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Abstract

An average case setting for linear pProblems has been
studied in 3 series of recent Papers. Optimal algorithams
and cptimal informaticn were obtained for certain probabilicy
neasures,

In this paper tha local average error cf algerizhms and
lccal average radius of information are defined, Using these
concepts, cptimal information and optimal algocrithms zan be

fcund for ncnlinear problems and arbitrary Bcrel measuras,




1. Intrcduction

The average case setting for linear problems is studied
in [4,7,8). More precisely, the (global) average errcor cf
an algcrithm and the (glcbal) average radius of information
are defined and cptimal algorithms and information are found
for certain probability measures,

In this paper we define the local average error and
the local average radius. Analogous concepts occur, for
example, in statistics, where they are used primarily for
discrete and finite dimensicnal problems. Since we are
primarily interested in infinite dimensicnal problems, we
study the local average errcr and radius in an abstract
setting. It is often assumed that the local average radius
is a measurable function. We want £o establish rather than
assume the measurability of the loccal average radius since
this is crutial to our study.

We motivate our interest in the lccal average errcr and
the local average radius. These ccncepts

(1) lead t¢ Zormulas which, in principle. give an

optimal algcrithm and coptimal infcocrmaticn for ncalinear

oroblems and arbitrary Borel measure., whether this
leads to "practical" fcrmulas depends con the prcdlem,

(1i) enable us to study any algorithm, in general

nonmeasurable. The measurability cf optimal algorithms



is proven, not assumed.

The results reported in this paper are primarily cf
theoretical interest., They will be applied to a variety cf
prcblems in future papers, the flavor of which is discussed
in Section 6.

We summarize the contents of the paper. 1In Sections
2,3,4 we deal with problems defined on separable Banach
spaces. This is cnly fcr simplicity: a generalization is
discussed in Section 5. In Section 2 we recall properties of
conditicnal measure which are crutial for cur study. In
Secticn 3 we define our basic concepts and prove that the
local average radius and the local avefage error of any cptimal
algorithm are measurable. In Section 4 we illustrate these

oncepts Scr an crthegenally invariant measure. We exhibit

0

cptimal algerithms and optimal informaticn and we establish
some imporzant properties cf orthcgenally invariant measures.
In Secticn 5 we generalize all results 2o the ciase where the

error is not necessarily measured Dy 2 ncrm.



2. conditional measure.

In this section we recall the concept of conditicnal
measure which will be needed to define local average errcr
and lccal average radius. For simplicity we confine curself
to measures defined on separable Banach spaces. A generaliza-
tion is given in Secticn S,

Let Fl be a separable Banach space and let , be a

probability measure defined cn B(F where B(F,) is the

1) 1

a-fiald of Borel sets from ¥,. We shall assume that the

-~

measure . 1is complete, i.e., ,(B) = O implies that every

subset cf 3 L1s a Borel set. Let N,
N: F, - B

De an cperator (nonlinear in generzl) which maps F, onto R

We shall also assume that N is measurable, i.e.,

(2.1) N-l(A) € B(Fl), Y measurable A (A < B(Rn)).
Define the measure s T 11(-,N) as

-1 PR _/ . n
(2.2) 51(A) = . (N T(A)) (= ;((fsr-‘l: N(£)eal)), A z B(R).

Then 2q called the prcbability distributicn cf N, is a
n , _
probability measure on B(R), «q (B ) = 1, and tells us the

orobability that N(f) ¢ A.




For given y ¢ 2" let

(2.3) V(N,y) = N " (y) (=(feF,: N(£f) = v)).

12

Frem (2, Th. 8.1, p. 147] we know that there exists a unique
(modulo set of ul(-,N) measure zero) family of probability

measures ., (- |y) = sy (*|y,¥) defined on B(F,) such that

(i) L (VLY |Y) = uy(Fyly) = 1, Yy, a.e.,
(Li) 42(5‘-) is ul-measurable, Y8 ¢ B(Fl),
(111) L) = S, @y, Ve e B,

R

We shall call 45 the conditicnal measure with respect
¢ N. Note that due to (i) we have uz(B ~ 7(N.y)ly) = ;2(B§y)

and i v £ N(B) then B ~ V(n,y) = @ and ;2(B|y) = 0. Hence

iZ N(B) Ls measurable then (iii) can be rewriftten as

(2.4) L3 = § a3 vy e (dy)
N(B) -
= sy (3219) ). (3Y).

N(B) BnAv(n.y)

Hence “2(3 A V(N,y) |y) tells us the probability (measure) cf
the set 3 under the conditicn that N(£) = y. This justifies

the name conditicnal measure.

Remark 2.1: In this paper we assume that N maps F, cnto

-

a . . .
R since this assumption guarantees the existence and




uniqueness of the conditicnal measure uz('IY:N)' This

assumption can be weakened since in general cne may consider

any measurable map N: Fl - H where H with its --field is

a separable standard Borel space (see [2]) or, in particular,

where H is a ccmplete separable metric space with B(H)

as its o-field. Since for many problems N(Fl) = ln we make

the above assumpticn although all cur results to be presented

also hold if N(E‘l) = H 13 not necessarily equal to ln. a
Let now G,G: T, » R

1l

tion. Then the integral vfg,y)s(f)“z(df‘y) is 4 measurable,

+ be a measurable nonnegative func-

as & functicn of vy, and

(2.5) G(£)y (df) =§n[ f G(Eu, (df]y)Ju, (dy).

R V(N,y)

) G~

1
(This can be easily proven by taking G t¢ be a simple functicn,
G(f) =z, ciXB'(f).) The essence of (2.3) is that we first
integrate G ;ver all elements frcm B that have a fixed
value cof N, N(f) = y, and next cver all wvalues V.

We illustrate the concept of cenditisnal measure by the

fcllowing simple example.

o . :
Ixample: Suppose that Fl = R and that . is defined as

follows

\
L(B) = § w(f)d £
3 m



O

{ here dmf stands for the m dimensional Lebesgque measure)

for some positive function w: Rm - R+ such that {m w(f)dmf a 1,
Then, u 1is a probability measure. Let N(f) = [fl’fz""’fn]
where n ¢ m and £ = [fl""’fm]' To £ind the measurs

(- ,N) take an arbitrary set A ¢ B(ln). Then

1 21
(2.6) AN = (NPA)) a ([ e T (£ £1 ¢ a))
. ..l 4 ) ¢ . -ly s n =
2
= S(S w(ly,£1)d £)d v
AR nooom
= S w,(y)dy
A 1 n
where
(2.7) wily) =0 iy, e £
1 m-n ! -n
R
and [ fz] = [y s £ ] for ever = (1 ]
Y, = ‘l;o--,yn,-l;...,am_n in Ly ¥y = jl,.,,,ym
2 2 2 .
n . £ = £ . Her (o, N) L :
and every £ [fl""’ m-n] Hence “l( ,N) is a weighted
Lebesgque measure with the weight Wy defined by (2.7). We ncw
£ind 4, (- |y) = o, (|y,N). Takey ¢ ? and 3 ¢ B(RT). Let
= Fz m-n ‘2 s )
BZ,Y [“ € ‘ [YJ' ] ~ B)
Observe that 82 v =g ify £ N(B). Then
g \ 2 2
. (B) = gn(g w(ly, £ ])dm_nf )dny
2,y
2
w(ly,. £1) 2
Sn wl(y)(£ wl(y) dn-n' )dny




This gives the formula for L,,2(~ |y,N). Namely,

S muwfn 2

(2.8) wl(y) n-n

2,Y

for every B ¢ !(lm) and every y € ln except wl(y) = 0. | |



3. Local average errcr and local average radius.

In this section we define the local average error and
local average radius and we study their prcperties,

Suppcse we want to approximate S(f) where S, called a
sclution cperator, is a measurable cperator, 5: Fl nd Pz,

are separable Banach spaces with the Borel --fields

and F,,F

1'°2

B(F,) and B(FZ) respectively. We assume that we possess

-

. , n , .
infermaticn N(£f), where N: Fl - R, called an informaticn

cperatsr, satisfies all assumptions frcom the previcus secticn.
Then we apprcximate S(£f) by - (N(f)) where ., called an

, . . n -
algerithm, is any mapping =-: B -~ Fye
For the reader's convenience we now summarize the basic

ncticns ¢f the average case setting studied in [4,7.8]. Tor

given N and ., the (glchal) average errcr of .. 1s defined

- -~

by
av . 2 . 11/2
(3.1) e g(J,N) = [f He (£) = o (N(£))17.(28)] ,
3
1l
where , is a propability measure cn B(Fl)' Cbserve that
this definition reguires the algcrithm .+ <tz be errcr
. : "o 2 . . - .
meagurable, i.e.. "S(:) - 5(N(-))]]” is a measurable Iunccticn
cf £. and therefcre the class of algorithms is restricted to

the class, 8 , cf error measurable algorithms. Then an

o
~—

cptimal algorithm * is defined by w* € § and

-



avg

eV (gr, ) = £ (W)

where r>'9(N), called the (global) average radius of N is

given by

29 ) = inf & 9 (y).

o€d
As we shall see in this section the ccncept of local
average errcr enables us to extend the definition of glckbal
average errcr to the class cf all algorithms, which means that
wa dc not have to restrict curselves to the class § .

-

For an arbitrary algorithm 4, we define the lccal average

errcr (l.a.e) of +» as

av \ 2 1
(3.2) e (o, N,y) = ! j 1S(£) = o(y) "7, (AE]y) ] /2
V(N,y)
where u,2(-|y) = uz(-\y,N) is the conditicnal measure with
. . , ) avg 2
respect to N defined as in Secticn 2. Hence e (2,N.7)

is the average value with respect <90 (- ly) cI the distance

=2

"S(£) - 3(y)H2 between the soluticn S(£f) and the approxi-

mation g(y). Note, that l.a.e. is well defined Zcr every
algeorithm . (not necessarily errcr measurable). Indeed,

since 5 (y) is a fixed element from Fz, the existence of the

integral (3.2) follcws from the measurability ¢£ S. However,

av .
e g(g,N.-) need nct be a measurable functien. Therefore,

-1



to define the glcbal average errcr of 3 we proceed as

follows. Let

(3.3) His) = (H: " = R : H(y) 2 eavg(@,N,y)z, Yy, a.e.

and H is ey measurable}.

Then by the glcbal average error (g.a.e.) of 5 we mean

(3.4) (5, m = int  JfH(y)u (dy)
Hed(y) Y1

. . av
iz R(@) is nonempty. Otherwise e g(;,N) = +», Note that

ncw the glchbal average error is well defined Zor everv

algorithm .. Furthermcre, if 4 13 error measurable then

ean(=,N,~)2 is 4y measurable and, due to (2.3), we have

- a 2 av 2
(3.5) e 5,m° = fn e %z, M.y %u (ay).

R
This means for error measurable .., the definiticns (3.4)
(3.1) coincide,.

We shall say that an algcrithm «* that uses YN 1is
cptimal iff
(3.6) eI (u*,N) = inf e" % (y,N).
ol

™urthermcre, we shall say that an algeorithm .* that uses

is strengly ootimal iff

and

N



. av
(3.7) 2 (o*,N,y) = inf & J(g,N,y), Vy,a.e.
o]

Of course, a strongly optimal algorithm is also optimal. We
shall prove that the opposite statement is also true. It

will be also proven that every optimal algorithm is error
measurable. Befcra that, we introduce the average radius cf N,

We define the local average radius (l.a.r.) of N as

o 1
(3.8) 29 (N,y) = inf (y S (£) - gnzuz(dfly)] 2,
g€F2 vin,y)

Of course,
(3.9) ravg(N,y) = inf eavg(c,N,y),
N

. . . ) av
which means that .s* is strongly optimal iff e g(@*,N,y)

= ran(N,y) fcr almost every y. To define the global

average radius of N we need the following lemma.

vg 2

a
rtemma 3.1: The squared local average radius r (N.y) <2

(21

V. ]

N 1is o9 measurable as a functicn <

Proof: We need cnly to prcve that Ior any real number a

the set B(a) = [y ¢ gn: ran(N,y)2 > a) is 1y measurable.
For y € B let R(Y, ) Fz - R where
- il ll2
R(ylg) = Hs(f)-gg uz(df1Y).
V(N,y)
Then R(y,-) is continuocus and ran(N.y)2 = inf(R(y,g): g ¢ F,}
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surthermore,

(3.10) B(a) = (y e R°: Vg ¢ F,y R(Y,3) > a}l = ~ 3 _(a),

3
gsF2

where Bg(a) = [y ¢ Rn: R{y,g) > a}. Since Fz is separable,

then there exists a ccuntable subset G which is dense in

Fz’ and, ¢f course,
(3.11) 3(a) = -~ Bg(a).
geG
Y - = 4 = = =
We prove that B(a) ﬂgeG Bg(a). For this purpose take g ¢ Ty
and v £ - 3 (a). Then R(y,3) > a, Vg € G. Since R(y,:)
SEG 3
is centinucus and § = lim gi fcr scme gi € G, we have
i |
R(y,§) = 1lim R(y,gi) > a, Thus y ¢ Ba(a),‘Vg € FZ, and
i
v < 3(a). Hence -~ 3 _(a) = 3(a) which with (3.1ll) vyields
3G g
(3.12) 3(a) = n B_(a)
geg 3

as claimed. Every set Bg(a) is ., measurable since R(.,g) is

L

i measurable for every ¢g. Hence the set 3(a), as an inter-

section ¢f countably many o measurable sets., is alsc .,

measurable. This ccmpletes the prcof. u

Remark 3.l: As we shall see, this lemma plays a crucial rcle

in the study of cptimal algorithms. In the proof, we intenticn-

illy did not use the fact that Fl and FZ are Banach spaces,



The only important assumptions are separability of F, and F,

and continuity of R(y,:). This will enable us in Secticn 3
to generalize all results to the case where Fl and Fz are

separable metric spaces. 8

We define the global average radius (g.a.r) c£ N as

(3.13) V9 (N) = [Sn ravg(N,y)zul(dy)}l/z.
X

avg(

Jue to Lemma 3.1, r N) is well defined. Furthermcre we have

Theorem 3.1l: For every N

(3.14) 29wy = inf V(4. W)
2
1£ £°'9(N) is finite then

(1) an algorithm 4 is cptimal iff ., 1is strongly
cptimal, and
(1i) every optimal algerithm . 1s error measurable, i.e.,

‘{S(-)-:,(N(-))”2 is " measurable. u
Procof: We begin with (3.14). Let

R = inf eavg(a,N)z.
9

avyg 2

Since, R > r (N)", to prove (3.14) we need only toc show that

avg

RS ¢

N)z. For positive s let o, be an algorithm such

that eavg(a,N,y)2 = ravg(N,y)2 + 5, \Vy e g (a.e.). Of course



')
&>

such algorithm exists and, due to Lemma 3.1, eavg(:’N)z

av 2
- ravg(N)z + §. Hence r g(N) + § > R. Since  is

a
Vg(N)z which completes the

arbitrary, this means that R {r
procf of (3.14).
avg _
Suppose now that r (N) < +0, Since every strongly

cptimal algorithm is optimal, we need only to prcve that

optimality of + implies strong optimality. To shcw this let

P = (y & B eavq(a,N,y) > ravg(N,.Y)}.

We prove that the set P 1is measurable and that its

1
measure 1is zero, Indeed, for i =1,2,... let
_ o avg 2 avg 2 1 _
Q, =(y e ®:e TlgNy) 20 C(N,y)" + 7). ThenQ <Q .,
and 4?-1 Q, = P. Due to (3.3), there exists a sequence [Hk}
- - . avg 2
of .y measurable functions such that Hk(y) > e (a,N,y)
and lim S Hk(Y)u (dy) = eavg(:,N)z. Define
n 1
k R
Q. L =ly e HE (> -
e WY PR )2 Yy
= = =~ Cck cw th
Then Q, = Qk,i and Q, = §i =l i serve ncw that

avg( 2 - eavg(w’N)z = llm S'n I‘L<(Y)ul(dy)

X R

3
29 . Lim Sgn (zg((y)-:a”‘3<x>2)«;l<dy)

]

2 4 lim y ravg(N)zﬁ;u (%)
. = il L
14 Pi

> ran(N)

- li—

(dy)

41



p—
wn

which means that *1‘31’ = 0. Since Q; < Pi and s, is complete
(the completeness of by follows from the completeness of ),
then Q, is 5y measurable and “l(Qi) = 0. This implies that

also ® = Qi is measurable and LL].(P) = 0, as claimed. This

“i=1l
means that eavg(a,N,y) = ravg(N,y), Vy 3 Rn(a.e.), which

proves that «» 1s strongly optimal.
We ncw prove that for every optimal algorithm 4,

S - 3(N(-))}|2 is ,-measurable. 1Indeed, since cptimality

avg

cf & 1implies strong cptimality, then e (Q,N,y)2

-

avg(

= :avg(N,y)z. Hence e “ N,-)2 is ay measurable and

av 2 av 2
73 =) e @)
R

9 s (£) - a(N(f))fyz_ (df)

=

"1

which means that T:S(')-g(N('))?,’2 is , measurable. This
Y

1]

completes the proof of Thecrem 3. 1. [
Due to (3.14) we can see that the definizion (3.13) cof
global average radius coincides with that from sapers cited

at the beginning of this secticn. Turthermcre we do not have

e _ 3 2 . L ,
to assume the measurapilicy <of - vg(N,-) , Since =his is a

cenclusion. We can also conclude that in the average case

mocdel every optimal algorithm is strongly optimal unless the

I ) ¢ 4w

. av C e .
radius r q(N) is infinite. The assumpticn that r

is crutial since, as we shall see in the follcwing example,
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there exists an optimal algorithm 4 which is not strongly

optimal if 2V (N) = 4,

Example 3.1: Suppose that Fl is a separable Hilbert space

with an crthcnormal basis nl,vz,... . Let , Dbe so that

4((22kﬂk}) = 2-k, k =1,2,... . Then , 1is concentrated on

the set (22*1,24n2,...

shculd be cbvicus that for every algorithm o,

}, Let § = I and N(f) = (f,ﬂ.l). It

-1,.2 -x,. 2K
22 o2 e g, 272

1]

eavg(c:N)z nk-ﬁ(o)ﬂz

H

@,

This means that
:avg(N)Z = 4

and every algeorithm is optimal. Ccnsider ncw an algerithm

2%, »*(y) =0, ‘Vy € R. Then its local average error is

T g, 1n? = 2% 1% = 2% 5 0 = A%

l

Since “l([l]) = 2-1 > 0, then the algcrithm .* is nct strongly

optimal, althcugh it is cptimal. |
We ncw shcew how all these ccncepts can Ze simplified Dby
. . . , 2
assuming that F2 is a Hilbert space and g 'SENT, (dE) < =,
L

Let m = m(S,y), called the conditicnal mean element 0f S,

Se defined by




(3.15) (m,@) = (S(8,9u,dEy), Vger,.

F

The existence and uniqueness of m for almost every vy

| 2

follows frcm the fact that § NS fllu (Af) < ﬁ ISEN™ L (df).
) 1l

Tor an error measurable algecrithm,

eI (o,N,v)° =§ 'E{S(f)nzu.z(df’Y)"’%(Y)HZ
1
-2 f (S(£),0(¥))u, (df]y)
F2

1

g fIS(f)quz(dfly) + ?Yc(y)!lz - 2(m(S,y),a(y))

7y

'S0, @1y - Ins 1R+ fe(v) - nes, v

§l
e 2 2
> s, ey - s,y
1
12 )
= 1see) - mis, v 1P, (et
1
Hence
ran(N,Y)2 = inf eavg(:,y,y)2
" H2
= S‘ 'S(£) - m(S.y)! ;z(df[y).
F

We summarize this in

Theorem 3.2: Let F2 be a Hilbert space. Then the unique

optimal algorithm 4* is given by




i3

(3.16)  o*(y) = m(S,¥),

where m(s,y) is the conditiocnal mean element ¢f S. Further-

more
(3.17) Y9,y = fS HS(f)quz(dfly) - tms, ) 1212,
)

\Vy g Rn(a.e.),

and
]
sas 2 = s - § (s, v 12 (@) )2
7, -

We end this section by defining optimal informaticn oper-
atcr. Until ncw, the information operator N was fixed and
we were locking for an cptimal algorithm that uses . Suppcse
shat we vary informaticn. What is "cptimal" infcrmation?
More precisely, as in [5,8] let v ©be a class ¢f Iunctionals

L, L: Fl - R. We assume that every L frcm ¢ 1s measurable.

cr an integer n, let v(n) be the class of 2ll inifcrmatzion

1

LY

n ;
cperators N, N Fl - R, such tchat

(3.19) N(£) = [L_(£).,...,L_(£)]

for some L, ¢ v. Then, rcughly speaking, 7 (n) consists of
dn
all informaticn operators of cardinality n which can Se used

to sclve cur prcblem S,

We define the n-th minimal coverage radius (fcr the




L9

class v(n))as

(3.20) £2V9(n,y(n)) = inf 2V ).
Ney (n)

Then b¥ an n-th optimal information coperator (in the clasq‘vgn))

we mean any information cperator N* € y(n) such that

(3.21) 2V ) = 23 (n, v (n)) .

0f course, n-th cptimal informaticn N* has the smallest radius

among all infcrmation of the same cardinality and an optimal

algcrithm ..* that uses N* has the smallest error among all

crithms that use any information cperator of cardinality n.

alg
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4. Orthogonally invariant measyre,

In this section we study optimal algorithms and cptimal
linear information coperators assuming that the measure |, is
orthegonally invariant. We first present the definition of
orthogonal invariant measures with their basic properties, See
(8] for a more detailed discussicon. 1In Subsecticn 4.1 we
axhibit further properties of crthogeonal invariant measures.

In Subsecticn 4.2 we apply these properties to linear problems,

and in Subsection 4.3 we apply them to the problem S(f) = anz

which is an example of a nonlinear problem.

Thrzugh this section we shall assume that Fl is a
separable Hilbert space and that £ Wfﬂzu(df) < =, Without
lcss ¢f generality we can assume th:t the mean element m ct
the measure , 1s zeroc and that { (f,x)zu(df) > 0 unless
x = 0, Recall that the mean element of ., is defined 2y

(m ,x) = g (£,X)o (df). Let S D0ne the ccvariant Sperator of

(4.1) (S x,2) = f (£,%x)(£,2),(df), Vx.z2 ¢ Fy
3

Of course, S is a linear self-adjcint, pcsitive definite

ot
-

operater with Iinite trace.
We present the definiticn cf crthegecnal invariance,

(For a more detailed discussicn see [8].) We say that _ is

orthegonally invariant iff



(4.2) , (@B) = 4 (B)

for every Borel set B € B(Fl) and any linear mapping Q,

Q: Fl - Fl, of the form

(4.3) QfF = 2 ¢ . (£,4.)8 =, - €
D

=1 i

-

for any k > 0 and any " such that (s”vi,wj) = 5ij' Every

cperator Q of the form (4.3) satisfies

(4.4) QQ =1
and
(4.5) Qe = "N, Yt e Su(Fl)’

*

where "€l = J(£,£), and (£f,8), = (S-lf,f) is an inner product
<4

in the Hilbert space S (F,) (see [8]). Hence Q is an

-

L

crthegenal mapping in SW(FL)' This justifies the name crtho-
gcnal invariance.

Crthogonally invariant measures have very important and
interesting properties studies in (8]. Here we exhibdit
further properties given in terms c¢f ccnditicnal measures o2

n . . .. .
Let N, N: 7, - R se 3 linear continucus i1nIgormaticn

L) ’
o

cperator. Without lcss of generality we can assume that

(4.6) N(£) = [(f,ﬂl),....(f,nn)], where

¥i,5 = 1,2,...,n.



22

n
Then card(N) = n and N(F)) = k. Lety = [y ,y,,....y ] € R

Recall that by a spline element interpolating v with respect

to N (or briefly spline) we mean an element -(y,N) such that

(4.7) (y,N) = ©° s 7
' sly )= ko Y3, Ty

Of course, N(c(y,N)) =y and

VN,y) = N Y(y) = o(y,N) + ker N.

We ncw present some properties of orthogonally invariant

measures.

4.1 Proper-ies of orthogerally invariant measures,

Tor N cf the form (4.6) let “i("N) and u2(-\y,N) be

dafined as in Section 2.

Theorem 4.1: Let , be orthcgcnally invariant.

(1) Let Nl and N2 be of the fzrm (4.6). I£ :ard(Nl)

= ca:d(Nz) then

’_‘_l('le) ='_Ll('}N2)'
(ii) Let N be cf the form (4.05) with card(¥N) = n.
Then the mean element Mg v of the measure ;2(-]y,n) is
n n
- a. L) L]
Ty TSN = YS Ty Yy e 2(ae)
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(1i) Va, 7h: R - B, h-measurable, VXN of the form

(4.6) with card(N) = n:

SV v = h(y)-(I—cN)Sﬁ(I-cﬁ)

¥y

ig the correlation cperator of the measure uz(-\y,N),

Yy ¢ R (a.e.). Furthermore

Xn h(y)ul(dy,N) = 1,

E
Here oyt Fl - Fl is a linear operator defined by
g (8) = =(N(£).N). L)
Proof: See appendix. u

Recall that the correlaticn operator of 3 measure )

is defined to be the covariance operator of the translated

measure i, A(A) = x(A—mx), or equivalently an coperatcr
S+ Ry 2y such that
(4.8) (s x,2) = y (£-m ,x%) (£-m_,2)r(d%), \Vx,z g T,
< )Y Y &
1

where ml is the mean element <f .

Theorem 4.1 states that the measure ‘l("N) is independent
of N. It depends only cn the cardinality of N, Hence
;l(-,N) = ‘l(') for socme measure on a(nn). frem (1i) we Xncw

that the mean element of 42('\Y;N) is spline -(y,N) and £from

(iii) we know that, regardless of the constant h(y), the
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conditicnal measure ;2(-\y,N) has the same ccrrelaticn
operator for almost every Y € ln.
1+ is shown in (7] that the Gaussian measures are crtho-
gonally invariant. We now study their ccnditional measures.
Recall that by a Gaussian measure on a Hilbert space Fl

we mean a measure 1\ such that

(4.9) S el(f'X)x(df) = exp[i(a.x)-%'(Ax.x)}, ¥x ¢ F

1
(i = ¥-1),

l’

where A: Fl -~ ?l is a self-adjoint nonnegative definite
cperator with finite trace and a is an element of Fl. (The
‘aeft hand side of (4.9) is called the characteristic functional

cf . and is dencted by w\(x).) Then the mean element mk

cf % 1is given =y

and the correlation operator S _, DBY

(4.11) S A

0

(see [1,2,3]).
Suppese ncw that  is the Gaussian measure with nmean

element zero and covariance cperator S which is positive
-
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definite. (Observe that mu = 0 implies su =S _.) This is

N

equivalent to the fact that

1 e t2
(4.12)  L((£ e P.: (£,% <d}) = f exp (-2—) dt,
-

R J2ncx ) -zcx

\dx € F Vd.e R,

l’

where o, = (S x,x) (see [l]).
[

Theorem 4.2: Let , Dbe the Gaussian measure with mean

element zero and positive definite covariance operator S .
9

Then for every information operator N c<f the form (4.96)

with card(N) = n we have
(1) i < “l("N) is the Gaussian measurse ona(ln) with
mean element zero and covariance cperator Sl =1, i.e.,
) ==t (e EEa . YA e 32D
-1 Jr———; i s 2 a™’ N ’
(2m) )
(i11) ;2(-]y,N) is the Gaussian measure on ?l with mean
element My v 3 o(y,N) and correlaticn <perator
= - -—k)
Sq.y = (1 VN)s;(I 3¥) |

3
(0}

>rocf: Since the procf is very simple, we cnly sketch i<,

prove (i), it is enough (due to (4.12)) to show that



1 d t2
(A) = —— exp (- )dt
“l JZﬂ(a,a) P 2(&,3)

for every set A of the form A = (y ¢ ln: (y,a) dz}. This
follows Zrcm the fact that “l(A) = ;(Nl(A)) = ,(f ¢ Fl: (£,9)

N

n
< d} where g = g(a) = zi=l a,n;.

i
To prove (ii) it is encugh to show that for x2 defined

as in (ii) the characteristic functional of _, is equal
i1(f,x
¥ (%) = Yn K et )lz(df]Y:N)ul(dY)-
. R F
1
since characteristic functicnal defines measure uniquely and
since conditicnal measure is determined unigquely, we have

5 which proves the theorem. |

Zaving established properties cf orthcgonally invariant
measures we study cptimal algorithms and optimal linear

informaticn operators for certain problems. We begin with

4.2 Linear Problems

sSuppose that S: Fl - F2 is a cecntinucus linear operator
and that F2 is a separable Hilbert space. ~~rcm Thecrem 3.2

we kXnow that for every informatiocn operatocr N <the cptimal

algorithm «* is cof the form

s*(y) = m(S,y)

where m(S,y) is the conditicnal mean element <of S, i.e.,
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(4.13) (m(s,y),x) = f (S(f),x)uz(df|Y,N), Yx ¢ F,.
F
1

Since S is now linear and Fl,F2 are Hilbert spaces then

(4.13) can be rawritten as

(m(57Y)1x) = y (fys*x)U2(df‘Y1N)
F

1
m 2y * 1 ? b
= ¥,y S*x) = (SmN,y’X) ‘Vx € 7,
where m is the mean element of the conditicnal measurse

-~V

;2('\y,N). This implies that m(S,y) = Sm v and the cptimal

’

algorithm is given by

(4.14) s*(y) = Smy, v

Taking an crthoncrmal basis h ,hz,... of F, we get

1 2
@.15)  29mp? =) 2T (seem, ). 3, (@], W
. 'Y o Fisl v,y By) oy (dfly)e
"1
= N £- 3 2 &
Zi=l S (£ mV.y’D*hi) _Z(d-iy N
1
* Q* = = I
Zi=l(sN,ys hi': hi) --ace(ssq’y: )
and
avg 2 0
(4.186) r P(N)T = |_ trace(ss_ 5*).,(dy,N),
ln N,Y 1
where S 1s a correlatiocn cperator of ., (.|y,N).

N,y

Suppcse now that | is zrthogcnally invariant and N is
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of the form (4.6). Then due to Thecrem 4.1 (ii), »* is the
spline algorithm, i.e.,

(4.17)  s*(y) = Se(y,N) = T _, v,SS 7
and due to Theorem 4.1 (iii)

avg 2

4.18) =229, v)2 = niy) - eV

= h(y)trace(S(I—gN)Su(I-cﬁ)s*).

1)
o |
n
h

from this rom Theorem 4.2 we get

cercllary 4.1: I£ . i3 a Gaussian measure then or almost
n

svery ¥ € R ,
av av
2w,y = 2T (), |

The optimality of the spline algcrithm was established in [7]
withcut using the ccncept of lccal errcr and/or leccal radius.
In [7] and (8] there is a simple Zcrmula on the glozal radius

avg . A . oL :
T °(N) cf N as well as the nth cptimal linear inicsrmaticn

cperator is given. Namely Ifor given M. N(f) = [(f,-l),....(f,'q)l
1 - , ™ e h th =, = lim{-_,-...... and
et "1 " hea’ be such at 7, Limf o
(s ~.,~.) ==+ ., Yi,j = 1.2,... . Then
- 1 ] 1)
. _avg 2 B 2
r = T, "t - M
(N) “L=n+l”ss‘ i

-

This and (4.18) give immediately
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(4.19) 229 (N, y)% = hiy)e o)

0 2
= h(y)zi=m+1”55$”i”'
Furthermcre, if ;l,;z,...,;n are eigenvactors of (ss%/z)t(ssl/z)
crresponding to the maximal eigenvalues, then
-1/2
> = * - . -
(4.29) N;(f) L(f,nl)....,(f.“;)], rz S; ;i’

is nth cptimal amcng all linear information operators. Hence

(4.21) ravg(n,?(n)) = ravg(N:)

e st
i=n+1 ", ~1i

where v 1is the class of continuous linear functicnals.
We ncw prcoceed to ancther problem, which serves as a simple

example of a nconlinear prcolem.

4.3 Nerm evaluaticn preblem.

. g end .
Suppcse we want to approximate HflT. il.e..

(4.22)  s(g) = "end,

We assume that the measure _ is crthogcnally invariant and

y Wfﬂ4;(df) < +o, Let N be of the form (4.6), i.e..

byl
=1

N(£) = [(£,7)),.... (£ )] with (Su”i'“j) =4,,. Since

F2 = R, 92 is a Hilbert space and we can apply Theorem 3.2.



For this purpose

m(S,y)

Since

wea conclude that

n(S.y)

Y
1]
3
0O
1]
ot
o 3
(1]

is crthegonally invariant then,

cptimal algecrithm »* is cf the

30

we need to calculate m(S,y),

2. - g " 42
L PR N W W W LI
F F
1 1
g & {2 t !2
= ”"'mg yht uz(df‘Y:N) + le\x Y'l
F ’ T
1
- ’ &
+ 2? (£ “N,y’my,y)-z(d“v’N)
F
1
2 2
= Jemg %u, @)y, 4 my
F
1
2
= tr It .
trace SN, + "mN,y'

due to Thecrem 4.1,

= h(y)ZT

-

2 "
=m+L”S““i.lr + ]|\7(Y,N)T|

= 2 ) 2
{ - = " - { [ W\ '
(4.23) ~*(y) h(y):i=n+l ”S; iJ + To(y,N) ]
The lccal radius of N ig
2,1/2
(4.24) Y9 n.y) = (f Yfﬂ4;2(df]y,N) - amyn D
1
and global radius ¢of N |is

(4.24) Ve

av .
We now calculate r q(N) assuming that

(N)

2 1/2
fn (5* (y)) o (@) 1777

- o nepten -
F R

1

is Gaussian.
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We begin with the following integral,

2
1, = in<,*<y)> by ().

Recall that now h(y) = 1, Vy(a.e.), and s, Ls the Gaussian
measure with mean zerc and covariance operator I. Dencte
» 2 . 2 2 2

A= TaeplS, 0T Sinee (v (v = AT« Aoy, W]
+ oty Mm% then
2 | 2 \ 4
I, = A" + 28) He(y. M)I7u, (dy) + ) le(y, M) 2, (dy).
1 n 1 n 1
R B

I% is easy to see that

2 n 2

" e, = n !
in ey, N Ll(dy) Zial“suniJ
and that
. 4 5’ n 2.2
-~ i} = t 1}
gn »IV(Y’N)AI il(dy) n[:}..:l Xs.ni.l Yi
R R -
."1-]._:'1 - - \,2
+ Zzi=lhj>i yiyj(sa«i,:: j)l ;l(dY)
:—n ' » ‘457 4 .
- Lizllsuiid n yiul(d/)
R
JN-ln oL a2 ”2 2 2
+ 2Li=l_3>ihs-" i" H:— . 01 j’n yly]-'l(dy)

]
n-1n f 2 2
+ 47, .. ., (8 ~..,8 7, V. Y.l
Zl=l ])L( 4 1 > ])Rn Yj

Since fcr Gaussian measure o gny
2.2 £

&nyiyjul(dY) =1 (i # j), then

i“l



. ® mm = "X =
z g 2 £
1 s
(Treap) Tr s P Mve = o) 7, (Cxp/Tecs) = 37 (term O
v e %N ¥ \
38f 8~ 7°p WRIOAYI C3 8NF USBY: ‘(T =
H..Jcndnmu U3Im) (o°P) wIcs 8ys 3o 51 ..ﬂz 8oUTS ...HZ ¢3 butpuodssiaco
~ o = J. § N\,- H I3 Hﬂ
3¢ uoT2T1sodwossp 8Yl ®g (N m_.v pue ( N¢°) Mmou
1
T 1 i
3193 “2) = (3)°'K ®ye 3p)T (e $IPTNOTED ©
A\.\ z (3)°K xu::t m:% 00T h
i 1;
- C_. 1 <1<l 1=1- T_, =1
(3R) T, (e (o) TR I v 37 o) [ 1=tz = &
. (.. T_,_. I<C_1=1 T_..,1=7, _
usys NA s uvmﬁ ®°3) 2 awm + vA 8'3) ==
{ Aﬂm_wvauqu, = izl eouts .Hwﬂx = qmqm puE
ziz <= v_u_ : =
1 = mﬂmy ‘ ¢ zoaeaedo BYn IC s3C3dsauUabIS ag coeeCgily 397
.vav W:
%
S3ETNOTED MDU By
ﬁ T T T H"had Lol
* (Tu sk A S 8o®vI3) =
NA ) S) u= NA )
L el =01 =1, 1
LU s L s) G3T * NAN: u m a3t ¥ =1
JeY3 sueslL STYL
L = 1" 1=0‘7 T T oyl=
b 'y * .“ _
L7u ST s) g3+ LGl s wv =

ﬁ;ﬂ d HAH AHA

4 c 1- cuv M

d
,. .. . _,..nj«..ﬂwa. ﬂ .ﬁd q c
“SiTGI 3 4 L siT 3 = (4R NIERE M

[
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Similar, tuing Ni ](f) = [(fyei//X_il)) (f,ej/'/)‘_J)], we can

’

prove that

2 2 \
g (f,ei) (f,ej) 4 (df) = xixj = s eiﬂhswe.”.

1 4 . )
Hence
I. = 3¢ 's a 12 + sz T "s e, ||!!S e M
2 =17, "1 SIE 3 Rl DS SURSTINS Rkl I
= 28, l?s e.”z + (trace S )2,
1= ! X 1 5N
- ivg 2 . . avg 2
Since r (N) = 12 - Il’ this yields that r (N)
» 2 ot 2
= " e ! - R R ~.,5 7. . 5 t
2('»:.L=]_,,S‘J iJ :1,3=l(su S, J) ) Recall that
(s =.,7.) = «. ., This means that 72 ,¢,,...,2, = Sl/zﬁ. form
RS E i3 *Lv2Y Tl o i
an orthonormal system for the space Fl and therefore
S " a 2 0 = - . 2 ® ™ - . 2
Tiapis epl” = T T 5 e i) = fea Ty (808 Sy
o , !2 » , 2
= Iy=11S %l T, =115 ey
- = 2 2 ; \
as wall as (s ©,,3 ‘]) = (S :*':j) . Thus, Zfinally, the glcral
radius zf N 1is
avg a1 = e . - 2 _= e - 127=/2
(4.26) £ = Bln Tl (S Gt S R
~.,_ 0 _> 2. .2 ) 1<3/2. ,2.1/2
- Vz(zk:}.’*j:aﬂ(s,_. %’ 3) “k=n+l"" ko )
From (4.26) it follcws that
av 2 . 2 2 0 . a2
V% 2 2z e 00 = 2(erace(s]) - gyl L7

-
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1t is well known, see e.g. [7], that

n 1 4 2 n 2
2218 4l < syl el

[ s kU
where el,...,en correspond to the maximal eigenvalues cf SJ,
M 2 2, >...2 0. Define
(4.27) N*(E) = [(£,7]),.. (£, 70D ], "1 o= e /yr,-
Then
ravq(N)2 > 2[trace(si) - 2;=lnsuekﬂz}

- » 2 _ _avg 2
=2 Leanel ¢ T T ()

This shcws that N; is nth optimal among all linear information

cperatcrs and

(4.28) 28 (n,v(n)) ==




[ OV]
wm

5. General problems.

In the previous sections we studied an average case mcdel
for problems defined on separable Banach spaces with error

criterion:

"S(£) - 5(N(£))] - small on the average.

Cf ccurse, this is not the only interesting error critericn
and therefore average case analysis should be applied to a
wider class cf problems. In this section we briefly discuss
some generalizations,

As in {5], consider a problem defined as follows: given

two sets F, and N and a function

dist: 7, <« F, - &k ,

1 2 +
construct an element g = g(f) = F2 such that dist(f.g) is
small, Ye « r The functizcn dist serves as an errsr <ritericn

- ll
and fcr problems studied in the previcus secticns dist(f.g3)
= IS(f) - glf. In general dist need not Se a metric: the
namae “"dist" is chosen to be suggestive. In the wcrst case

model, studied in [3], the error of an algcrizhm . is defined

3y
‘e(g,N) = sup dist(f.g(N(£))).

stl

In the average case mcdel, the average error is defined by



. 2 1
e(p,N) = [Y dist” (£,4(N(£))), (df)} /2
F
1
where , is a given probability measure on ?l’ assuming that
» 1s errcr measurable (i.e. distz(f,a(N(f))) is ., measur-
able). Of cocurse, the same issues arise as in Section 3 but

all of them can be dealt with in a similar way under some

additional assumptions. For example, if Fl is a separable

metric space, N: Fl - N(Fl) = § is measurable and H 1is a

separable metric space -hen the measures i and ,2(-]y,N)
exist (see [2, Th. 8.1 p. 147]). TIf additionally, ?2 is a

. .2 .
separable metric space, dist (-,g) is measurable for every

. .2 : .
g ¢ F, and dist” (£,-) is continuous for almost every £ ¢F

2
~hen the squared local radius ran(N,-)2

l!

is 4 measurable,
cptimality is equivalent to strong optimalicy etc. Since fcr

-—
-

every countable set F there 2xists a netric under which 1

is separable, all discrete problems satisfy the above assumpticns.
We end this section by an example for which dist(f£.3)

cannct be defined by any ncrm or even any metric.

(2 1Y

function minimum problem: Suppose ©, is a Hilbert space o

sontinuous functicns, £: [0,1] - R. In addition assume that
?l is equipped with a reprcducing kernel. This means that
for every x € [0,1l] there exists a function gx =2 (+) = 1

such that



(5.1) £(x) = (f,2.), VE e Fy.

37

consider now the followiag problem. Given y = N(f), construct

-(y) ¢ [0,1] such that
|£(5(y))| is small cn the average.

This problem cannot be defined as in Section 3 since

| Ela(y)) | # {|S(E) - o(y)|! for any operator S. However letting

dist(£,3) = |£(g)), Ve er, Yger, =[0,1],
we have
290w = (f arsigamie ), @et?
F
1 :
2y 1L
=] emeen) 2@
1
Let i2(~[y,N) be the ccnditional measure. Then
. . 1/2
eafg(@,N,y) = [f \:(c(y))lzgz(dfly,N)? /
and L
229 N,y) = { inf ) 1:(x)|2,2(d:ey,m}l/2.
xe(0.1] 7 '
1
. . avyg
Since f(x) = (E,gx) then the squared lccal radius r (N
is 1 measurable. Hence

b
2V = [yn :5V9<N,y)2;l<dy))‘/2
. R

is well defined and



2V (y) = inf e (o, N).
=]

We now calculate ravg(N,Y)z.

(5.2) :avg(}:,y)2 = in¢ f [fCX)|2u2(dfly,N)
x€[0,1] F
1
. 2
= inf § (f,gx) uz(df{y,N)
xe(0,1l] F
1
=  inf [(sN T3 v (g )2}
x€(0, 1] YTXX R A
where Sv v is the correlation operator and Ty is the mean
element cf ;2(-iy,N).

Suppcse nowWw that is orthogcnally invariant and that

[
-

N is linear. Without lcss of generality we can assume that

\J(F - £ - £ - , r - - = 3 1 du T
N(Z) [ (£, l),...,(.. n)] ~here (Si i j) 3150 and due o
Thecrem 4.1 we have
(5.3) 29y, v)% = inf (h(Y)((S z_, 1 )-T0_ (5 7.,
XX i=1""_°x" L
xe(0,1] -
+ (z{y,N).* )2}
X
inf Fh(y)zz ((s - )(x))2
= 1r | s S .
xe[0,1] L=n+1 . L

+ (:(y,N)(x))23

-

where 3 is the covariance cperator ¢£ . and s(y,N)

!
-

= c(y,N) (")

n

F,, as always, denotes the spline element

b

interpolating y with respect to N. |
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5, Concluding Remarks.

As we mentioned in the Introduction, all results repor+ted
in this paper are primarily of theoretical interest. They
will be applied to a variety of problems scme cf them we

discuss now.

IEs

(i) Adaption Versus Nonadapticn: In this paper (specially

in Sections 4 and 5) we assumed that N is ncnadaptive, i.e.,
N(E) = [(f,:l),...,(f,nn)] where n; are chosen a priori. A

7ery important generalization is adaptive information where

m. depends on previcusly computed information

-

,‘i_,)]. In a recent paper (8] it is proven

(8 )Y

((E,=-), ... (

1
that adaptive inicrmaticn is not mcre powerful than ncnadaptive
issuming that S is linear and _, is crthogenally invariant,
The concept of local average radius studied here enables us

to generalize this result fcr S nct necessarily linear and

aCct necessarily crthogenally inwvarianc.

(ii) Asymptotic-Prcbabilistic Case Model: In this paper we

considered the follcwing avprcach. Given N, 35(f) is approxi-

mated by 4 (N(£)), Y ¢ € ?l. Hence N is fixed and independent

Z. In practice hcwever, we use very cften a diflerent

th
1

C

approach which can be characterized as fcllows: given sequences
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[Nn} and (an], we approximate  S(f) by 3n(Nn(f)) where the
index n = n(f) is choosen depending on some termination proce-
dure T. 1In the asymptotic-probabilistic model we want to
find [N;},[Q;} and T* such that with a large probability
:;(N;(f)) approximates S(f) with a small error and the cost

of evaluating :;(N;(f)) is minimal,

(iii) Stcchastic Information: In this Paper we assumed N to

be exact, i.e., given £, we Xnow Y = N(f) exactly. 1iIn
practice we often have a different situation, Instead of
Y = N(f) we know 2 = y + ., where the error ¢ 1s a random
variable depending on y. We will study such infcrmation

using the results reported here.




4.

Appendix.
We prove Theorem 4.l1. We begin with

Lemma A,l: Let Nl(f) = [(f’;l)'...’(f,cn)]J Nz(f) =

((£,-),...,(£,7.)] where (SJ;i’:j) = (S”ﬁi,ﬂj) =ty

Then there exists a linear one-to-one mapping Q, Q: F, - ¥
such that
(A.l) N = N Q'

(A.2) 2@t =@, B emir),

n
(A.3) 2, (@Bly,N,) =, (Bly,N)), YB ¢ B(Fl),‘v(y € R (a.e.). B

oroccf: Let X = lin[sl/z‘ ,...,Sl/zr 1/21 e e 1/2‘ Y.
" vl 4 n ) 1 " n

-

o = dim X. Of course p € [n,2n]. There exist elements

(L1}

1/2 .p
. se ey " ye e ey ) S a S - - and
nel o' T+l RS , SO that (s

o !i)i=l
/2 .p» , A - . .
fs / :ijl—l are orthoncrmal basises of X. Define the mapping

I
-

He

- =

1 "l

"lj

vy
(2}
1]
[}
o
(2 )
w
3
+
.
Y
[
(2 ]

()]
,—‘-
e ]
0
[
W
3
1]
[}

D
(A.4) Hn, = g°_. (. ,S =02, + L.

- . p. » - T =
kK'Te Lt L=l( S )

for *x = 1,2,...,p. We define the mapping Q as
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b
Qf = H*f = :i=l(f’ci)sumi + ;i) - £,

To prove (A.l) note that Nl = NZQ is equivalent to

(f’:k) = (Qf,7) = (£,Q*n,) = (f,an). This holds since

HMy = S (see (A.4)).

To prove (ii) we decompose H as

S-l/ZHlsl/Z

- -

H =

= =P 1/2 _
where H, £ = Zi=l(f,S; (ny + 4,))s77¢, - £. Note that

- )

2.52(r) = sY2(F.) and therefore s~ 2 (1.5%?) is well

17, 1 . 1 n 17,
defined. Let X* be an orthogonal ccmplement of X, F, =X X+,
Then £ ¢ X* implies (£,57%-) = (£,5s%2-) = 0 and

. 1 oo L

(A.S) 5 € = -f, Y& e x-.

“rem (A.3) we have
/2 _ .1/2 .
il . x = Su e < = 1,2, , D

Thus Hl as well as —Hl restricced to X are crthegenal nappings
onto X. We deccmpose -H., in X using a Housenclder crans-

1

formation, i.e., there exist elements xi £ X such <=hat xi = Q

or l|x.! = 1 and

(A.6) C-H f = DlDZ'...'Dpf, V£ ¢ X,

where Di = I - 2x.L 3 X, . Here x g y denotes the linear cperator
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such that (x g y)(f) = (y,£)x. Synce (f,xi) = 0 for £

m
s
*-

we get D1D2~...-Dof = £. Thus, (A.6) holds also for £ = X*
due to (A.S5). Hence we proved that Hl = -Dlmz-...-DD and
e -1/2 . ) 1/2
H = -S; DlD2 P D?Su
-(5'1/29151/2)-...-(s'l/zo s/2)
o - " P
= -QiQ; Qr
- -1/2
where Qz =1 - 2hi 9 S h, and hi =S X,. OCbserve zhat

-
-

Q, =1 - 28 hi 2 hi' Thus we get

- -

< = -Qpr_l‘...'Ql.
Note that Q;l = Q. Thus Q is cne-to-cne and

At

“‘ - -QlQ2 . Q?
The orthcgonal invariance of _  vyields _(Q:3) = .(B) = _(-3)
for any 3crel set 3 of Fl. We have thererfcre

@'3) = .(-q.-...-q3) = . (@ 2.3) = _(Q,"..."Q_3)
- B | I b -RAE z
= = '_;(B)

which prcves (A.2).

Tc prove (A.3) take :2(~‘y) defined by

- -1 ) -
;Z(B‘Y) = ;Z(Q B‘Y,Nl), VB £ B(.l).
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;2(3") is measurable, and

)]

. (8) = u.(Q-lB) = gn :Z(Q- 5|Y:Nl)ul(dY)
R

=§Rn I, (31y)u (dy).

Hence Hz(-]y) is also a conditional measure and the uniqueness

]

of (~§y,N2) implies that ;2(-|y) = $2(-|y,N2) for almost

“2
every Y. This yields

which proves (A.3) and completes the proof of Lemma A.1. B

2rzoof of Thecrem 4.1 (i): Let A ¢ B(Rn). Then (A.l) yields

-1 -1.- C e -
zhat Nl (a) =Q Nzl(A). Trom the Zdefinitiocn ¢f . and (A.2)
we get

-1 -1 -1 -1

' & =y = o & = .. h = . (. h

_l(A,Vl) ~(Nl (A)) + (Q Vz (A)) _(VZ (A)) ,l\R,WZ)
This completes the proocf of Theorem 4.1 (1). .

To prove the remaining parts cf Thecrem 4.l we need the
fellowing:
T . I = < e S ° o = ;5
Lemma A.2: Let N(f) [(f,wl),...,(f, n)]’ (Du‘i' ]) 51]

Let D be a linear continucus mapping, D: F, = ¢ such that
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Da=p Y, ND=N, .(B) =,(DB), VB ¢ B(F,).

Then the conditicnal measurse uz(-Iy,N) i3 D-invariant almost
averywhere, i.e,, there exists a set A = A(D) = xn such that

1}

s, (PBly,N), ¥B eB(F), Vyeca &

2roof: Lat

1]

L, (Bly,M) =, (DBly,N) VB e B(F)).

The measure ;2(~‘y,N) is well defined since DB is measurabple
set, From D = D-l and ND = N we have V(N,y) = DV(N,y). Thus

(A.7) LWL YN = L y) |y,® = 1 Yy e v (acel).

1}

Since _,_(DB|',N) is $l-measurable, we get

2
(A.8) S, (B]+,N) is , -measurable, ¥3 ¢ B(F)).
Take 3 ¢ B(Fl). Since [ is D-invariant,
(A.9) L (B) = ,(DB) = S;R 4p (DBlY,N)y, (dy) =S;n‘~‘z(3'y’m'w(dy"

Thus :2(.|y,N) is also a conditional measure of .. with

respect to N. Since a conditicnal measure i3 determined

uniquely (up to a set of _, -measure zero), we get

l

:2('}y,N) = ;z(vly,N), \fy e B (a.e.).
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Thus there exists a set A dependent on the mapping D,

such that “I(A) = 1 and
1y (BlY,N) = 4, (DBlY,N), VB e B(F)), Vy ¢ A,

This completes the proof of Lemma A.2.

Proof of Theorem 4.1 (ii): Let My v be the mean element of
;2(-|y,N). Then for every g ¢ Fl

( ‘ Jg) = S (f,g)u (dfly:N)n

Ny VN, y) 2

Take Df = 2 :2=l(f’“i)s'”i - £. From Lemma A.2, uz(-ly,N)

is D-invariant for almost every vy and therefore

(m_, . ,3) = (DGE,9)u, (dE|y,N)
N,y May) ¥ 2
= 2(c(y,¥,9) - [ (£,9)u, (AE]y,N)
V(N.y)
= 2(g(y,N),3) - (rry\I V,g).

R (a.e.), which

h

Since g is arbitrary, Mg v = o (y,N), \fy

s

completes the proof of part (ii). ]
We now prove the last part of Theorem 4.1.

Prcof of Theorem 4.1 (iii): Consider first the informaticn

operator N, N(f) = [(f,nl),...,(f,nq)]. TLet ",,...," ,7

1’ n’ n+l’ "
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be a basis of F., such that (Suﬂi,ﬂ.) 3 1., We ncw calculata

1 ] “1)]
Q =3 : JN = e 2 el ',.= 1L 50 00
the values L3 i’J(y ) (SN’YWl nj) i,3 1,2
Of course, zi 3 a aj i and, due to Thecrem 4,1 (ii),

3 s J 0 (Eety M) ety m 0, @)y, W),
o vN,y) ?

Yy € 27 (a.a.).

Suppose now that 1 is not greater than n. Then for every

£ ¢ V(N,y), (f-c(y,N),ﬂi) =y, -y, = 0 which means that

1, . =3 , = \J T a.e. i
i3 i, i 0, Yy e R (a.e.), if 1< n

Suppcse therefore that 1,j > n. Since now (c(y,N),ﬂi)

«
]
'y

n
1) (870, ([@E |y, 3, Yy ¢ ' (a.e.),

¥ i,3 > n.

Consider first i # j. Then Zor D, 2£ = £ - 2(£,7,)S ~,

Lemma A.2 is applicable and

@, . = y (£, ) (£,7.),(dfly,N)
1,] V(N,Y) L ] 2
= S (Df'ﬁw_)(Df'ﬂ])"z(df‘ny’N)

7(N,y)

= 0 ot gm0 - 20sn ) (B0 ) Y, (S ]y, )
V(N,y) 1 J 1 J

= -3,
1,3
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; - and (S 7N.,n.) = 0. This means that
since (S’ni,ni) 1 uﬂL 5 a

n . .
aij=0, Yy ¢ 27 (a.e.), Yi % 5.
Hence 2, 3 may be different from zero only if L = j > n.

df

et 2 = a(y,N) = a2 (y,N). We now prove that 2, j(y,N)

n+l,n+l

= a(y,¥), Ty ¢ 2% (a.e.),7i > n. Indeed, zake j > n+l and

Df = f - Z(f; (nn+l + WJ)/\/2)Su((n

- 2 _ - 2
(fy ‘j) - (Df"n“'l)

ae1 t nj)/VZ). Observe that
and that D satisfies the assumpticns

of Lemma A.2. Hence

(f,"»‘ )Zuz(df\Y:NI = J (Df,ﬂ )2~2(df‘y’N)

9]
(1]

n+1l
TN v) v (N, y) a+l
5’ 2
= (£,7.) uz(df]y,N) =a. .
'](N'y) ] ]’J
as claimed.
Up to now we have proven that for every i,j =1,2,...
there exists a set Ai 3 of ;l—measure one such <hat
?
= - = 2 S A, L, " X, . = £z
(Sg. 71 73) =3 5, Vy ¢ A, 4o where 3, . =0 fox
i {nacr i #3 and 1i i(y,N) = a(y,N) for L > n. Since there
are at mcst countably many such sets A, . we can conclude

s

that thers exists a set A such that “l(A) = 1 and

o
-
[}
'

s -
=

h
.—A

a(y,N) i =3 >n

Qf cocurse, (A.10) defines SV v uniquely (up to a set of

’
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ul'm“'“r‘ zero). Consider now the following operator

KN,y’ P1 > Fl’

Ry g8 = Ay, M (I-c0)s (I-23)E, Ve e P
It is easy to check that for every y ¢ 32 (xN yni'nj) = 0
ifi<nori#jand (KN,yﬁi’ri) = 3(y,N) if i > n. This
means that
= = N). (I- -g* .
(A1) sy =K T AN (I-a)S (T-ap), Yy e A
Since 3(y,N) = § (£,n )Zw (dely,N), 2(-,N) is -measurable
- s - s ’ n+l __2 ) ’ 2. '_Ll
and l
| 2
Snﬁ(YyN)ul(dy) = fn 5(f,ﬂn+l) uz(dfler)ul(dY)
R R F
1
0 e han s s )
J 7 n+l’ o 5 n+l’ n+l

1

To complete the proof we only need to show that the
function 2(+,N) = a(+) does not depend on N, since letting
h(y) = 2(y) we shall prove (iii).

To prove this, take two information cperators N, and N

1 2
cf the form (4.6) with card(N,) = card(Nz) =n., Let Q
Se as in Lemma A.l. Taking Thel Q*;n+l we have
! 2
aly,N)) = g (£, 1) sy (dE]y,N))

- 2
= § (Qf, 7, )%, (dEly,N),



and due to (A.3) of Lemma A.l, we get

2
a(y,Ny) =£ (£,8441) uy (Af|y,N,) = 2(y,N,).
1

This completes the proof of part (iii) as well as the proof

of Thecrem 4.1. [ ]
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