazard functions
databaseat a time for the cross-validation. for each domain.




Features | Domain | Agom | Ydom
com 0.0211 | 0.844
edu 0.0392 | 0.578
size,r gov 0.0193 | 0.701
misc 0.0163 | 1.072
org 0.0239 | 0.723
com 0.0320 | 0.886
edu 0.0774 | 0.576
K1, T gov 0.0245 | 0.795
misc 0.0500 | 1.014
org 0.0542 | 0.715
com 0.0180 | 0.901
edu 0.0205 | 0.585
K1, Size,T gov 0.0393 | 0.780
misc 0.0236 | 1.050
org 0.0274 | 0.724

Figure 9.The survival functionS(t) for different domains
Table 4.The parameters for the baseline survival functions (|D| = 1,000, 7 = 0.5, k1 = 0.1).

for the five domains. The baseline survival functions describe

the survival time of a databade in each domain with size . .
ID| = 1 (In(|D|) = 0), with average distance between the tend to vary substantially across domains (e.g., compare the

sample summariek L = 0 and for threshold- = 0. “misc” curve against the “gov” curve).

lifetimes that follow the exponential distribution. Our re- © Scheduling Updates

sults, though, indicate that content summaries, with aggre-

gate statistics abosets of documentshange more slowly. So far, we have described how to compute the survival
function S(t) for a text database. In this section, we describe

Modeling Conclusions: We have presented a statistical how we can exploity(¢) to schedule database content sum-

analysis of the survival times of database content summariesMaY updates and contact each database only when neces-

We used Cox regression analysis to examine the effect of dif-Sa1- SPeC‘“C.a”V’ we _first describe the theory behind our
ferent variables in the survival time of database content sum-_SChedulIIng FOH,Cy (S]?Ct'dﬁml),' Thgn, vye preserr:'t thhehexper—
maries and showed that the survival times of content sum-'mema e\_/a_uatlon of our policy ( .eCt'dM’ which Shows
maries follow the Weibull distribution, in most cases with that sophisticated update scheduling can improve the quality
+ < 1 (i.e., they tend to remain unchanged for longer time of the extracted content summaries in a resource-restricted
periods as their age increases). We summarize our results jgnvironment.

the following definition: . .
5.1 Deriving an Update Policy

Definition 4: The functionS; (¢) that gives the survival func-

tion for a databaseD; is: A metasearcher may provide access to hundreds or thou-
sands of databases and operate under limited network and
Si(t) = exp (=A™, with (2a) computational resources. To optimize the overall quality of

3 the content summaries, the metasearcher has to carefully de-
Ai = Adom (IDil” - exp (Buriri) -exp (B:7:))  (2D)  Gide when to update each of the summaries, so that they are
where|D;| is the size of the database;; is the KL diver-  acceptably up to date during query processing.

gence of the samples obtained during the training peritgl, To model the constraint on the workload that a meta-
8., and 3, are the Cox coefficients from Tatfe \ 4o, and searcher might handle, we defifieas the average number of
Ydom are the domain-specific constants from Tafleandr; content summary updates that the metasearcher can perform
is the value of the change threshold f (Definition[3). in a week. Then, under Haive strategy that allocates up-

dates to databases uniformly,= 7 represents the average

Definition[4 provides a concrete change model for a data- number of weeks between two updates of a database, where
baseD that is specific to the database characteristics and ton is the total number of databases. For examfile= 2
the change sensitivity, as controlled by the thresholdin weeks means that the metasearcher can update the content
interesting result is that summaries of large databases changsummary of each database every two weeks, on average.
more often than those of small databases, as indicated by the As we have seen in Secti¢h3 the rate of change of
positive value of3,, which corresponds to the database size. the database contents may vary drastically from database to
Figure[d shows the shape &(¢) for different domains, for  database, so thRaive strategy above is bound to allocate
a hypothetical databade with |[D| = 1000 andx; = 0.1, updates to databases suboptimally. Thus, the goal of our
and forr = 0.5. This figure shows that content summaries update scheduling is to determine the update frequgicy



tDi m— 5 0>8\i 42 = 4E gz 1|(() and instead focus on databases lilggs.com | that can be
omsharaware.com . weeks weeks : H
usps.com 0.023 | 34 weeks| 12 weake kept up to date. This trend holds across domains and across
values ofy.
Table 5.O0ptimal content-summary update frequencies for
two databases 5.2 Experimental Results
for each databas®; individually, in such a way that the In Sectiorl4.3 we showed how to compute the form and

function -, S;(¢) is maximized, while at the same time parameters of the survival functios(¢), which measures

not exceeding the number of updates allowed. In this casethe probability that the summary of a databdseis up to

we maximize the average probability that the content sum-datet weeks after it was computed. Based on Cox’s model,
maries are up to date. One complication is that the sur-we derived a variety of models that compuigt) based on
vival function S;(t) changes its value over time, so differ- three different sets of features (see Tallend4). Now, we

ent update scheduling policies may be considered “optimal” use these models to devise three update policies, using the
depending on wher$;(t) is measured. To address this is- approach from Sectidi.J and the following feature sets:

sue, we assume that the metasearcher wants to maximize o 4, size,7: We use all the available features.

the t|m.e-avera1ge(ti/altyjle of the survival function, given as: g0 andr: We do not use the history of the database,
S = limy o0 ¢ Jy 225y Si(t)dt. This formulation of the i.e., we ignore the evolution featurg and we use only
scheduling problem is similar to that if][for the problem the database size and the change sensitivity threshold

of keeping the index of a search engine up to date. In short,

. S e k1 andr: We use only the history of the database and
we formulate our goal as the following optimization prob-

the thresholdr. We consider this policy to examine

lem. whether we can work with databases without estimat-
Problem 1. Find the optimal update frequengy for each ing their sizé

databaseD; such thatS is maximized under the constraint We also consider thBlaive policy, discussed above, where
S fi=% we uniformly update all summaries evefyweeks3

Given the analytical forms of thé;(¢) functions in the pre-
vious sections, we can solve this optimization problem us-
ing the Lagrange-multiplier methodas shown for example

in [[7,124]). Cho et al.[f] investigated a special case of this
optimization problem wheny = 1 (i.e., when the rate of
change is constant over time), and observed the following:

Quality of Content Summaries under Different Policies:

We examine the performance of each updating policy, by
measuring the average (weighted and unweighted) precision
and recall, and the average KL divergence of the generated
approximatesummaries. We consider different valuesiof
whereT is the average number of weeks between updates.

1. When ); (which can be interpreted as denoting “how  Figuresld and[3 show the average weighted and un-
often the content summary changes”) is small relative weighted precision of the approximate summaries, obtained
to the constrainf”, the optimal revisit frequency; be- under the scheduling policies that we consider. The results
comes larger a§; grows larger. indicate that, by using any of our policies, we can keep the

recall metrics almost stable, independently of the resource

2. When); is large compared to the resource constraint  constraints. Figurd§ andB show the average weighted and
the optimal revisit frequency; becomes smaller a; unweighted precision of the approximate summaries, respec-
grows larger. tively. Again, our three scheduling policies demonstrate sim-

In our solution to the above generalized optimization iIar_perfor_mance, af‘d they are_allsignif_icantly be_tter th_an the

problem, we also observed similar trends even whe# 1 I\_Ialvep(_)hcy_. The difference with th&lalve_pollcy IS statis-

(i.e., when the rate of change varies over time). As an exam-t'c.aIIy significant, even when the summaries are updated rel-

ple, in Tablgg we show the optimal update frequencies for at.lvely frequently (ie., even for small_v_aluesﬁj. Finally,

the content summaries of two databatesishardware. F|gur'e shows that our updapng policies kgep the average

com andusps.con. We can see that,'wheﬁ is small KL divergence of the approximate summaries almost con-

(T = 10), we updatetomshardware.com | more often stant even for_alarge num_ber_ of weekbetween L_lp_dates.

' An interesting observation is that the three policies that we

thanusps.corm, since); is larger fortomshardware. - . .
corn. However, wherf' is large (" — 40) the optimal update propose demonstrate minimal differences in performance,

frequencies are reversed. The scheduling algorithm decides !2The size estimation method that we Ug&][relies on the database re-
thattomshardware.com Changes “too frequent|y" and is turning the number of matches for each query. This method becomes prob-

not beneficial to allocate more resources to try to keep it uplergatlcfor databases that_do not report such numbers_wﬂh_the query results.
Due to space constraints, the results presented in this paper focus on

to date. Therefore, the algorithm decides to update the CONsample-based content summaries. We also ran analogous experiments for
tent summary frontomshardware.com | less frequently,  the complete content summaries, and the results were similar.
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extracted content summaries, even under strict constraints
—Kiau 4 on the allowable update frequency. Also, our modeling ap-
orfoLiKsket / pr_oach _allows us to _predict the precision of our update oper-

: ations, in turn allowing the metasearcher to tune the update
frequency and efficiently keep the content summaries up to
date.
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6 Related Work

0.2

We are not aware of prior work to experimentally measure
00, T e 3w e e database content summary evolution over time or to schedule
) o i updates to the content summaries to maintain their freshness.
Figure 10.The precision of the updates performed by the 4y ever, several previous studies have focused on various
d.'ﬁerem scheduling algorithms, as a function of the average aspects of the evolution of the web and of the related prob-
time between updatés and forr = 0.5. . .
lem of web crawling. Ntoulas et al2g] studied the changes
of individual web pages, using the same dataset as we did in
and these differences are not statistically significant. Addi- this paper. Ntoulas et al. concluded that 5% of new content
tionally, all techniques are significantly better thank@ive  (measured in “shingles”) is introduced in an average week in
policy. This indicates that it is possible to work with a all pages as a whole. Additionally23] observed a strong
smaller set of features, without decreasing performance. Forcorrelation between the past and the future degrees of the
example, we may ignore the evolution featureand avoid  changes of a web page and showed that this correlation might
computing the history of a database, which involves frequentbe used to predict the future changes of a page. For exam-
sampling of the database for a (small) period of time. ple, by measuring how much a page changed in the past one
week, we might predict how much the page would change in

Precision of Update Operations: To measure how “pre- the next one week quite accurately. In this paper (SeBjpn

cise” the updates scheduled by our policies are, we define an'® ipvestigatecj this high-level idea more formally through
update as “precise” if it contacts a database when the newzuzv'l\;al analy_5|s ‘;?d (r?odeled thte_ ch?r;]ge bzhavm()jr IOf \_’I_Vﬁ_b
summary of the database is different from the existing sum- atabases using the Lox proportional hazard mocel. 1 nis
mary according to the definition of change in Seclicd We n:odg:hwa? then used for ddet3|gn||_r_19 thte’l??opnmgllzsct?e(ljullng
measured the precision of the update operations as the rai§'9oMthm for summary upcates. Lim et | and Fetterly

of the precise updates over the total number of updates per-et al. [13) presented pioneer measurements of the degree of

formed. Figurdld shows the precision results as a function ch_ange of W?b pages over time, where change was Te_asured
of T and forr = 0.5. For this value of and for the data- YS9 fche edit d|stanC12_|_]] or the_ number of changed "shin-
bases in our dataset, very low valuestofi.e., T < 10) are gles” [13] over successive versions of the web pages. Other

unnecessary, since then the databases are contacted too oftéwq'es of \;\;]et; evoIleon I'nCIUt?]a’[S’ 2I7’t11, 2, andkfocush
and before they have changed sufficiently. A decrease in the" ISSUes that are largely orthogonal to our work, such as
value of - cause the curves to “move” towards the left: the P29€ modification rates and times, estimation of the change

summaries change more frequently and then the updates bef_ree\tllebnmes fI(_)r thhe welzt pa?ej, andbS(: or:_. | t of K
come more precise. For example, for= 0.25 andT" = 10, €0 crawling has atiracted a substantial amount ot wor

precision is approximately 40%, while faF = 25 it is ap- over the last few years. In particular, referen¢g9[[12, 8]
proximately 80% ' study how a crawler should download pages to maintain

; - . its local copy of the web up to date. Assuming that the
Interestingly, the update precision can be predicted 8N4 crawler knows the exact change frequencies of pages, ref-
lytically, using the target functio§ described in Sectid&.1 g d Pages,

The average probability of survival (our target function) cor- erences 7 91 present an optimal page download_mg algo-
; o . rithm, while [12] proposes an algorithm based on linear pro-
responds in principle to the percentage of non-precise up-

dates. This result is intuitive, since our target function essen-9amming. Cho and Ntoulag][employ sampling to detect

tially encodes the probability that the summary of the data- changed pages. A” this work on web crawling mainly fo-
. R .cuses on maintaining a local copy of the web as up-to-date as
base has changed. Therefore, during scheduling, it is possi-

ble to select a value oF that achieves (approximately) the possible, which requires maximizing the fraction of remote
desired update precision pages whose local copy is up to date. Our goal is different:

we want to maximize the freshness of the content summaries
that describe the various web sites, so that we produce more
Conclusion: As a general conclusion, we have observed accurate database selection decisions.

that our scheduling policies allow for better quality of the Olston et al.[24] proposed a new algorithm for cache syn-




chronization in which data sources notify caches of impor- [6] J. Cho and H. Gaia-Molina.

tant changes. Cho et aB,[7] proposed optimal algorithms
for web-page cache synchronization. The definition of “di-
vergence” or “change” inZ4] is quite general and can be
applied to our context. Their high-level optimization goal

is also similar to ours. However, the proposed push model
might not be applicable when data sources are “uncooper- [g]
ative” and do not inform others of their changes as is the

case on the web. The algorithms proposedl@n(q] are

proven to be optimal when web-page changes follow a Pois- [°]
son process. Unfortunately, the changes of database content
summaries do not follow a Poisson process, and our updat 10]
scheduling algorithm was derived based on a more genera

assumption.

7 Conclusions

We presented a study —over 152 real web databases— of th[alz]
effect of time on the database content summaries on which
metasearchers rely to select appropriate databases where to
Predictably, the quality of the [13]
content summaries deteriorates over time as the underlying
databases change, which highlights the importance of up-
date strategies for refreshing the content summaries.
described how to use survival analysis techniques, in pa

evaluate keyword queries.

ticular how to exploit the Cox proportional hazards regres-

sion model, for this update problem. We showed that the
change history of a database can be used to predict the rate
of change of its content summary in the future, and that sum-[15]
maries of larger databases tend to change faster than sum-
maries of smaller databases. Finally, based on the results o
our analysis, we suggested update strategies that work wel
in a resource-constrained environment. Our techniques adapt
to the change sensitivity desired for each database, and con-
tact databases selectively —as needed- to keep the summarigsr]

up to date while not exceeding the resource constraints.
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