AVERAGE CASE E-COMPLEXITY
IN COMPUTER SCIENCE .
A BAYESIAN VIEW

July 1983
J. 8. Kadane
Carnegie-Mellon Universily
G. W. Wasilkowski

Columbia University

CUCs-65-83




TABLE OF CONTENTS

1 Worst Case Analysis

2 Average Case Anaysis

3 A Bayesian Inlerpretation of the Average Case Model
4 An Application to Factor Analysis

5 Conclusion

VD e e
O W o O s




Acknowledgements
The authors are grateful to H. T. Kung, M. I. Shamos and I. F. Traub for theirr roles in
bringing them together. Joseph B. Kadane wa‘s supported in part by ONR Contract 014-82-
K-0622 and G. W. Wasilkowskl was supported 1n part by the National Science Foundation under

Grant MCS-7823676.




(38

Abstract
Relations between average case ¢-compiexity and Bayesian statistics are discussed  An algorithm
corresponds to a decision function. and the choice of information to the choice of an experiment
Adaptive information 1o ¢-complexity theory corresponds to the concept of sequential experiment.
Some results are reporled, giving ¢-complexity and minimax-Bayesian interpretations for factor
analysis. Resulls from ¢-complexily are used lo establish that the optimal sequesntial design 1s DO

better than optimal nonsequential design for that problem.




This paper shows that average case analysis of algorithms and information in ¢-complexity theory
1s related to lo optimal decisions and experiments, respectively, in Bayesian Theory. Finding such
relalions betwern problems in previously disjoint literatures is exciling both because one discovers

a new set of colleagues and because results oblained in each literature can illuminate the other.

Sections | and 2 explain, respectively, the worst-case and average-case analysis of algorithms.
Section 3 sstablishes the correspondence mentioned above.  Finally, Section 4 discusses some
results from the average case ¢-complexily literature, and its interpretation for Bayesians. We

hope that the relation reported here can lead to further fruitful results for both fields.

1 Worst Case Analysis
In this section we briefly present some major questions addressed in ¢-complexity theory. We
first discuss the worst case model which is conceptually simpler than the average case model.

discussed 1n Section 2.

An expository account of e¢-complexity theory (which s also known as information-centered
theory) may be found in Traub and Wozhniakowsk: (1983). The general worst case model is
presented 1w two research monographs: Traub and Wozniakowski (1980) and Traub, Wasilkowski
and Wozniakowski (1983). The first of these has an extensive annotated bibliography. Reports

on the average case model are cited in Section 2.

A simple integration problem provides 3 suggestive illustration. We wish to approximate
1

S f(t)dt kpowing n values of f at points t N(f) = [f(t’>. f(tn)]. and knowing that f
0




belongs lo a given class F of functlions where F is a subclass of a linear space F]. This means
that for given information value y = N(f) we approximate the integral of f by ¢(y) where
p;IR" 2 Risa mapping c¢.lled an algorithm. In the worst case model discussed in this section,
the error of g is determined by its performance for the “bardest” element f, Le.,

1
e“(p.N) = SUP, | y f(dt - p(N(E) | .
0

The radius of information r“(N), is defined as the minimal error among all algorithms that use

N, and the optimal slgorithm ¢° 15 defined so that its error is minimal, Le.,

(g N) = 1P (N) - ipf e“(p.N).

Suppose now that the poinls 1 may be varied Then N*(f) = [f(t:).....f(tl')] is nth optimal iff

the points t: are chosen to minimize the radius r“. Hence, roughly speaking, an optimal
|

algorithm p' that uses nth optimal information N*® approximates S f(tydt for every feF, with

0
minimal error among all algorithms that use b function evaluations. Observe that these concepts

are independent of a model of computation.

In ¢-complexity theory we are interested in minimizing errors as well as cost. More precisely,

suppose we are given ¢>0. Then the problem is to find information N, and an algorithm ¢ that
1

uses N, so that ¢ approximales S f(udt, Vf( F, with error not greater that ¢ and the cost of
0

computing ¢(N(f)) is minimized. Observe that this cost (denoted by comp(g.f)) is the sum of

two terms: the cost of computing y = N(f) (denoted by comp(N.f)) and the cost of computing

p(y) given y (denoted by comb(g,y)). Of course, comp(g.f) 2 comp(N,f). A major problem of




¢ -complexity cap be stated as follows: find N** and ¢"* that uses N** such that e“(p""N'M <

¢ and

sup comp(p**,0) = min{ﬂxp comp(g,f): ¢“(p.N) S ¢}

Of course. the choice of N°" and ¢°" depend strongly on the model of computalion, ie.. how
much various operations cost. In this section we discuss a very simple model, assuming that
comp (N,f) is proportional to n, say comp(N.f) = cen, where c is so large that comb(,'.N(f) 15
negligible for some optimal algorithm #" that uses N. Then to choose N** and " we must find
information with the minmimal number of function evaluations such that r“(N*") S ¢. Then for

," we can lake the oplimal error algorithm p' that uses N*°.

We now commen! on the assumplion that comb(g,N(f)) < < cn. For many problems there exists

an optimal algorithm p' which 1s linear, te., p'(y) * 'Z Y8, glsIR. Since an arithmetic

|

operation (we lake its cost to be umity) 1s less expensive than a function evaluation.

comb(g.y) = 2n-1 < < cn

Hence the above assumption is satisfied whenever p' is linear. This also explains one reason why

we are particularly interested in linear optimal algorithms.

We now indicate another important question studied in e-complexity theory. Recall that i our
example the information N is of the form, N(f) = [f(tl). f(tn)]. If the points t are given

independently of f, then N s called nonadaptive. If the L depend on previously computed




information values. N is called adaptive. Nonadaptive information is desirable on a parallel
computer and for distributed computation since the information can then be computed on various
processors at the same Ulme. This lowers sigmficantly the cost comp (N.f). Adaptive
information has to be computed sequentially which means that comp(N.f) remains nc. Hence, if

non
).

N™° is nonadaptive and N°® is adaptive, we prefer N™" unless r“(N") << r"(N This explains
why we are interested in the following question: when is adaptive information more powerful than

nonadaptive information?

We described some of the major questions addressed in ¢-complexity theory by using inlegration
as an example. The same questions can be asked in great generality where, for example, different
1
operators are considered instead of S f(t)dt, and different information operators N are studied
0
instead of funclion evaluations. For many problems optimal information and optimal algorithms
are known. Sometimes this information and these algorithms are new. Furthermore. for many
problems (including the integration problem) adaptive information is nol more powerful than

nonadaptive information.  The significance of this result 1s that adaption is widely used by

praclitioners.

2 Average Case Anaysis

In the previous section we briefly discussed the worst case model where the srror of an
algorithm was defined by its performance for the “hardest” f. For some problems this model
might be loo pessimistic . Researchers in ¢-complexity theory also analyze average case models.

three of which we present in this section. For simplicity we discuss only problems defined on




Hilbert spaces. This presentation 1is based on Traub, Wasilkowski and Wozmakowski (1981),

Wasilkowski and Wozniakowsk: (1982), Wozniakowski (1982) and Wasilkowski (1983a).

Let Fl and F_ be two real separable Hilbert spaces and let S.

s: F_oF,, (2.1)

be a continuous operalor. We call S a solution operator. For instance, we might lake S(f) =
1

S f(t1)dt which corresponds to the integration problem discussed above, S(f) = f which
0 P
corresponds 1o the approximation problem or § = A™ where Au = -2_:1 azulale which corresponds

to a differential equalion problem.

As in Section | we want to approxumate S(f) for every fe Fl but now with the average error s
small as possible. In order to define average crror we assume that the space F‘ is equipped with

a probability measure u, u(F) = 1, defined on the Borel sets of Fl.

To find an approximation to S(f) we must know something about f. We assume y = N(f) is

known, where now N is defined as follows:

n

N(f) = [Ll<f).x_,<f.yl).....Ln(f.yl.....yn_l)] «eR . (2.2)

where y = Ll(f). y, * Lfy. .. y.) (1 = 2, ..., n), and for every y ¢ [R" the functionals
Li(°.y) : FlélR belong to some given class L of measureable functionals. Such an operator N

is called an adaptive information operalor and the number n of functional evaluations is called

the cardinality of N, card (N) = o [n general, the choice of the 1th evaluation depends on the




previously computed information Yy v Yo If Ll (oy) = LI for every y then N is called

nonadaptive. Of course, for nonadaptive information N, N(f) can be very efficiently computed in

parallel.

To illustrate this concept assume. as in Section |, that Fl is a space of functions. Then N(f)
might coasist of function evaluations, N(f) = [f(tl>. f(tn)]. i.e., L(f) = f(ti). If the t's are
fixed then N is nopadaptive. Otherwise, if the selection of tz depends on the value f(t]) and so

on, then N is adaptive.

Knowing N(f) we approximate S(f) by p(N(f) where ¢ is an algorithm that uses N. By an

algorithm we mean any mapping from N(F:) - R into Fz‘ Then the average error of ¢ is

defined as

112

"M N) = { 5 ”sm - p(N(f))”Jp(df)} . (2.3)

F
!

where the 1i'egral in (2.3) is understood as the Lebesque integral.

We pause lo comment on definition (2.3)
® the average error of an algorithm ¢ is conceptually the same as the etror ¢“(¢.N) in

the worse case model, except the supremum is replaced by an integral.

® The average error of ¢ is well defined only if ¢ is "measurable” (or more precisely
only when HS(O) - p(N(O))“2 1s measurable in f). Since "unmeasurable” algorithms
might be as good as “measurable” ones, we would like to have the concept of
average error for gvery algorithm. [t is possible to extend the definition (2.3) so

that average error is well defined for every ¢ (see Wasilkowski (1983a)) but for the




purpose of this paper we shall assums that ¢ 1s chosen such that (2.3) 1s well

defined.

2
-

Of course. In

e The average error 1s defined 3s an average value of “S(f) - ¢(N(f))

-

i 1o
general (S(f) - (N(f))| can be replaced by a different error function E(s([). p(N(EY)

(see =.g. Traub, Wasilkowski and Wozniakowskl (1981), and Wasilkowsk: (1983a)).

Let

RNy = n}f et (g, N) (2.4

be the average radius of information N. Thea by an opltimal average crror algorithm we mean an

algorithm p' that uses N and enjoys the smallest error, 1e.,

¢"Hp N = RN, : (2.5

For a given integer n, let ‘Vn be the class of all information operators N of the form (2.2) with

cardinality not greater than n. We shall say that r'"*(n) 1s an nth mimmal average radius if

We shall say that N: from ‘l’n 1s nth optimal if the radiius of N: 1s minimal, Le.,

i (N:) = 't (n) (2.7

Using this notation. we now describe some of the major questions addressed 1n lhe average case
model. Given the problem, 1e.. solulion operator S, probability measure u. class of information
operators N and error tolerance ¢, find N°° and ¢"" with minimal (or almost mimmal)

complexity such that
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. rs ®
operators N and error lolerance ¢, find N™ and ¢°" with mmmal (or almost minimal)

complexity such that

F (,“.N") S e.

The complexity of the average case model can be measured in different ways. Depeading on the

probiem, sometimes 1t 1s defined as complexity of ¢ in the worst case, 1.e.

!SPEI compt(g.0).

We call this Case A. Somelimes complexity is defined by the average case complexity, which 1§

Scomp (g ) u(df),
F

1

which we call Case B. However, if we agree that the assumplions in Section 1 are satisfied the
search for opumal ¢°* and N°* can be simplified. namely. lo find o'" and N'7 we need caly to

find an n'th optimai information operator with the minimal n° such that

") < ..

*x

hers called Case C. Then the opuimal N'™ s N~ = N; and the opuimal algorithm ¢ is an
opuimal average error algorithm g thal uses N'*. The conditions which guarantes thal ¢~ 1s

lipear, i.e., p:((y‘, yn)) = Z

Y88 €F _, are also studied. Another 1mportant question posed 1D
i ol : -

¢ -complexity theory 1s when adaptation 1s more powerful than nonadaptation.

We end thus section by presenting the concepts of local errors and local radii.
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Let N be an mformation operator. For simplicity assume that N(Fl) = [R" Define a2 measure

4 on Borel sets from R" as
1N

-1
b A = u(NTCAD <=,;({feFl.N(f)eA})>. (2.3)

Of course, Mo, s 3 probability measure. Then there exists a family of probability measures
#. -1y on F such that u  are concentrated on Ny, Le., ,::.N(N"(y)ly) = 1, for almost

every y and

4(B) = S,,:.N<B|y),,w(dy>. (2.9)
N(B)

(For more detailed discussion see Wasilkowski (1983a)).  Such measures ,:,N(.ly) are called

conditional measures. Then the average error of an algorithm ¢ can be rewritlen as

N = IR,,S{FlS Iscer - ey H:/‘:.N‘df'y)} #oalY)

: S et <p.N.y):,,LN (dy), €2.10)
where

et (g Ny) = { S ”sm - p()’)l'zyz_N(df(y))}l[: (2.1

F
1

1s called a local average error of ¢. Let

2 12
r't (Ny) = {}r}f, S” S(f)-g ,;W(df|y)} (2.12)
Fl

be the local average radius of N. It is proven in Wasilkowski (1983a) that YNy, as a

function of y, 1s p - measurable. Hence, we have



g . 5 ave "-
(N (N (dy) (2.13)

IRn

and ¢° 15 optimal iff

eF (g Ny = Ny s nf, S”S(f)-g' ',,w(df|y). v y, a.e. (2.14)
: F
Finally, N: 1s nth optimal iff
r.vc(Nn)' = .Ln(f\l/n S{ér}fﬁ SHS(() -g ” Aan (df|y)},‘l'N(dy). (2.15)

R" F

3 A Bavesian Interpretation of the Average Case Model

Recall that the Bayesian scheme for the dssign of experimenls comes in two equivalent forms,
normal and extensive (Lindley, 1971). Ia the normal form, onme chooses a decision function
5(x), depending on the data, to mimmize expecled loss over both the sample space X and

parameler spaces (X

min S SL({)(X).G) p(x | #)dxd8. (3.0
= !
0 X

In the exlensive form, a Bayesian chooses an experimenl e and a decision d. after observing x but

not observing &, to

ug:nS dx u‘:’mS d8 Ltd.9.e.x)pif | x.erpix|e). (3.2)
x 9]

Comparing (3.1) with (2.3 and (2.4) for the normal forms. and (3.2) with (2.15) for the

extensive forms, we see identical forms, leading to the correspondence exhibited in Table L.




Tabie 1:
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Correspondence of Nolalion Belween Bayesian

Decision Theory and e -Complexity Theory (Case C)

Lancuage of Bayesian Decision Theory

L

p(é | x.e)

p(x|e)

expression (3.1)

experiment

data

decision function
decision

parameler

loss

posterior distribution
margipal distribution
of data

Bayes risk of
experiment

Language of ¢-Complexity Theory

| [sth-g] |’

'“:.N(' |y

information
mformation value
algorithm

value of algorithm
problem element
algorithm error

conditional
probability

distribution of N

squared radius
of information

In both cases A and B, rescarchers in ¢-complexily theory keep the crror and the cost of

computation separale.

ask about mimimal cost of computation.

and error were

represented in the loss

algorithm ¢ would mimimize

S L(g.N.p) u(df)

F
|

function L

that the optimal

They want lo guarantes that the error 1s not greater than . and then they

A Bayesian might prefer a formulation 1w which cost

information N and
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unconditionally. Observe that letling the loss function

Lip.N.D) = compip. < ( -1). (3.3)

y((,.N)

1w :“Ftp,m S ¢

where y((p.N) = {

0  otherwiss .

will yield a Bayesian formulation of Case B. However, Case A appears nol lo have a

correspondence with Bayesian statistics.

With the above as background. the role of adaptive information becomes clearsr to statisticiams.
Adaptive information 15 defined to be an N dependent on past values of y, thal is, an experiment
dependent on past data. Thus what researchers in ¢-complexity mean by adaptive information 1s
related to what statisticians mean by the sequential design of experiments. To ask whether
adaptation heips in the average case is 1o 2sk whelher sequential experimentation yields greater

expected ulility.

The average case models presented in s paper 1s nol the only one studied 1 ¢ -complexity
theory. We now present very briefly another model (see Wasilkowsk: (1983b)) which has no
correspondence in the Bayesian Decision Theory and whose conclusion (that probabilistic

algorithms are better than nonmprobabilistic aigorithms) 1s contrary 1o Bayesian Decision Theory.

In the model to be presented hers we have a class y of pairs (N,p) where, as always N is an

information operalor and ¢ 1s an algorithm that uses N. In general, ¥ 1s uncountable. Consider




a random varniable R with values in ; This random variable defines the following probabilistic
method: according to R, randomly choose (Na.pg> ¢ y and then approximate S(f) by x =
,R(Ng(f)). Observe that if R is constant, then this probabihistic method 1s an ordinary algorithm
discussed in this paper. For given ¢ > O and p ¢ [0.1] let IR(c.p) be the set of all random

variables R such that

prob (”s(f) - ,R(Ng(f))“ < e) 2 p.

Le., IR(e,p) 1s the set of all probabilistic mcthods which, with probability at least p. yield an
approximation with error al mosl . Now the problem 1s to find an optimal method, or
aquivalently an optimal R®. with minimal complexity among all methods from IR(e.p). Here the

complexity of R 1s defined by the average complexity, le.

S ( S comp (p.0) 4 (df) R(d(N.p)) .

y F

It turps out that for many problems the oplimal R", although discrete, 1s not comstant. This

means that 1n this model, probabilistic methods are betier than nonprobabilistic methods.

4 An Application to Factor Analysis

In this seclion we report some results from the average case e -complexity literature giving an
interpretation of factor analysis.  This and the correspondence between Bayesian statistics and
¢-complexily yields a Bayesian interpretaion of faclor analysis with some minimax slements.
much along the lines suggested by Manski (1981), Lambert and Duncan (1981) and Berger

(1983).
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Consider lhe problem of representing a linear space by a few vectors capturing most of the
variability in a particular sense. In a factor analysis one chooses any system of vectors spanning
the space spanmed by te eigenvectors corresponding 1o the largest cigenvalues of the covariance

matrix V. This problem can be displayed in the language of ¢-complexity as follows.

Let Fl be a separable Hilbert space (although statisticians will be more familiar with the large,
m
finite dimensional case Fl : R ., we prefer to talk aboul not necessarily finite spaces, since for

many interesting problems in ¢-complexity the spaces are infinite dimensional.) To represent this

space means to approximale the solution operator S, which for this case is the identity operator,

S =1

possessing partial information N,

N(f) = [(f.z]). (f.zn)]. (4.1)

Here z, are some vectors from Fl and (®,8) denotes the inner product in FI. Assume now that
the probability measure 4 on F‘ is unknown and what we kunow is ils covariance operator

V. Recall that V is defined by

(Vg,h) = S (f,g) (f,h) u(df), Vg.hﬁ?l (4.2)
F

m
and for F = IR . V is the covariance matrix of w. Of course, V is symmetric and positive

definite. Without loss of generality we can assume that V has finite trace (this is equivalent to

2

the assumption that S ” f

F
1

4(df) < + oo) since otherwise we cannot approximate S = I
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with finite error. Since p is unknown we replace the problem (2.15) by the following one.

Find N* and ¢° that uses N” such that

avg o5 . vg .
sx/xlp e " (¢ N, 1:}31;11‘ s"Jp e (g N (4.3)
where ¢""%(¢.N:u) denotes the average error of ¢ for a measure of 4.

This 1s. we believe, the ¢-complexity formulation of the problem studied in factor analysis. To
solve this problem we first fix N. From Wasilkowski and Wozniakowski (1982) it follows

immediately that

i%r sup 't ($.N ) = et (pUNLY) = TP (NG D) (4.4)

where ¢° is the spline algorithm that uses N and 4" is any orthogonally invariant measure. The

formal definitions of spline algorithms and of orthogonal invariance can be found in the paper
cited above. We only siress tht the spline algorithm 1is linear (i.e., is simple) and that Gaussian
measures are examples of orthogonally invariant measures. Hence from (4.4) we have that the
spline algorithm p' that uses N is oplimal in the sense of (4.3). Furthermore, the Gaussian

measure with covariance operator V is the “least favorable™ measure for every information N.

We now exhibit the opumal information N®. Let ry:. : (“;,j' | = 1) be the eigenvectors of

the operator V, ie.,

R NE P x;zx'z...ao. (4.5
] J



N = [(f.,,p. (f.;;;)].

From (4.4) and Wasilkowski and Wozniakowskr (19%2) 1t follows that

mf  anf osup e (pNow = e e N s BN L5

N o ¢ #

[

o0
) { Z k}l (3.7
!

i=n+
This means that N* defined by (4.6) 1s opumal and that the spline algorithm p'. which for this

informaticn has a very sumple form
o
2 “
p (y) = yn.y - (y,» oo y,) € R.
1=
is the umique optimal algorithm for the problem (4.3),

We now comment on lhe choice of mformation N*. Suppose that instead of N* one chooses N,

N(f) = [(f.zi). (f.zn)].

where 2o 2, spans the same space 2§ q]'. r):. Le.,
lin{Z 2 } = lin{nT, e 0},
! n ! [
Then information N° and N are equvalent.  More precisely, 1f ¢+ and g arc opumal
algorithms that use N* and N, respectively, then

pT N = gl (D, VEEF,

N




and
PPN ) = Y (N, for every g

Observe that N® defined above 1s nonadaptive. Il 1s natural lo ask whether N" remains opuimal
among all adaptive information operators. From Wozniakowski (1982) we know that adaplion 1s
not more powerful 1n the average if the measure u 1s orthogonally variant. Since for every N
the supremum 1o (4.3) 1s attained for such measures, thus implies that adaption does mol help in

our problem.

In the language of stalistics (we refer the reader to Table 1 as necessary), S = f i1s a random
variable, N 1s an experiment which gives w. for n chosen vectors zJ (j = 1, <., 0), the value of
the random variables (S(H.z}). which can be written in the finite dimensional case, z: S(e).
Note that the covariance matrix V of S in the finite dimensional case is the covariance operator
of u. Knowing the matnx V., we wish to find, for fixed n, optimal veclors 77:. 'l; to satisfy
(4.3), that 1s to mimmize, over experiments N and estimales ¢, the loss agamst the least
favorable distribution x for S. (This latter aspect gives rise lo the minimax character of the
criterion). The nature of this optimal choice of vectors r;: 1s that they span the space spanned by
the eigenvectors of V corresponding to the n largsst cigenvalues. This 1s exaclly the space of
possible factor analysis of V. We therefore have a Bayes-minimax interpretation of factor analysis,

and one that does nol appear to be avatlable in the statistical literature.

Another cooclusion 1s that the experiment N*. which 1s nonsequential, is optimal among all

sequential experiments.
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§ Conclusion

We believe that the relations between Bayesian decision theory and average casc ¢ -complexity
theory may have important consequences for both groups of researchers. ‘We have found io our
discussions that despite the similarities reported here, the perspectives of the two fields are rather

distinct. Only as we further explore the conneclions between these two areas can we determine

how much progress can be made in each by exploiting the relations reported here.
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