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Abstract

It is widely believed that order of exactness is a gcod
neasure of the quality of an algorithm for numerical guadrature.
We shcw that this is not the case, by exhibiting a situaticn
in which the optimal algorithm does not even integrate con-
stants exactly. We alsc show that there are situaticns in
which the penality for using equidistant nodes is unbcunded.
Tinally, we shew that the complexity of obtaining an g-
approximation can be an arbitrary function of ¢, i.e.,, there

is no hardest guadrature problem.
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1. Introcduction

In this Introduction, we use terms such as "algorithm, "
"infcrmaticn," "cptimal," etc. without definitiecn. They are
rigorously defined in Secticn 2.

We consider the quadrature problem, and ask the following
questions:

1. What is the relation between crder of exactness and

optimaiity of an algorithm?

2. Are equidistant cr rcughly-equidistant nodes nearly

cptimal?

3. If ccmp(e) denotes the complexity of finding an

c-approximation, what kind of function can ccmp‘be?
We show the following:

1. There is no relaticn between crder of exactness and

optimality.

2. The penalty for using (roughly-) ecuidistant ncdes

can be unbounded.

3. The complexity, ccmp(sg), can e (almecst) any acn-
decreasinrg function cf ¢ such that lim <cmp(s) = +=x
e-vv

by

n

th

In the remainder of this Intrecducticn, we briefly discus

gach cf these issues in turn. citing the evidence that led

us tc ask these guestions.



(1.) order of exactness and optimality. Many people
believe that maximizing the order of exactness of a quadrature
rule (i.e., having it exactly integrate polynomials of as
high a degree as possible) is one of the gocd ways to choose
a quadrature rule, as may be seen by reading the chapter cn
quadrature in almost any numerical analysis textbock. (When
the ncdes are equally spaced, this leads to Newton-Cotes rules:

when they are allowed to vary, this yields Gaussian rules.)

']]

urthermore, the literature abounds with situations in

which scme exactness condition is either impcsed a2 pricri
cr is necessary. As an example, suppose the integrand has
r>1 Lz—derivatives, the rth being given an a-priori Lz—bound.

The Sard theory [8] only considers linear algorithms which

are exact for polyncmials of degree r - 1. Hcwever, this
exactness ccndition need not be stated as an assumption., It
can te derived from the facts that any homcgeneous algcrithm

(a1

with Zinite errcr must integrate pclyncmials of <degree r - 1
exactly, and that linear cptimal algorithms exist, see [ 10,
Chapter 3].

On the cther hand, ctcrnyj [©] has shcwn that the
rectangle rule (which is exact cnly for cecrnstants) 1s optimal

for integrating periodic functions with r > 1 L -derivatives.
x

Hence, there is no general relation between the smocthness cof



the integrand and the degree of exactness of the cptimal

rule. However, it may be shown that for this class of inte-
grands, any homogeneous algorithm with finite errcr must inte-
grate constants exactly.

Hence we see that in the examples presented above, any
homogeneous algorithm must integrate constants exactly if it
is to have finite error. Is this true in general?

In Section 3, we show that the answer to this problem is
negative. In fact, we show an éven strenger result, We ‘
construct classes of integrands for which the optimal algorithm
dces not integrate constants exactly, yet the nth cptimal

algorithm has finite error which is =(n l) as n - =,* Hence

this algorithm provides a strcng negative counterexample: it

is not exact Zor constants, yet is optimal, has finite error,
and 1s convergent.
Hence, there is no basic ccnnecticn between order c2

exactness cn the one hand, andé finite errcr. cgnvargence, Cr

cptimality on the other.

*In this paper, we use the classical C-nctation, as well as

- and 2-notation. If £ and g are Zuncticns, then

£ = a(9) iff g = O(f)

0(g) and g = 0O(£f).

)]
]
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(2.) _Are roughly-equidistant nodes close to optimal?

In all of the many classes of integrands considered in (101,
roughly-equidistant ncdes were (to within . constant) optimal

points of evaluation for the integrand. Moreover, it is shcwn

in [4]) that equidistant nodes were optimal for the problem
cf integrating functions whose total variation was a priori
bounded,.

In this true in general, i.e., are rcughly-ecguidistant
ncdes always almost-optimal? One reason to believe that this
might be so is based on the fact that (as long as class cf
integrands is balanced and convex) an adaptive choice of nodes
is never better than a nonadaptive choice, see [10,Chapter 2.5].
Hence, there appears to be no reason to do extra evaluations
in scme "critical" subinterwval, since letting the pcints of

evaluaticn depend on the integrand is no better than havin

them independent of the integrand. That is, it wculd ke

v

1]

o

ascrnzakle zo expect that the points of evaluaticn shculd b
more-cr-less evenly distributed throughcut the interval; that
is, it should suffice to consider ncdes which are rcughly
equidistant,

Tn Secticon 4, we show that this is neot the case. Wwe
construct a class of integrands. as well as an optimal chcice

cf evaluation pcints for that class which are not equidistant.



Moreover, we show that the penalty for using roughly-equidistant

nodes is unbounded.

(3.) Is there a hardest quadratura problem? Bakhvalcv

has shown that for any a > 0, there is a class of integrands
for which the g¢-complexity of quadrature is 9(5_3) as ¢ - 0.
Is this the worst behavior for the eg-complexity? 1If nct, is
there a worst ¢-ccmplexity function, which would correspcend
to a hardest quadrature prcoblem? In Section 5, we shew that
the answer is negative. TIn fact, the nth minimal error can
go to zero arbitrarily slewly: for any "reascnable" furction
4 for which 4(0) = 0 and 4 is monotone increasing, there
is a class of integrands for which the nth minimal error is
1
‘a(y(;)) as n » =, This is used to show that the c-complexity

Y

can be almost any nondecreasing function of ¢ such tha

ot

lim comp(g) = +x,
-0

™



2. _Preliminary concepts.

In this Section, we define the terminology used in the
Introduction, and introduce some results from [10].

Let F be a balanced, convex subset of the Riemann-
integrable functions on [0,l1]. We wish to approximate the

solution cperator S: F - R given by

1
(2.1) SE: = ‘/ £(t)dt VE e F.
: o

In what follcows, we often refer to the problem (S,F). We
suppose that all we know abcut an integrand is its values at

a finite number of points in the interval. Hence, given a grid

.= 1
(2.2) a := (0K tl < t. <...< £ < 1},

2

we cnly know the information

[

(2.3) NoEoe= [£(E)) ... E(E )] J

[

of cardinality n. An algorithm using this infcrmaticon is any

0]

mapoing = NA(F) - B; the zlass c¢f all such algcrithms i
dencted by §(NA,F). The (worst-case) error <f an z2lgcrithm

3 1s defined to be
(2.4) e(s,F) := su

We wish to find, for each information cperator NA: =~ R,



the best algorithm possible, i.e., the one with smallest errcor.

Let
(2.5) e(NA,F) := infle(s): 4 € §(NA,F}

denote the optimal error from §(NA,F), i.e., the smallest errzr

among all algorithms using Na. Then results frem [10] vield

that

(2.6) e(NA,F) sup{|Sz|: z € F N ker Na}.

Moreover, Smolyak's lemma [3,10] tells us that there exist

coefficients al,...,:n ¢ R such that

(D
(83
*
1]
|

.7 = .
(2.7) e(NA,F].

where * is the algorithm

th
')J

(h

(2.8) o* (N £) = £0 . oz £(t,) v
A i=1 i i

there always exists a linear cotimal error algcriihm

That is,

s}

fo F using NA

Next, we wish tc chocse, for any positive integer n, the
best possible information of cardirnality n. Trem (2.53)
we see that this may be dore as follcws. Let
(2.9) e(n,F) := inf e(N ,7)
A L)

(the infinum being cver all  satisfying (2.2)) te the n-th



minimal error. If there is a grid a* satisfying (2.2) such that

(2.10)  e(N,F) = e(n,F),

then N _ is an n-th opntimal informaticn cveratcr. Let §n(F)

Y
denote the class of all algorithms using information of
cardinality n. If »* is an optimal error algorithm using the

n-th optimal information'Na*, then
(2.11) e(s*,F) £ el(s,F Yo € ¢n(F).

Hence, »* 1s an n-th minimal error algorithm.

Finally, we come to the notion of problem complexity,
under the model cof computation introduced in [10]. (The main

features of this model are that each arithmetic operation has

n

unis cost, and that evaluating any £ F at any point in [0,1l]
has fixed finite cost c:; we generally expect < >> 1 in practice,)

Let ¢ > 0 be a given errcr critericn. We define the

problem complexity

(2.12) comp(e,F) := inf{comp(s): e(s,7) £ c}.

-

comp () denoting the ccmplexity of the algorithm . That is,
the problem complexity is the infinum cf the complexities of 2all

algorithms whose error does not exceed . Results from [10]

vield that



(2.13) comp(eg,F) = (c+a)m(e,P) - 1

B

where a ¢ [1,2] and the e-cardinality number m(e,F) is given by

(2.14) m(g, F) := inf(n ¢ Z: e(n,r) < e},

Roughly speaking, the e-cardinality number is ‘he functicnal
inverse of the n-th minimal error. sSince ¢ >> 1, (2.13) and

(2.14) imply (roughly speaking) that
- -1
(2.153) comp(g,F) ~ ce “(¢).

Moreover, the linear optimal error algorithm using n-th optimal
information (where n = m(e.F)) is (rcughly speaking) an cptimal
complexity algorithm for sclving the problem with error =

L)

since this algorithm has complexity at most (c+2)m(¢,F) - 1.
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3. Exactness for constants is unnecessary.

In this Section, we show that a finite-error algcrithm
need not integrate constants exactly. This is done by showing
an even stronger result: we construct a class of integrands
for which the n-th minimal-error algorithm is not exact for
constants, yet has error which is a(n_l) as n - =,

To do this, we choose r ¢ (0,1), define $: [0,1] - R by

r
(3.1) y(e) := ¢t D tgl),
and let
l,=
(3.2) G := (g ew (0,1): g(0) = 0 and [lg'!' < 1},

1, } . .
where W (0,1) is (as usual) the space of absolutely ccntinuous
g such that g' ¢ Lw(O,l) and "." is the LE(O,l)—norm. Then
we take
(3.3) F := {£:[0,1] > R|Rf ¢ G}

as our class of integrands, where

.—1. — -
(3.4 (RO (x) s= L0 0 Th
v )
_ %f(xl/r)xl/r—l-

. - . 1 ;
Using the change of variables t = 4§ ~(xX), we have
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1
(3.5) SEf = éf(t)dt - é (Rf) (x)dx = SRE VE e .

Hence, every element of F 1is Riemann-integrable. Morever,
F contains nonzero constants,

As we will see below, the problem (S,G) is easy toc
analyze. Hcwever, we are more interested in the problem (S,F),
since we will be able to construct optimal error algorithms
for this problem which do not integrate constants exactly.
Hence. we need to investigate the relations between these two
orcblems.

We first consider information for the problem (S,7).

Since there exist f ¢ F such that £(0) is infinite, we only

consider information of the form

A 7 £ .= < z Y¢ =1
(3.9) ha- : [-(tl) e (tn)] £ = F,
where
(3.7) a := [0 < £ <eKe g 1].

m

For ccnvenience, we let £, := 0 and t 41 T 1: ¢

t = t_ . when tn = 1.

Next, we consider infcrmaticn for the vroblem ({(S.G).

Since g(0) = 0 for any g € G, we only consider informaticn of
the form

\] = ~ - —~ =
(3.8) %9 [a(x) ... g{x)] \{e £ G,



We let xO := 0 and xn+l := 1.

The relation between the two problems is given in

Lemma 3.1l: For information NA for the problem (S,F) given by
(3.6}-(3.7), let NZ be the informaticn for the problem (S5,G)

given by (3.8)-(3.9) with

(3.10) x, i= g(Ey) (L<i<n).

]
(a1}

(1)
n
(3.11) :Z(Nzg) i= T, . 2.9(x,) vg £ G

is a linear optimal error algorithm for G using NE, then

2

n i

am £Y .= © _F v £ =z ®

(3.12) 5 (N £) := g _, e £(z,) £ e

>
(>

o
fu
33
(o))

is a linear cptimal error algecrithm for F using 2

(3.13) e(s ,F) = e(N

(ii) The n-th minimal errors for the nrcblems (5,7) and
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Moreover, N 1is n-th optimal information for (S,F) iff N. is
a}

n-th ‘optimal information for (S,G).

Procof: It suffices to prove (i), since (ii) follows immediately
from (3.13). To show (i), let £ € F and set g := REf. Then
(3.5) yields Sf = Sg, while (3.10)-(3.12) yield UA(NAf)
= e (N~ . Her . , = a~, . . i o~ i

VA(VAg) ence ey, F) e(VA G) by (2.4) Since 5 is an

cotimal error algorithm for G wusing NK’ e($Z’G) = e(NZ,G).

Finally, e(NZ,G) = e(NA,F) by (2.6) and (3.5). U

We are now able to exhibit a linear optimal errcr algorithm

o € i(NA,F). To do this, chcose 3 as in Lemma 3.1 and define

a space L(3) of piecewise linear polynomials by

(3.14) L(z) := (g ¢ Wl’x(o,l): g(0) = 0, g(xn) = g(l),

g(x) = ¥t 7y oon [xi’xi+l] (0 <1< n)}.

Let [sl,...,sn] be the basis of L(3) for which
Si(xj) = sij (0 jJ < n+tl, 1 £ L £ n+l)
(3.15)  s_(x;) =0 (0 ¢ § < na-1)
Sn(x Yy = Sn(l) =1

and set
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1 1l-r l
== £t . (x)dx 1 i < n).
(3.16) 8, =%t .é s, (%) (1< i< n)
We then define
(3.17) 5, (9,8 = Ti_ ) B E(E

Theorem 3.1:

(i) ¢+ 1s a linear optimal error algorithm Zor F

A
using N .
J )
(ii) Let

i 7 *iv1 T %4 (0 < i< n)

Then
1 .n-1 2 1 2
(3.18) els, F) = e(N F) = e(Np,G) = I 5 8 + 35
orocf: (i) For g = G, we define the interpolant Pzg ¢ L(Z) bv
(3.19) (P~g) (x) := T._. g(x.)s, (%)
. ) ,Zg X = Li=l g i :i .

Thern (3.11) and (3.1%6) yield

g.

-’

3.20 -n~('. = SP~
( ) Eq) 3

Tollowing the technigues of [9, pp. 30-31], we see that =~ 15 a
linear optimal errcr algorithm fer G using NT' Hence, Lemma

-

3.1 yields that s, is a linear cptimal errcr algcricthm for F

-

using N,

(ii) It suffices to prove the last equality. Define



rx - X fer x e [x }(x +
i 172 X0
’ 1
(3.21) Z~(X) 1= ¢ X, X for x ¢ [2(xi+xi+l)' %41
X-X for x = [x_,1].
n n
N

As in [9, pp. 55-57., we see that
(3.22) e(N~,G) = Sz..
A ha}
A shecrt calculation vields
1
(3.23) Sz~ = = T
A 4

The result follows from (3.22) and (3.23). [

Remark 3.1: The prccf of Theorem 3.1 establishes an even

stronger result, An algcrithm is a strcngly cptimal errcr

algerichm if it produces a best pcssible approximation toc S

for every £ F (rather than fcr just a wcrst-case £ = F).

m

Since ox is a strongly optimal errcr algorithm fcr G usina
Nz, we find that 2, is a strongly optimal error algerithm

for F using NA. O

in

We ncw shcw that for -

£ (N ,7) has nc "crder cf exactress," i.e.. it does not

~ =
~

A
-

even integrate (ncnzeroc) ccnstants exactly.

Thecrem 3.2: Suppcse that r = (5,1). Let |c| £ TTT;T , SO

that the ccnstant functien Z: [0,1] -~ R given Ly

-
-

3

1 . . -
(E’l)' the cptimal errcr algcrichm
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£(t) := ¢ (0t 1)
belongs to F, Then
Sf - »» (N £ = sgn c.
sgn ( ;;A( A )) g

Hence, » dces not integrate nonzero contstants exactly-
A .

(3.24) = (N f) = 0 = Sf.
A A
We ncw ccnsider the case ¢ > 0., Let g = Rf, i.e.,
l -
(3.25) g (x) =f_x/r L

Then r = (E'l) implies that g 1s monotone increasing and

»

strictly concave on [0,l]. Hence

in

(3.26) g(x) > (P;g)(x) a.e. x [0,1].

So (3.3), (3.10)-(3.12), and (3.20) yield

as reqguired.

Finally, when ¢ < 0, the same technique yields
(3.28) SEf < @A(NAE). O]

We ncw determine nth optimal information for F., Let
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a* and Z; denote the grids

. 21 . 1/r
3,29 * = 0 t* e t* 1 * e= (——
( ) a* (0 <&y << exl } with £* ey
(L1 <n)
and
(3.30)  3* = (0 < x* <...< x* < 1) with x* ;= —2i—
n 1 n i 2n+1
(1< i< n),
respectively.
Theorem 3.3:
(n,F) = ) = —
e(n, = e(n,G) = an+o
Mcrecver,
e (N~,G) = e(n,G) iff 4 = ar,
A : o
and
e(N ,F) = e(n,F) LEE & = A%,
) n
Procf: Immediate frcm Lemma 3.1, Thecrem 3.1 and minimizing

the right-hand side of (3.18) subject tc the ccnstraint

s, o= 1, B

i=0 ~i
Hence, sampling at the points (t*,...,t;) is nth cptimal
information fcr the class F of integrands. ©Note that the
s C o oas s - .o, 1
nth minimal error is finice for all n > 0. and is 3(n ) as

n - =, Thus we have fcund a situaticn in which the nth minimal
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error algorithms all have finite error and are convergent,

but do not integrate constants exactly.

Remark 3.2: We have shown that 9, does not integrate constants

l * . 3 [}
exactly when r ¢ (E’l)' One can show that the nth minimal
error algerithm ;3 _ dces not integrate constants exactly when

11 , n
r ¢ [2,3 o) [E’l]' We dc nct know whether this assumption on

r 1is needed. In fact, numerical testing indicates that the

assumption may not be necessary. E]
We ncw discuss some open questions.

Problem 3.1: Although we kncw that the nth minimal-errcr

algorithm dces nct integrate constants exactly, we do nct kncw

what the penalty is for using a guadrature rule that integrates

0

ccnstants exactly. . For instance, if [Un}n—l is a seguence cf

guadrature rules which integrate ccnstants exactly, and there

)

-
—

. -1 . o
exists M > 0 such that e(wj,F) < Mn for all suffic

ently lar

(59}

.

d ¢

(1)

«
D
fu

nes

}ae

n, then the complexity penalty £for using (3n: -1
(

.

= . . . . . ' A
}n—l’ in computing an g¢-approximaticn is bounded as - 0.

(4]
*)

3&*
n

In such a case, it may be worthwhile to use the (perh

v

ps

simpler) rule CI rather than . . Dces such a seguence
3

Prcblem 3.2: Althcugh D, dces not integrate constants
n

r-1 27-1

exactly, 3& integrates the functions f(t) = t and £(t) = ¢
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exactly when tn = 1. TIs there a function £ which is inte-
grated exactly by 2y for all n? If so, does there exist a

n
different class F of integrands for which the linear optimal

error algecrithm o using nth optimal infcrmation is ccnvergent,

yet for which the cnly element of F which is exactly inte-

grated by o for all (sufficiently large n) 1is the zerc Zfuncticrn?

~

—
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4. Rcughly-equidistant ncdes can be terrible.

s

In this Section, we show that the penalty for sampling at
almost eguidistant toints (rather than optimal points) is
unbcunded, whether the penalty is measured by error cr
complexity.

We define F as in Section 3, but now with 0 < r < %.

Recall that Thecrem 3.3 states that the nth minimal error is

2(n l) as n » », and that sampling at the points

21 )l/r

2n+l (L < i< n) is optimal.

t*,...,t*} with t* =
83 *) r o=
We ncw ask how clcse sampling at "roughly-equidistant”

nodes is to optimal. 1In crder to make this precise, we will

. - 3 3 m . .
use information based on a sequence of grids (a ]n which 1is
n

=1
cuasi-uniform (see e.g. [7].) That is,
(4.1) lim sup 'u(An) < +w
n->c
where

n 1,n n.n
tO,n =0 n+l,n =1
h := t, -t
i,n i+l.n i.n
4.2
( ) h(én) = max h,
o<ign M7
r h(An)
max if t # 1
o<i<n 'i,n n,n
2 (a) = <
*n h(a_)
max if ¢t =1
Logi_gn-l i,n n,n




(For example, a sequence of equidistant grids is quasi-uniform.)

cf optimal grids is nct

@x
rRemark 4.1l: The seguence [A;}n_l

quasi-uniform. However, a* is the image of Z; under the

o]

transformation ¢, and {d;]n=l

Ed

is quasi-uniform. That is,

even though the optimal grid sequence is not quasi-uniform,
there is a change of variables x = £ such that the tfansformed
grid sequence is quasi-unifcrm. Of coursé, this is precisely
what is dcne in practice to remove the singularity at the

crigin. ]

Wwe then have

Theorem 4.1: e(NA ,F) = ¢(n_2r).

Proci: Let

4 X « = ) ~ I

(4.3) 8 ¢ [O<X1,n< <x oo L1

with

(4.4) e= w(t, ) =t " (0< i< n+l)
' ¥i,n TN ¢ T Fion N L

and let
- e _ P Y

(¢.3) Y10 T %iv1n T ®in (0<1gn)

Then Thecrem 3.2 vields



2

. ).
in

n
(4.7) e (N, F) = 9(2,_4 ¢
n

,

In what follows, we assume that T > 0; the grids for which

s

S, o = 0 are handed analogously.
n,

We next estimate 3 ce s 8 By quasi-unifcrmity

O,n”’ n,n’

of (a4 )" ., we find that there exists a > 1 such that
n ' n=1

1
(4.8) 2l S8 0 £
and so
i iz
(4.9) 2({n+1l) < ti,n n+l’
We first consider 3 = hr . Then
O,n O,n
r
1 2
(4.10) - —— £ ¢ L™=
2T ne)T T R T (et
New let 1 = (1,...,n}. By the mean-value theorem
(4.11) 5i,n - ﬂ'(*i,n)hi,n’
where
_ i w(iel
(4.12) “i,n N (ti,n’ti+l,n) [:(n+l)' a+1 b

Since y" < 0O on (0,1l). (4.11) and (4.12) yield

. 13 C2(isl) p—
(4.13) VR ntl )ni’ns fi,ns K (3(n+l)) i,n’

Hence (3.1), (4.8) and (4.13) yield




r 1 .r 2-r, 1 .r 1l 1l-r
(4.14) Cz2—r(n+l (i*l) < 6l,n £ ra (n+l) (i)
(L< i< n)
Let
n 1.2-2r
°n,r Lio1 (i)
2
(4.15) c.(a,r) = —=
: 1 ’ 4-2r
o]
Cy(2,r) t= max( 234—2r,:2r}.
Then (4.8), (4.14) and (4.13) yield
C.(a,r) C.(a,r)
(4.16) L r(l + <. r) < Zi—l 5i.n < —2___;—(1 + o
(n+1) ’ - ’ (n+1) s =

. 1
Since r < 7, ¢«

2 n,r
i.e.; there exists . > 0 fcor which cho . < z_ for all n.
Hence (4.16) becomes
Cl(a,r) R Cz(a,:)
(4.17) ———F/ < I _, % % (L + <)
(n+1) - (n+1)
The result now follecws fream (4.7) ard (4.17). [
As an immediate consequence, we see the penalty, in

terms of cptimal errcr. for using

Corollaryv 4.1:

guasi-unifcrm nodes:

23

).

is a convergent series of positive terms,
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We next investigate the penalty, in terms of ccmplexity,
for using quasi-uniform information. Let comp*(¢,F) dencte

the ¢-complexity when using information based on a quasi-

unifcrm grid sequence, i.e.,

(4.18) comp* (¢,F) := inf(comp(y): e(s,F) < ¢ and

G
C
o
]
.—4
>3

Then results from [10] yield that

(4.19) comp* (¢,F) =8 (m* (¢ ,F)) as e > 0,
where
(4.20) m* (¢,F) := inf(n: e(NA ,F) < ¢}

n

may be thoughtof as an g-cardinality number for iniIcrmation
based on a gquasi-unifeorm grid segquence.

wWe then have

Czcrollary 4.2

cemp* (2 . F)
comp(‘:’.:F)

Precef: From (4.20) and Theorem 4.1, we have
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Hence (4.19) and (4.21) yield

(4.22) comp* (e, F) = o (( ) as e = =,

;)l/zr

€

On the cother hand, Theorem 3.3 implies that
1

(4.23) m(e,F) = 9(;) as g > o,

Hence (2.13) and (4.23) imply

(4.24) comp(e,F) = 8 () as e > =,

™ |

The Corollary follows frcm (4.22) and (4.24). O

Hence, Corollaries 4.1 and 4.2 tell us that the penalty
for using information based on a quasi-uniform sequence cf
grids, whether measuréd by error or complexity, is unbcounded.
However, the cptim;l grid sequence becomes quasi-unifcrm after

a change of variables. This leads to an cpen guesticn:

-
=

It

Problem 4.1: Does there exist a bounded convex class

O

11

fu

integrands such that the nth minimal errcr is finite for
n and converges to zero as n -~ =, and fcr which there is no
change of variables under which the sequence cof cptimal grids

becomes quasi-uniform? O



5, Quadrature is Arbitrarily Hard

In this Secion we show that F may be chosen so that

the nth minimal error goes to zero as slowly as we like.

the ¢-complexity can be a function which gces te infinity

(for ¢ » 0) as quickly as we desire.

result,

To this end, we let y¢: [0,2] - R.satisfy

1

See [1]

for a related

b € C[O!Z] ncC (0)2]:
y' > 0 on (C,27,
(5.1)
v (0) = 0, and
. (e . ,
lim sup £ >0 (possibly infinite).
>
Define a seminorm [-|b and a norm H.”l on Cl[O,l] by
1 R i
(5.2) |£], := ess sup lfgst)giff)!
’ 0t <1 ¥
and
(5.3 el e= 1El
) " JW 1ax[‘Af]L (0,1)° 'f'ﬁ}.
Let W be the Banach space given by the "." -closure cf
l . v
C [0,1] in Lw(O,l). Finally, let
(5.4) F = (£ ¢ W ; £ < 1}

26

Hence,



Remark 5.1: oOur motivating example is given by j4(t) := t=

(0 < @ < 1), in which case W$ = Lip a, (see e.g. [5]).

Another y satisfying (5.1) is y(t) := (zn l)_

t , wWhere

2 > 0. Note that (5.1) tells us that ¢ is a modulus of

continuity, see [6]. ]

Our results will be first stated in terms of the function

g: [0,1)] > R given by

1 h

w J owle)at h>0
(5.5) . (h) = 0

0] h =20

By L'Hospital's rule, 5 1is continuous. We will first show

1 . .
that e(n,F) = p(;). We will then shcw a mild smoothness
condition on ¢ which will imply that ,(h) = 2(4(h)) as h -0,

This will yield the result e(n,F) = g(w(i)) as n - =,

Remark 5.2: We briefly comment con (53.1). Recall that u(%)

will (essentially) be the nth minimal errcr. The first
three conditions are equivalent to the reguirement that the
nth minimal error decrease as n increases, gcing tc zerc
as n > =, The final ccnditicn tells us that the nth minimal

. -1 . .
error is {(n ) as n -~ » (i.e. the problems are not toc easy):
moreover, if it does not hold, then w' censists only of

]

constant functions. E]
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We first determine the optimal error, the nth minimal

error, the nth optimal information, and the nth minimal error

algorithm in

Thecrem 5.1

(1)

with

and

(5.8)

with

(5.9)

The optimal error among algorithms using NA is

2 h 2h
1 -1 /i 1
e(N ,F) =73 ./how + Z?:l ‘/lw 5 ‘/ "oy,
8 0 0 0 '

h., := t, - t. (0 <1< n)

The nth minimal error is

e(n,F) =‘a(ﬁ)

N;f 1= [f(ti) f(t;)),
2i-1 .
t = on (1< ign)

is the unigque n-th cptimal information.

(iii)

(5.10)

The ccmposite midpoint rule

. l n
an N* £ o= —
'n(Nn ) n .

= >
i=1 F(FD)
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(with ti as in (5.9)) is an nth minimal error algorithm, with

o I U

(5.11) el ,F) = 5(3).

Procof (i): Let

(1(2¢,-2¢) 0g st
4 (2t-2¢t =
b ( 2 l) t, e e+ oy
(28,7 2¢) €, - ELhi_lg €<t
(5.12) zs(t) =< (2<i<n-1)
' y(2t-2¢, t, t =
v (2 1) i s < ti * 2 1
¥(2t -2t) t - lh Lt t
n n 2 n-1 n
y(2t-2¢t
Ly( n) e Stgl
Then 2z < F n ker N and
A &
(5.13) -ZA(t) < z(t) L ZA(t) (0Lt gl) 2z ¢ F ~ ker Na'

As in the proof of Theorem 3.1 (5.13) vyields,
1
(5.14) e(N ,F) = / z (t)dt .
8 0

So (5.6) follows from (53.12) and (3.14) by a straightfcrward
calculatioen.
(ii) follcws bv minimizing the right-hand side cf (35.6)

T h o= 1.

subject to the constraint Tio

1
(1ii) Let £ € F and set h = 5;. Then
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t* t¥
i £ 1 *_
5.15) £(t)-£(t¥)|dt < y(2t*-2t)dt
( /t*.'—h‘ " /t*{-h '
1
1/n

1
2

and, analogously,

t;+h 1 1/n
(5.16) /i* |£(e)-£(t%) At < 5 /é 4 (t)dt.
i

So (5.5), (5.15) and (5.16) yield

1/n

1
(5.1 | [ £(mae - g (D) < 2n.7 [ stea
0 0

y(t)de

0
o}
S~

. 1
Since £ ¢ F is arbitrary, we find e(oan) < ;(;). On the

m

1
* »* = —
@LNn,F), so that e(an,F) > e(Nn,F) g (7).

other hand,
n n

Hence, e(gn,F) p(i). completing the proof. ]

fl

We now turn to complexity. Using (2.13) and (2.14), the

results of Theorem 5.1 immediately yield

Theorem 5.2:

(1) The ¢-complexity satisfies

(5.18) (c+l)m(g,F) - 1 < comp(e,F) < (c+l)m(g,F)

where
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(5.19) m(e,F) =7

(ii) 0 with n = m(¢,F), is an algorithm for which

(5.20) E(@n;F) £ e and comp(mn) < (c+l) m(e,F). O

Hence 0, with n = m(¢,F) is (disregarding c¢ne arithmetic
operation) an optimal complexity algorithm for g-approximation,

and
(5.21) cemp(g,F) ~ —FT as ¢ > 0.

Finally, we wish to translate the dependence in Theorems
5.1 and 5.2 on  1into dependence on the original function
4. To do this, we impose a mild smoothness condition on w,

namely, that

(5.22) 3 := limMT}%l
n->0
exists and is finite, (Note that this holds for the functions

mentioned in Remark 5.1l.) Then L'Hospital's rule gives

p(h) _ _1
¥ (h) 1+8°

(5.23) lim
hoo

Using (5.23) and Theorems 5.1 and 5.2, we have

Theorem 5.3

(1) e(n,F) -~ == 4(=) as n -~ =
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(ii) comp(e,F) ~ "7 e+ 1 as ¢ » O. O
gy ((1+B)e)

Since ¢ 1is essentially an arbitrary function, this tells

us that quadrature can be arbitrarily hard.
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