INFORMATION AND COMPUTATION

J. F. Traub
H. Wozniakowski

CUCS-64-83

Information and Computation

J. F. TRAUB

Department of Computer Science
Columbia University
New York, New York

H. WOZNIAKOWSKI

Institute of Informatics

University of Warsaw

Warsaw, Poland

and

Department of Computer Science
Columbia University

New York, New York

I. Overviewand Summary. 36
2. Fundamentals . . e e e e e e e e e 4
2.1 Problem Fonnuhllon e e e e e e e e e e 41

2.2 Radius of Information 42

23 Algonithms, 43

2.4 Optimal Algorithms, 43

2.5 Linear Algorithms 45

26 Optimalinformation. 45

2.7 Example. . . e e e e e e e 45

2.8 s the lnfonnatm Slrong Enough" e e e e e e e 46

29 Computational Complexity. 46

2.10 Example. . e e e e e e e e e 47
2,11 Optimal Complcxlly Algonthms e e e e e e e e 48

3. Why Are Most Problems Solved with Unccnamly" e e e e e 48
3.1 Why We Cannot Solve Exactly 49

3.2 Why We Choose Notto Solve Exactly 52

4. Nonadaplive Information and Parallel Computation. . . e 53
4.1 Example: Zero Finding for Functions Which Chnngc Slgn e 56

4.2 Example: Integration. . . . P 57

4.3 Example: Zero Finding for Llpschllz Funcllons e e e e 57

4.4 Example: Binary Search . . L e e 58

4.5 Parallel Computation and Nonadnpuvc Infonnauon e e 59

5. Limitations of the Algorithm-Centered Approach 6l
5.1 Example of Ad Hoc Criteria: Gauss Quadrature 6l

35

Copyright © 1984 by Academic Press, Inc.

ADVANCES IN COMPUTERS, VOL. 23 All rights of reproduction in any furm tescrved.
ISBN 0120121239

36 J F. TRAUB AND H. WOZNIAKOWSKI

$.2 tlow Bad Can Gauss Information Be for Analytic Integrands? . . . 62

§.3 Is There a Relation between the Exaciness Criterion and
Optimal Algorithms? . 63
6. An Abstract Model 63
6.1 Problem Formulation 64
6.2 Radius of Information 66
6.3 Algorithms . . :’;
6.4 Optimal Algorithms . 70
6.5 Lincar Algorithms 70
6.6 Optimal Information0 s Iy

6.7 Example. e e e e e e

6.8 Is the Information Strong Enough? . n
6.9 Computational Complexity . n
6.10 Examplc. e e e e 13
6.11 Optimal Complexity Algorithms . "
7. Some Resulis . e e e e e e e e e e e 74
7.1 Can Adaption Help? 75
7.2 Does a Lincar Optimal Algorithm Exist? 76
7.3 Is a Centain Type of Information Optimal?. n
7.4 Do Smoother Problems Have Lower Complexity? 78
7.5 An Example From Mathematicat Economics 80
8 OtherModels -o o e e e e 8l
8.1 Measuring Uncertainty withouta Norm 82
8.2 Average-CaseModcls 82
8.3 Approximate Information 83
8.4 AsymptoticModels L . L. oo 83
9. Comments Regarding the Information-Centered Approach. B4
10. Where Are We and Where Are We Going? 86
10.1 e-Complexity L e 87
10.2 Future Work L oo e 88
Reflerences v v v e e e e e e 90

1. Overview and Summary

Science has been called the study of invariants, seeking laws which are
valid in varied domains.

An archetypal example is provided by Newtonian mechanics. Before
Newlon, any “‘reasonable’’ person believed that apples and planets were
very different objects obeying different laws. For some characteristics
this is true, as can be verified by biting into an apple and a planet. But if
the correct quantities, which are force, mass, and acceleration, are con-
sidered, then there arc laws which apply equally to apples and planets as
well as to carriages, waterwhecls, and buildings.

INFORMATION AND COMPUTATION 37

For most computational problems we have only partial or approximate
information and consequently such problems can be solved only with
uncertainty in the answer. Examples of such problems include computa-
tions arising in science and engincering, decision theory, prediction, esti-
mation, computer science, mathemalics, design of experiments, remole
sensing, and signal processing. Such problems are as different from each
other as apples and planets. For such seemingly unrelated probiems we
believe that we have identified the basic quantities and a fundamental
invariant, which we call the radius of information.

The radivs of information measures the intrinsic uncertainty in the
solution of a problem due to the available information. In this article we
shall see some examples of the many and varied domains which can be
unified by using the concept of radius of information. As we shall see, the
radius of information is fundamental; it provides limits on how well a

- problem can be solved and leads to very widely applicable notions of

optimal information and optimal algorithms.

To emphasize this, we state the Information principle: There exists a
quantity called the radius of information which measures the intrinsic
uncertainty of solving a problem if certain information is known.

Our work is based on two theses: (1) most problems are approximately
solved; that is, we live with uncertainty; (2) for problems with partial or
approximate information, the usual algorithm-centered approach can be
supplemented, and sometimes replaced, by the information-centered ap-
proach.

We briefly discuss these two theses here. Much of this article will be
devolted to their expansion, illustrated by numerous examples.

We begin with the first thesis. It is very common for the information
concerning a problem to be partial or approximate. Then the problem can
only be solved with uncertainty. If, on the other hand, the information is
complete and exact, then a solution without uncertainty may be possible.
Even in this case the cost of computing an exact solution may cause us to
settle for an approximate solution because we are willing to give up cer-
tainty to reduce complexity. Finally, many problems will be solved in a
distributed environment and this may cause uncertainty in the answer.

We bricfly discuss this last point. There are two reasons for using a
distributed system. The first is that although a centralized system could be
used, we select a distributed system for the sake of, say, cfficiency. The
second reason is that the problem is inherently distributed; examples
include resource allocation in a decentralized economy, traffic networks,
and reservation systems. Because the information flow in a distributed
environment may have to be limited, this causes uncertainty in the solu-

38 J. F. TRAUB AND H. WOZNIAKOWSKI

tion. Even problems capable of exact solution on a uniprocessor will be
solved only under uncertainty in the distributed environments of the fu-
ture because complete, exact informalion on the current state of the dis-
tributed system will not be available.

We proceed to the second thesis. Currently, the algorithm-centered
approach is in widespread use. In this approach, an algorithm is obtained,
often on the basis of ad hoc criteria. This algorithm is then analyzed.
Another algorithm is then proposed and analyzed, and so on.

We contrast this with the information-centered approach. In this ap-
proach, one merely states how well a problem should be solved and
indicates the type of information available. The theory then discloses an
optimal information and an optimal algorithm, and yields the bounds on
the problem complexity, that is, how much it must cost to solve.

A simple example may illustrate the drawbacks of the algorithm-cen-
tered approach. Consider the Gauss algorithm for approximate integra-
tion. (We use this numerical example because it is widely known. How-
ever, numerical calculations are just one particular application of the
general theory.) The algorithm is based on the ad hoc criterion that it
exactly integrates polynomials of maximal degree. This is the characteris-
tic criterion. There are additional criteria (see Section 5). There is no a
priori reason why the Gauss algorithm should be good for nonpolynomial
integrands. Indeed, as we shall show in Section 5.2, even for analytic
integrands we can pay an exponential penalty for using Gauss information
rather than the optimal information.

Another drawback of the algorithm-centered approach is that it
does not give lower bounds on problem complexity. The information-
centered approach yields both lower and upper bounds: these are often
~ very light.

What is the place of the algorithm-centered approach? The information-
centered theory provides general notions of optimal information, optimal
algorithm, and problem complexity. For a particular problem it may be
technically very difficult to obtain these and, to do the job, an algorithm
must be created and analyzed. This is particularly the case for compli-
cated ‘‘real-world’* models. With time, we expect the technical problems
to be overcome for harder and harder problems.

We emphasize that although our model formally includes the case
where the information is complete and exact, it generally does not yield
interesting new results for that case. Complete and exact information is
typical of many discrete problems such as the traveling-salesman prob-
lem. The radius of information is then zero and the problem can be ex-
actly solved. (Sce, however, Section 3, where we discuss why even prob-
lems with complete and exact information are sometimes not solved

INFORMATION AND COMPUTATION 39

exactly.) Lower bounds on problem complexity must then be obtained by
entirely different techniques than the one we will describe. The creation
of good algorithms can depend critically on the particular problem being
considered and is often very difficult. We emphasize that for the most part
our discussion and conclusions apply only to problems which are not
exactly solved.

An analogy from physics may be helpful in understanding what we
believe should be the role of the information-centered approach. An ar-
chitect designing a building must know the general laws of mechanics. In
addition, he must take into account many particulars of this building, such
as its site, the relation of the projected building to existing neighboring
buildings, and the special needs and desires of his clients. Furthermore,
the same laws of mechanics are used whether the design is a plan for a
skyscraper, a bridge, or an auditorium.

We believe that the information-centered approach provides the al-
gorithm designer with general concepts and laws analogous to those pro-
vided the architect or the civil engineer by the laws of mechanics.

We stress that actually obtaining the radius of information, an optimal
information, and an optimal algorithm for a particular problem may or
may not be hard. This is common in science. Although the laws of me-
chanics are quite simple, applying them may be difficult. (See Section
6.4.1 for further discussion.)

We give a somewhat idealized description of what we believe may be
the new role of the algorithm designer. He decides which of the informa-
tion-centered settings (worst case, average case, asymptotic, average as-
ymptotic) are relevant to his problem. Depending on anticipated al-
gorithm implementation (VLSI, program) and/or the computer
architecture on which the algorithm will run (uniprocessor, vector com-
puter, a non-von Neumann architecture, systolic array), he chooses a
model of computation. He applies general results to guide him on his
selection of the information his algorithm will use and on the selection of
his algorithm. He may have to perform difficult analysis if his problem has
not been previously investigated. He estimates the problem complexity.
For numerical algorithms he also concerns himself with algorithm stabil-
ity, which, at least today, is dependent on detailed analysis.

This article is an exposition of the information-centered approach to
problems that are solved with uncertainty. We are calling the theory and
application of the information-centered approach e-complexity. (See Sec-
tion 10 for a discussion of the history and nature of e-complexity.)

To make this account widely accessible, we defer the abstract theory to
Section 6. Even when we finally turn to the abstract formulations and
some of the general results, we give them as simply as possible.

40 J F. TRAUB AND H. WOZNIAKOWSKI

Readers secking to know more are referved to research papers and
especially to two research monographs: Traub and Wozniakowski (1980a)
and Traub ef al. (1983). A third research monograph, reporting on aver-
age-case models and probabilistic settings, is projected.

We briefly summarize this article. In Section 2 we introduce the funda-
mental ideas through the elementary example of integration. We are not
particularly interested in integration, but have chosea it because readers
of diverse backgrounds will find it familiar and because most of the basic
issues arise even in this example.

In Section 3 we discuss our first thesis and examine the causes of
uncertainty. Problems cannot be solved exactly because the information
is partial or approximate or because the class of algorithms is restricted.
On the other hand, we sometimes choose to live with uncertainty to lower
the complexity. We provide four examples where this choice is made:
heuristics in artificial intelligence, probabilistic algarithms, approximate
solutions of hard problems, and iterative solutions of large linear systems.

We examine when nonadaplive information is just as powerful as adap-
tive information in Section 4. Nonadaptive information provides a natural
decomposition of a problem for solution on a parallel or distributed com-
puter. Zero finding, integration, and binary search are used as examples.

In Section 5 we return to our second thesis and discuss the limitations
of the ad hoc methods of the algorithm-centered approach.

An abstract formulation of the worst-case model with uncertainty mea-
sured by a norm is given in Section 6. The treatment parallels the example
of Section 2.

In Section 7 we discuss some mathematical applications. We confine
ourselves to two kinds of applications. In Sections 7.1-7.3 we show three
ways in which we can cut the search space for optimal information and
optimal algorithms. In Section 7.4 we discuss whether smoother problems
have lower complexity. We discuss a result regarding information re-
quirements of mathematical economics in Section 7.5.

So far we have confined ourselves to the worst-case normed model.
Additional models are indicated in Section 8. We discuss a model where
uncertainty is measured without a norm as well as average-case and as-
ymptotic models.

We have received many comments and questions concerning the infor-
mation-centered approach. In Section 9 we present some of these, to-
gether with our responses.

In Section 10 we conclude by discussing whether e-complexity is a new
discipline, give a brief history, and indicate some of the directions for
future rescarch.

INFORMATION AND COMPUTATION 41

2. Fundamentals

We introduce the fundamental ideas through the elementary example of
integration. We stress that we are not particularly interested in integration
per sc but that it provides a common ground with which all our readers are
familiar. A general formulation is given in Section 6. When possible, the
same nolation is used in Sections 2 and 6.

2.1 Problem Formulation

We wish to compute [f(r) dr. Because “‘few’" integrands can be inte-
grated exactly, we have to settle for an approximate answer. We want to
compute a number x such that

]
= [, Sy di < e

for some preassigned positive €. If ¢ = 0, we want 1o compute a number x
such that x = f} f(¢) dr. (This distinction between € > 0 and € = 0 is made
for technical reasons.) We say x is an e-approximation.

We must know something about the integrand to compute an e-approxi-
mation. We will assume that we sample f at n given points t,, t, ..., 1,.
Thus we know the vector [f(1)), f(1)). ..., f(1,)). We denote this vector by
N(f) and call N(f) the information.

It is easy to show that if the number of sample points is fixed, then we
cannot guarantee that an c-approximation is determined. To sce this
define

g =f0) + c[]t-n
i=1
Then N(g) = N(f) and the two integrands are indistinguishable under the
information N(f). By choosing ¢ sufficiently large, f g and [f can be
made to differ by an arbitrary amount. Hence we cannot guarantee that an
e-approximation is determined.

To guarantee that an e-approximation is determined we must restrict
the class of integrands. To fix ideas, assume fis any function whose first
derivative is bounded. Without loss of generality we can assume |f'(f)] <
1 on [0, 1], because if the bound were L we could scale our ervor results
by L. Call the set of all such functions F. [This definition of F serves our
present purpose; for a precise definition sec Traub and WoZniakowski
(1980b, pp. 90, 109).]

Thus we can formulate our problem as follows. Given information N,
compule an g-approximation to f§ f(¢) di for all f € F.

42 J. F. TRAUB AND H. WOZNIAKOWSK!

In Section | we stated that in the information-centered approach ‘‘one
merely states how well a problem should be solved and indicates the ftype
of information available.”” We can now be more specific about what we
mean, in terms of this example. The problem is specified as approximating
fo f(2) defor all f € F. How well the problem should be solved is specified
by the condition

k- [fndi<e forall fEF.

The type of information is

NN = (1), f(1), ..., (1))

2.1.1 Why We Must Indicate the Type of Information

Recall that it was stated in Section 1 that in the information-centered
approach the type of information available must be indicated. We now
amplify this remark.

The type of information appropriate for the ¢-approximation of an inte-
gral might be the values of an integrand or its derivatives at a number of
points. In the example of Section 2.1 we assumed for simplicity that the
type of information was integrand values. The problem would become
trivial if we permitted [} f(¢) dt to be information.

There are, however, problems for which it is reasonable to permit the
value of an integral as information. An example is provided by the prob-
lem of approximating a zero of a nonlinear function f. For that problem,
Kacewicz (1976a,b, 1979) has shown that information consisting of f, f',
and an integral of fis useful.

2.2 Radius of Information

As we observed in Section {, there exists a quantity called the radius of
information which measures the intrinsic uncertainty of solving a problem
when certain information is available. We use the integration example to
provide the reader with an intuitive feel for this quantity.

Let V be the set of integrands, f which has two properties: (1) N(f) =
N(f) thus f is indistinguishable from funder the information N ; Qfe
; thus |f’] = 1 on [0, 1].

Therc is, in general, an infinite number of integrands in V. The integrals
of these functions are, of course, numbers, and it is easy to show that they
form a finite interval. Because all the f are indistinguishable from f, we
do not know which point in this interval is the exact answer. The uncer-
tainty is minimized by choosing the answer as the interval midpoint. For

INFORMATION AND COMPUTATION 43

this example, the radius of information is the distance from the interval
midpoint to an end point. The formula for the radius of information for a
particular choice of N is provided in Section 2.7.

From this discussion it should be clear that the radius of information
has the following important property. The information determines an &-
approximation if and only if the radius of information is smaller than €.
We denote the radius of information by r(N). We have

Theorem 2.1 The information N is strong enough to determine an &-
approximation forall f€ Fiff r(N) <e. ®

This result holds very generally and not just for our integration example
(see Traub and Wozniakowski, 1980a, Chapter 1, Sect. 2; Traub ef al.,
1983, Chapter 1, Sect. 3).

Note that the existence of an e-approximation depends only on the
information and is independent of any notion of algorithm. This illustrates
our information point of view. (See Section 5 for further discussion of the
contrast between the information and algorithm points of view.)

2.3 Algorithms

An idealized algorithm (or simply, algorithm) is any rule for computing
an approximation knowing the information

N(f) = [f('l)’ f('Z)’ sees f(’n)]v

and knowing that f € F. To indicate the dependence on information, we
write an idealized algorithm as ¢(N(f)). Examples of algorithms are

N = 2 aif(ty),

= 2.1
Iy b (li)_

I cfls)

Our definition of an idealized algorithm is far more general than the
notions of algorithms prevalent in computer science. Motivation for this
generality and its relation to notions common in computer science are
discussed in Section 3.1.3.

e(N()) =

2.4 Optimal Algorithms

Which algorithms are best? Indeed, what do we mean by best al-
gorithm? We will introduce two notions of best algorithm in this article;
one of these will be introduced in this section.

44 J. F. TRAUB AND H. WOZNIAKOWSKI

The error of approximating [y f(r) dr using the algorithm ¢ is defined as
]
el) = leANUD = [fan) di)

The algorithm error, e(y), is the worst e(p, f) for all f € F.
The radius of information is a lower bound on the algorithm error. We
have

Theorem 2.2 For any algorithm ¢ which uses the information N(f)
e(p) = r(N).

Furthermore, this lower bound is the best possible. That is, there can-
nol be a lower bound which is larger. =

Because we want to make the algorithm error as small as possible, we
are interested in algorithms whose error equals that of the radius of infor-
mation. We say ¢ is an optimal error algorithm (or simply, an optimal
algorithm) if

e(p) = r(N).

We denote an optimal algorithm by ¢*.

We shall discuss in Section 2.4.1 how to obtain optimal or nearly opti-
mal algorithms. A second notion of optimality (optimal complexity al-
gorithm) is defined in Section 2.11.

2.4.1 How to Generate Good Algorithms

We define two paradigms for generating optimal or near-optimal al-
gorithms.

Recall that we defined in Section 2.2 the set, V, of integrands which
belong to F and which are indistinguishable under the information N. The
integrals of functions in V form a certain interval. An interpolatory al-
gorithm, ¢', chooses any point in this interval as an approximation 1o
oS0 di. A central algorithm, ¢°, chooses the midpoint. We have

Theorem 2.3
e(¢') = 2r(N),
e{p) =r(N). m

Because r(N) is a sharp lower bound on the error of any algorithm,
interpolatory and central algorithms provide tight upper bounds.

INFORMATION AND COMPUTATION 45

To create an interpolatory algorithm, choose a *‘simple’ function f
from F which is indistinguishable from funder N. Then the interpolatory
algorithm is the integral of f. For example, f can be chosen as a polyno-
mial or a piecewise polynomial which interpolates f at the n points (1,
S, ... U, f(1,)). Then f§ f(1) dt is an interpolatory algorithm.

Central algorithms are in general more difficult to generate. The al-
gorithm discussed in the example of Section 2.7 is a central algorithm.

2.5 Linear Algorithms

We defined an algorithm as any rule for computing an approximation
knowing the information N. The simplest rule for combining the integrand
values is

PN = 2, af(s)
i=|
where the a; are constants. We call ¢ a linear algorithm.

Researchers often restrict themselves to considerations of linear al-
gorithms. Because they assume a linear algorithm, they cannot rule out
the existence of a much better nonlinear algorithm. Without assuming
anything about the structure of the algorithm we will often be able to
conclude the existence of a linear optimal algorithm. In particular, this is
true for our integration example.

2.6 Optimal Information

We have assumed that the sample points ¢, t,, ..., , are fixed. We now
want to consider the best choice of the sample points.

We hold the number of sample points n fixed. (The number of sample
points is varied in Section 2.8.) Because the radius of information is a
sharp lower bound on the error of any algorithm, we say N is opfimal
information if the sample points are chosen to minimize r(N). We denote
optimal information by N*.

2.7 Example

We illustrate the concepts of Section 2.6. Recall that the information
N(f) consists of n function samples and that the class of integrands con-
sists of functions whose derivative is bounded by one on the unit interval.

Optimal information consists of sampling fat the points £, = (2i — 1)/2n,
i=1,..,n Thus

N*(f) = [f(12n), f(312m), ..., f(1 — 112n)].

46 J. F. TRAUB AND H. WOZNIAKOWSKI

Note that if the unit interval is imagined to be transformed into a circle

with 1 = 0 coincident with 1 = I, then the sample points are equally

spaced.
For the optimal information N* the radius of information is given by
r(N*) = 1/4n. 2.2)

There exists an optimal algorithm which uses optimal information, and
this optimal algorithm is linear. Its formula is given by

PN = - Z.f (3. 2.3)

Thus the optimal algorithm is just a Riemann sum! Indeed, it is simply
the average of integrand values at equidistant points. In other words, the
continuous average of J. which is of course Jo £(0) du, is best approxi-

mated by the discrete average of fat properly chosen points. We call this
the averaging algorithm.

2.8 s the Information Strong Enough?

So far we have fixed n, the number of sample points. Recall that we
want (o compute an e-approximation for all S € F. It may turn out, even
using optimal information, that n is not large enough.

We therefore vary n and ask for the smallest n such that the information
is strong enough to compute an e-approximation. Recall that, in general,
We can compute an e-approximation for all f € F iff r(N) < &. Further-
more, for optimal information N*, r(N*) = 1/4n. It follows that if m
denotes the smallest number of sample points which can determine an e-
approximation, then m = |V4e] + 1.

To fix ideas, if € = 10-%, we must sample the integrand at 25,000,001
points. No smaller number of samples will do. If the class of integrands is
smoother (we assume the functions in F have only one derivative), then
fewer samples are required (see Section 1.4).

We require that the error be less than € for any f &€ F. This is a worst-
case criterion. Intuition might suggest that, on the average, substantially

fewer samples are required. This intuition is often incorrect, as we shall
see in Section 8.2.

2.9 Computational Complexity

Until now our concern has been with whether an e-approximation can
be computed. If the answer is affirmative, we want to know how much it
must cost; that is, whal is the computational complexity?

INFORMATION AND COMPUTATION 47

We shall restrict ourselves to time costs. Assume, for simplicity, lfnal
cach arithmetic operation costs unity and that each function evaluml‘on
costs c. We define the e-complexity to be the smallest cost of computing
an g-approximation by any algorithm. We denote the s-complexn.ly as
comp(s). We sometimes refer to e-complexity as problem complexity or
computational complexity. .

Observe that the £-complexity is the smallest cost for solving the prc_)b~
lem. This concept should not be confused with the algorilhn.z complexity,
which is the cost of a particular algorithm. The phrases qlgor:rhm cost and
algorithm complexity are used interchangeably. Obtaining the e-f:omplcx-
ity is very difficult and we almost always have to be COI’I(CI.lt '»\.nlh upper
and lower bounds. The upper bound is obtained by exhibiting an a.l-
gorithm whose cost then gives the upper bound. The Ipwer boun.d is
established by a theorem which states that there cannot .e{usl an algorithm
with lower cost. We shall see that under certain conditions the gap be-
tween the lower and upper bounds is small (see Sections 2.10 and 6.11).

2.10 Example

We obtain upper and lower bounds on the e-complexity of our inte.gra-
tion example. We begin with the upper bound. Recall that our optimal
algorithm is the averaging algorithm

o =1 3 s (B)

We saw in Section 2.8 that the minimal number of function samples m to
compute an g-approximation is

m = [/4e] + 1. 2.4

The cost of evaluating f at m points is mc. In addition, m an’thmfu-c
operations are sufficient to combine the samples. Thus the cost of ¢* is
mc + m, and using Eq. (2.4),

cost(e*) = (|1/4¢] + 1)(c + 1). 2.5)

i a r bound on comp(e).)
Th\z:}egt'::: :108 th':: lll([),wi\);r bound. Because m s?mplcs are requnrc.d to CO[;‘I-
pute an g-approximation, the cost of evalyalmg S must be at Icas:) frtc.lh:
addition, at least m — 1 arithmetic (')pcrallons are needed fo :j:(;‘m |cr;c
samples. Hence a lower bound is given by mc + m — 1, and hen

comp(s) = ([1/4e] + I)c + 1) — L (2.6)

48 J. F. TRAUB AND H. WOZNIAKOWSKI

From Egs. (2.5) and (2.6)
((1/4e] + 1)(c + 1) = comple) = ((V4e] + D(c + 1) — 1. (2.7)

Note that the gap between the upper and lower bounds is very small.
Hence we essentially know comp(e). The tight bounds are typical of
*“lincar optimal algorithms."” (Sec Section 6.11 for further discussion.)

2.11 Optimal Complexity Algorithms

We introduce our second notion of optimal algorithm. In Section 2.4 we
introduced the notion of optimal error algorithm. We define an optimal
complexity algorithm as an algorithm whose cost is the least among all
algorithms for computing an e-approximation.

For example, it follows from Egs. (2.5) and (2.6) that the averaging
algorithm,

R (2i - I)
* . - _
PN = 2 M),
is within, at most, one unit of being an optimal complexity algorithm.
Recall that this algorithm is also an optimal error algorithm. This con-
nection between optimal error algorithms and optimal complexity al-
gorithms is often the case. (See Section 6.11 for further discussion.)

3. Why Are Most Problems Solved with Uncertainty?

In the previous section we introduced the fundamental ideas of e-com-
plexity through the elementary example of integration. In contrast, this
seclion is devoled to a rather general examination of the causes of uncer-
tainty.

We solve problems with uncertainty because we cannot solve exactly
or we choose not to solve exactly. We will discuss three reasons why we
cannot solve exactly: the information is partial, the information is ap-

_ proximate, or the class of algorithms is restricted.

As we observed in Section 1, even problems capable of exact solution
on a uniprocessor will be solved only under uncertainty in the distributed
environments of the future because complete, exact information on the
current state of the distributed system will not be available.

We will give four examples of choosing not to solve exactly: heuristics,
approximate solution of hard problems, probabilistic algorithms, and iter-
ative solution of large lincar systems. To date we have used e-complexity
to contribute only to the last of these. The first three are included here to

INFORMATION AND COMPUTATION 49

indicate the variety of areas where we choose not to solve exactly. We are
hopeful that e-complexity will prove useful in some of these areas.

3.1 Why We Cannot Solve Exactly

We have given three general reasons why problems cannot be solved
exactly. There are other causes of uncertainty. For example, we might
not be able to solve a problem arising in nature because we cannot give a
mathematical formulation. In the general abstract formulation to be pre-
sented in Section 6, however, only the causes of uncertainty arising from
partial and approximate information or from a restricted class of al-
gorithms are considered. We now discuss each of these causes.

3.1.1 Partial Information

Recall that in the integration example we consider integrands f € F,
where F is the set of integrands for which |f*(1)] < 1 on the unit interval.
We are given the information N(f) = [A1)), An), ..., f(1,)]. In general,
there are many other functions belonging to F which have the same values
as fat the sample points. All of these functions are indistinguishable using
the preceding information. Let V be the set of all functions which belong
to F and which are indistinguishable knowing N(f). Of course, f€ V.

Let fi. f € V, f; # f;. Then [g fi(1) di can differ substantially from
4 £:(1) d1. Thus we cannot guarantee that an s-approximation is deter-
mined for both f; and f;, unless r(N) < . Because we cannot distinguish
among the functions in V, we cannot guarantee an g-approximation for f
because f could be either f, or f;.

It is crucial to understand that the algorithm does not use f. It uses only
N(f) and the fact that f belongs to F.

We comment on this point. In engineering and natural science we typi-
cally do not know f. What we might know are some measurements of f,
and these measurements have experimental error. In mathematica! sci-
ence we sometimes know f. Thus we may want to compute f¢ f(1) dr
where f(r) is a known function. However, the algorithm used to compute
an g-approximation does not use f(#); it uses a finite number of evalua-
tions of f.

We say the information is partial if knowing N(f) and f € F does not
determine f uniquely. Partial information causes uncertainty. (An ab-
stract definition of partial information is given in Section 6.)

If information is not partial, it is complete. An example of complete
information may be found in Section 3.1.3.

50 J. F. TRAUB AND H. WOZNIAKOWSKI

3.1.2 Approximale Information

Information is approximalte for many reasons; some of these are listed
below. We begin with how approximate information might occur in our
integration example.

So far, we have assumed that the sample values were exact. In practice,
the sample values are often approximate for a number of reasons: they are
computed with uncertainty; even if they are exact, rounding errors occur
when they are entered into the computer; or they are obtained by experi-
ments with error. More generally, information is approximate for many
reasons. These include the stochastic nature of information, computer
errors, transmission errors, limitations of number representation and
arithmelic, adversary's lies, limitations on measurement accuracy due to
instrument limits, and intrinsic measurement limitations due to Heisen-
berg uncertainty.

We comment on just two of these. The case of stochastic information is
of great importance in many applications. It is not included in the models
we have studied so far, but will be incorporated in future models.

As an example of adversary’s lies we consider binary search (which is
popularly called **20 Questions™). Is there a good strategy for playing 20
Questions with a liar? More precisely, what questions should you ask if
you know k of your adversary’s answers will be lies. (Of course you do
not know which answers are lies.) Rivest et al. (1980) show that if & is not
too large relative to the total number of questions, then there is a se-
quence of questions such that the complexity is not much greater than for
the case of no lies. An e-complexity formulation is given by Traub e7 al.
(1983) for both the discrete and continuous versions of this problem.

Traub er al. (1983, Chapter 2) introduce the concept of approximate
information, N,(f), where p is a measure of error, and the notion of
approximate radius of information r(N,). As the generalization of Theo-
rem 2.1, we have the following theorem.

Theorem 3.1 The information N, is strong enough o determine an e-
approximation iff r(N,) <e. ®

3.1.3 Realizable Algorithms

Even if the information is complete and exact we may not be able to
compute an exact answer because we restrict what we mean by an al-
gorithm.

Recall that an idealized algorithm is any rule using the information
N(/). One of the reasons for this extremely general notion of algorithm is
the following: if we want to show that an e-approximation cannot be

INFORMATION AND COMPUTATION 51

computed (because the information is not strong enough), then it is desir-
able to establish this with the most general notion of algorithm. If, on the
olhgr hand, the information is strong enough to determine an £-approxi-
mation and we want 10 compute an e-approximation, we are faced with
the fact that we may not be able to implement an idealized algorithm.

We may therefore restrict the algorithms under consideration to a class
of realizable algorithms. What we define to be a realizable algorithm is up
lo us. We emphasize that restricting the notion of algorithm can only
increase uncertainty.

We illustrate the idea of a realizable algorithm by a simple and practical
example. Let F be the set of nonnegative real numbers and let N(f) = f.
We wish to compute an ¢-approximation to V.

The information is certainly complete because we know f. It is also
exact. If we permit any algorithm, then we take o(N())) = o(f) = VJ.
There is no uncertainty (¢ = 0). This is as we would expect. If the infor-
mation is complete and exact and if idealized algorithms are allowed, the
answer can be computed exactly.

We now restrict our notion of algorithm. For this problem, a realizable
algorithm is any rule which uses N(f) and a finite number of arithmetic
operations (+, —, X, +) and comparisons. Now there is uncertainty in the
answer.

The computation of square roots is a special case of computing an &-
approximation to a polynomial zero. There has been much recent pro-
gress on computing e-approximations with realizable algorithms (see
Kuhn et al., 1983; Murota, 1982; Schénhage, 1982; Shub and Smale,
1982a,b; Smale, 1981).

What we elect to call a realizable algorithm is up to us. Examples of
realizable algorithms include Turing-machine algorithms, algorithms that
are computable functions, on-line algorithms, algorithms that are linear
functions of the input, and stable algorithms.

We discuss the relation between the concepts of algorithm used else-
where in computer science and our notion of realizable algorithm. Recall
that an idealized algorithm is an arbitrary rule for computing an approxi-
mation knowing certain information. Clearly, if an e-approximation can-
not be computed using an idealized algorithm, it cannot be computed by
an algorithm in any formal system. Only if an e-approximation can be
computed by an idealized algorithm does it become of interest whether an
g-approximation can be computed in a formal system, say a Turing-ma-
chine model. Of course, for many computer science problems there is an
exact solution and the issues of decidability and complexity in a formal
system become paramount. [See Traub ef al. (1983, Chapters 3 and 5) for
further discussion of restricled classes of algorithms.]

52 J. F. TRAUB AND H. WOZNIAKOWSKI

3.2 Why We Choose Not to Solve Exactly

We choose not to solve problems exactly because it is significantly
cheaper to solve approximately and we are content with an approximate
solution. Hence we live with uncertainty to lower the complexity. We will
illustrate this with four examples.

3.2.1 Heuristics

What is the difference between an algorithm and a heuristic? A thor-
ough discussion of heuristics would carry us oo far afield. Roughly
speaking, the distinction is that an algorithm guarantees a correct answer
whereas a heuristic is a rule of thumb; a correct answer is not guaranteed.
|An informal discussion of algorithms and heuristics may be found in
Traub (1978).]

Heuristics are used for a number of reasons: we could solve algorithmi-
cally, but it is too expensive; no algorithm is known; and/or the goal is not
well defined.

We discuss only the first of these here, using chess as an illustration.
The problem is to find a winning strategy for white (if it exists) against all
possible strategies of black. The set F consists of the rules of chess and
the initial position. The information is complete and exact; there is there-
fore an idealized algorithm. Indeed, we have the following gedanken al-
gorithm. Generate the tree of all possible moves. If there exist one or
more winning stralegics against all moves by black, choose one of these
strategies. This is an algorithm which guaraniees a win. 1f no such strat-
egy exists, no algorithm for winning exists.

Such a “‘brute-force” approach would be far too expensive (McCor-
duck, 1979). We live with the uncertainty of the heuristics to decrease
complexity.

3.2.2 Approximate Solution of Hard Problems

Consider problems which we could, in principle, solve exactly (¢ = 0),
but for which the algorithm complexity of all known algorithms is so high
that we cannot solve the problem exactly on even the fastest computers.
Hence we use an algorithm of low complexity and solve the problem
approximately (e > 0).

We illustrate the idea with a well-known instance of combinatorial opti-
mization, bin packing. Let f = [fi, fi, ..., fu] be a given sequence of
positive numbers on the unit interval. Let BIN, BIN,, ... be a sequence
of bins, each of unit capacity. In bin packing, we assign each f; to a bin in

INFORMATION AND COMPUTATION 53

such a way that the sum of numbers in each bin does not exceed one and
the total number of bins used is minimal.

Because bin packing has complete and exact information, the radius of
information is zero. Hence the problern can be solved exactly. What is the
e-complexity (with & = 0) as a function of n? Let comparison and the four
arithmetic operations each cost unity. The cost of all known algorithms is
an cxponential function of a. It is known that bin packing is NP-complete
(sce Garcy and Johnson, 1979) and it is therefore very likely that the e-
complexity (with € = 0) is also an exponential function of n. In that case,
we cannot* solve bin packing on even the fastest computers for even
moderate values of n.

A packing is an e-approximation if it uses at most (1 + £) times more
bins than the optimal one. Can we compute an g-approximation at much
lower cost? The answer is affirmative for arbitrarily small positive €. [See
Karmarkar and Karp (1982) for recent results and a survey of carlier
work.]

This idea of Irading increased uncertainty for lower complexity does
not always work. There are problems (Garey and Johnson, 1979) for
which the complexity is unchanged (more precisely, the problem remains
NP-complete) no matter how much we increase the uncertainty.

3.2.3 Probabilistic Algorithms

We briefly indicale the use of probabilistic algorithms to decrease com-
plexity. [See Rabin (1976) for additional material.]

Randomization is introduced into the algorithm. If ¢, is a random al-
gorithm, we say that ¢, solves the problem with confidence greater than
1 — £ if for every f € F the probability that ¢, produces an incorrect
solution is smaller than e.

As Rabin observes, it may at first seem surprising that employing ran-
domization decreases complexity. He gives two examples. The first is to
find the nearest necighbors of n points in k dimensions. The second is to
determine whether a number is prime. Solovay and Strassen (1977) give a
different probabilistic algorithm for determining primality.

We briefly discuss primality. Given an integer fwe wish to determine if
it is prime. Note that the information is complete and exact. Hence, in the
class of all algorithms, there exist algorithms which solve the problem
exactly, that is, which determine whether or not fis prime. To decrease
complexity we settle for an answer with uncertainty; that is, we some-
times get the wrong answer. However, the probability of a wrong answer
is “‘small.”

54 J. F. TRAUB AND H. WOZNIAKOWSKI

3.2.4 Ilterative Solution of Large Linear Systems

The approximate solution of NP-complete problems and the use of
randomized algorithms to reduce complexity are recent developments. A
far earlier use of the idea that it might be possible to reduce cost by
solving approximately may be found in the itcrative solution of large
lincar algebraic systems.

Let the linear system be specified by Ax = b, where A is an n by n
matrix. “‘Direct”’ methods can be used which (neglecting round-off er-
rors) solve the system exactly at a cost proportional to n’. ([?irecl meth-
ods based on fast matrix multiplication are not used in computational
practice.) The values of n occurring in practice are so large that direct
methods may take too much time or space. For large values of n the
malrix A is usually sparse, i.e., only a few elements are nonzero. Systems
of linear equations with sparse matrices are especially well suited for
solution by iterative methods.)

More precisely, suppose we want to find an e-approximation, i.c., a
vector x such that |[Ax — b|| < €, where {lb]l = | and € € (0, 1). An &-
approximation can be computed using an iterative method based on par-
tial information. Depending on the size of €, the size of n, the information
N, and the class F to which A belongs, it may be that an e-approximation
can be iteratively computed at substantially lower cost than the cxact
solution. '

To be specific, let F be the class of symmetric positive definite matrices
whose condition number is bounded by M. Let the information be

Ni(A, b) = b, Ab, ..., A*b).

This is called Krylov information and is commonly used in the iterative
solution of large linear systems. If k < n, the information is partial. It i.s
easy to show that N;(A, b) can be computed with k matrix-vector ml'llll-
plications. If A is sparse, onec matrix-vector multiplication lakgs time
proportional to n instead of n?, and Ny(A, b) can be computed in time

proportional to kn. .
How many matrix-vector multiplications do we need to determine an e-

approximation? This problem was studied by Traub and Wozniakowski
(1980b), who showed that for large n (relative to M and 1/e) we must
perform k matrix-vector multiplications where

k = (VMI2)n(2e).
The minimal cost of finding an e-approximation, comp(e), is given by

comp(e) = n(VM)In(2e).

INFORMATION AND COMPUTATION 55

This should be contrasted with the cost of a direct method. If the sparse-
ness of A is not utilized, then typically the cost of a direct method is
proportional to n’, which for large n is much greater than n(VM/2)In(Ye).

There do exist efficient direct methods which utilize the sparseness of A
and whose cost is substantially less than n’. These methods are usually
heavily dependent on the structure of A and cannot be as widely applied
as iterative methods.

4. Nonadaptive information and Parallel Computation

One achievement of the information-based approach is general results
on when nonadaptive information is just as powerful as adaptive informa-
tion. Indeed, it is the notion of the radius of information that permits us to
pose this question in general. In this section we give some examples;
general results are reported in Section 7.1. In Section 4.5 we show that on
a parallel computer, the use of nonadaptive information can lead to linear
speedup.

We indicate the difference between nonadaptive and adaptive informa-
tion through an example (see Section 7.1 for a general formulation). Let
the information be n evaluations of f. Thus

NU) = [f(1), ..., f(1,))

If the ¢, are independently chosen, we say this is nonadaptive information.
Now, assume that fis evaluated at 1,. Then 1, is chosen, knowing ¢, and
f(0)). After f(¢y) is evaluated, 1, is chosen, knowing 1, f(1)), 1;, and f(1,).
Generally, ¢, is chosen, knowing 1,, f(1)), ..., t;_;, f(t;.)). We call this
adaptive information.

Because the radius of information r(N) measures the intrinsic uncer-
tainty if NV is used, we determine the power of information N by consider-
ing r(N). Let N* be optimal adaptive information. If there exists non-
adaptive information N™°, so that r(N™*) is comparable to r(N*), then we
conclude that adaptive information is no more powerful than nonadaptive
information. This is made precise in Section 7.1.

Adaptive algorithms based on adaptive information are widely used.
We shall see that for certain problems, adaption cannot help. There are
also problems for which adaptive information is exponentially better than
nonadaptive information.

Our interest in the power of nonadaptive information is motivated by a
number of considerations.

1. If the optimal information is nonadaptive, we have a natural decom-
position for parallel computation. Because nonadaptive information mini-

56 J F TRAUB AND H. WOZNIAKOWSKI

mizes communication requirements, it is desirable for distributed compu-
tation,

2. If we know that the optimal information is nonadaptive, we can very
significantly cut the search space when we scek optimal information.
Nonadaplive information is much simpler and therefore much easier to
analyze than adaptive information.

3. Because the structure of nonadaptive information is so much simpler
than the structure of adaptive information, it is of intrinsic mathematical
interest when nonadaptive information is just as powerful.

4.1 Example: Zero Finding for Functions Which Change Sign

We give an example where adaptive information is cxponcmially. more
powerful than nonadaptive information. Let F be the class of continuous
functions f which change sign on [0, 1]. Therefore, f vanishes at least
once on the interval. Let « be any point where f vanishes. Without loss of
generality we can assume f(0) < 0, f(1) > 0. The information is values
of f. o

Given only that f belongs to F, we can compulc an g-approximation
provided £ > §. We simply take as our e-approximation, x = §. If e = § we
must have more information.)

Compute f(1). If f(}) > 0, there isazeroon (0, §). If f(}) <0, thereisa
zero on (4, 1). If f(}) = 0, then a = {. In all cases, whereas we originally
knew a lay in an interval of length |, we now know it lies in an interval of
length §.

We will describe one more step of this process. Without loss of general-
ity, assume there is a zero on (0, }). We are now in the same situation as
we started except that we have evaluated f at one point and we have
halved the interval. We can now compute an g-approximation provided
e > }. We take as our g-approximation, x = }. If £ =< { we must have
more information.

Compute f(}). If f(}) >0, there is a zero on ©, D. Iff(}) <0, there is a
zeroon (1,). If f(1) = 0, then a = §. We have again halved the interval in
which a lies.

The gencral pattern should now be clear. At each step we evaluate fin
the center of the interval where a is known to be. This information is
called bisection information. It is clearly adaptive because we cannot
decide where to sample next until we know the result of the previous
sample. After sampling al n points, we have reduced the sizc. of !he
interval in which « lies to 2. If € > 27"'Y_we take our e-approximation
as the midpoint of the interval in which « is known to lie.

INFORMATION AND COMPUTATION 57

Thus bisection information usihg n points cuts the uncertainty to
2-¢*Y_Furthermore, it is known that this is optimal adaptive information
(sce Sikorski, 1982).

How much can we reduce the uncertainty if we restrict ourselves to
nonadaptive information? The optimal nonadaptive information is to sam-
ple fat n equispaced points (see Traub and WoZniakowski, 1980a, p. 166).
Then « lies in an interval of length 1/(n + 1). If € > 1/(2(n + 1)), then we
take our e-approximation as the midpoint of the interval in which a is
known to lic.

Thus the optimal nonadaptive information cuts the uncertainty to |/
(2(n + 1)). In contrast, the optimal adaptive information culs the uncer-
tainty to 2°"*". Thus, for this problem (zero finding) and this set of
functions (continuous functions which change sign on (0, 1)), adaptive
information is exponentially better than nonadaptive information.

4.2 Example: Integration

In the previous section we saw an example where adaptive information
was exponentially stronger than nonadaptive information. We now give
an example where adaptive information is no stronger than nonadaptive
information.

Recall the integration example of Section 2. We said that the optimal
evaluation points were f, = (2i — 1)/2n,i = 1,2, ..., n. This information is
nonadaptive. There exists no adaptive information which is superior.

This is a special case of a very general result. We will return to this in
Section 7.1 when we discuss results of the general theory.

The fact that adaption does not help is counterintuitive. It might be
expected that it is possible to sample to see where the integrand is chang-
ing rapidly and once such a region is identified to put more sample points
there. The theory states that this intuition is fallacious.

Recall that the example of Section 2 is in a worst-case setting. It may be
hoped that on the average, adaptation helps. Recent work shows adaptive
information is not stronger, even on the average (see the discussion in
Section 8).

4.3 Example: Zero Finding for Lipschitz Functions

In Section 4.1 we considered zero finding for functions which changed
sign and found that adaptive information was exponentially more power-
ful than nonadaptive information. OQur second example was integration,
where adaption does not help. Now, integration is a linear operation.

58 J. F. TRAUB AND H. WOZNIAKOWSKI

That is, the integral of a sum is the sum of the inlcgra{s. As we shall sec in
Section 7.1, adaption doces not help for linear operations. Zero finding is
not lincar because the zeros of the sum of two functions are nol. the sum of
the zeros. This suggests that perhaps adaption helps for nonlinear prob-
lems and does not help for linear problems. The following example shows
@ h a general result does not hold.

lth(hscucproblgcm is once more zero finding. Now let F be the class of
functions f such that f has a zero and such that

If(x) = f(»)l = Klx =y

for all real x and y. This condition is called a Lipschitz condition and we
therefore call F a Lipschitz class. As in Section 4.1, we assume the
information N(f) consists of function values. Thus N(f) = [f(1,). f(1,),
... f(1,)]. Sukharev (1976) shows that adapl.ion does not help. Further-
more, the optimal nonadaptive informalion.ls the vzflucs c_’ffa! almost
cquispaced points. The radius of informalnsm of this optimal mfg)rmu-
tion is $XK/(n + 1). Hence an g-approximation can be computed ff K/
20n + 1) <e.) ‘

These results have been generalized to any number of dimensions by
Sikorski (1983). .

We review what we have learned from these examples. For. the same
problem, root finding, we have found that for one class of fun'clmns ac!ap-
tive information is exponentially better than nonadaptive information,
whereas for another class of functions adaption does not help. To date,
there are no general results on when adaption helps for nonlms:ar prob-
lems. This should be contrasted with linear problems (see Section 7.1).

4.4 Example: Binary Search

We turn to a very different kind of example. Zero ﬁqding m'ul integra-
tion are examples of continuous problems. We now give a discrete cox-
.m?),:ncr'cxamplc is an instance of binary search.. popularly call(_:d l!lc game
of 20 Questions. Binary search models many important applications, in-
cluding disease diagnosis and drug prescription.

We present a simple version as a game between p.laycrs‘A ar'ld B. A
thinks of an integer a, where | < a < m. Player B.lnes to identify a by
asking whether a belongs to certain subsets of the integers {I, 2, m}
For each question, A answers *‘1"" if a belongs 1o the Sl.lbsc(. anfl . 0
otherwise. The goal of the game is for B to identify a with the minimal
number of questions. The information in this examp}c is the sequence of
zeros and ones which B gets in answer Lo his questions.

INFORMATION AND COMPUTATION 59

Assume for simplicity that m = 2", If B asks “*bisection’ questions
which at each step halve the size of the set to which a belongs, then B can
always identify a with n = log, m questions.

Bisection information is adaptive. Is there nonadaptive information
which will also permit B to identify a with log, m questions? The answer
is yes, and we will leave it as a small puzzle for the reader to see what
pattern of questions B should ask.

Thus, for this example of binary scarch, adaption does not help. A
general theorem is established in Traub ef al. (1983, Chapter 4, Theorem
3.1) giving a condition under which adaption does not help. The state-
ment of the general theorem requires more machinery than we want to
introduce here. Suffice it 10 say that if the general theorem is used for the
special setting of this example, it states that adaption does not help
because any question on subsets is allowed.

There are close connections between zero finding for functions that
change sign and for binary search. Yet, for zero finding, adaption helps
exponentially whereas for binary search it does not help at all. The reader
may want to consider why,

4.5 Parallel Computation and Nonadaptive Information

At the beginning of our discussion of nonadaptive information we
pointed out that nonadaptive information is well suited to parallel compu-
tation because it provides a natural decomposition. Here we use a simple
example to quantify this notion.

4.5.1 Parallel Speedup

First we review the methodology for determining how much faster
parallel computation is than sequential computation (see also Traub,
1974).

Let the minimal cost to compute an e-approximation on a sequential
computer be the sequential e-complexity, denoted by comp(s). We re-
ferred to this as e-complexity, or problem complexity, in Section 2. We
assume a parallel computer with p processors which are identical and
independent. Let the minimal cost to compute an e-approximation on
such a parallel computer be the parallel e-complexity, denoted by
comp(e, p). Of course, comp(e, 1) = comp(e).

The speedup R(e, p) is defined as

R(e, p) = comp(e)/comp(e, p). 4.1)

We comment on this definition. Researchers sometimes misinterpret
this measure and compare their favorite parallel algorithm with some

60 J. F. TRAUB AND H. WO2ZNIAKOWSKI

sequential algorithm. To see what has been achieved by parallelism, the
comparison must be with the e-complexity, that is, with the cost of the
optimal sequential algorithm.

The speedup R(e, p) measures how much parallelism can speed the
solution of a problem. It is an algorithm-independent measure. It is easy
to see (hat

R(e, p) = p. 4.2)

Therefore, linear speedup is optimal. The speedup of some problems is
only log p or even a conslant independent of p (sce Traub., !974).

In Section 4.5.2 we shall see that under simple, nonrestrictive assump-
tions, the speedup of the integration problem studied in Section 2 is close
to p.

4.5.2 An Example Where Parallel Speedup Is Close to Optimal

Recall that for the integration problem studied in Section 2 a lower
bound on the e-complexity is given by

comp(e) = mc + m — | 4.3

where the number of function samples, m, is given by
m = [1/4ef + 1.

Our sequential model of computation is that every arithmelic operation
costs unity and each evaluation of f at a point costs c.
Recall that the optimal sequential algorithm is

AN = %if(z—'z,—"—l)

We use this as a parallel algorithm. Assume that the ?osl of evaluatiqg fat
a point is again c. That is, we do not use parallelism in the Compl'l(illl()n of
f. Assume for simplicity that p, the number of processors, dIV.IdCS m.
Then the cost of computing the m values of fis cm/p. The arithmetic
operations to form ¢ can be performed at cost r_n/p + [logy pl. Hence the
cost of computing ¢ on our parallel computer s

(4.49)

cost(p, p) = cmip + mip + [log; pl. 4.5)

Because comp(e, p) is the minimal cost of compuling an e-approxima-
tion, we conclude from Eqgs. (4.3) and (4.5) that

__comp(e) mc + m — 1 (4.6)
R(e, p) = compl(e, p) ~ cmip + mip + [log; pl

INFORMATION AND COMPUTATION 61

From Eqs. (4.2) and (4.6),

m(c+1)-1)
m(c + 1) + pllog, pl

p=Z R, p)=p [4.7
Observe that if mc is large compared to p log, p, which is a very reason-
able assumption in practice, then R(e, p) = p.

We conclude that the parallel speedup is close to linear; that is, it is
close (o optimal.

We have carried out this analysis for the special problem of integration
and for information consisting of function evaluations. The same conclu-
sion, that the parallel speedup is close to optimal, holds whenever the
optimal information is nonadaptive and there is a linear optimal error
algorithm. [See Section 7 and Traub and Wozniakowski (1980a, Chapters
2 and 3).]

5. Limitations of the Algorithm-Centered Approach

As we mentioned in Section I, we believe that for problems with partial
or approximate information the usual algorithm-centered approach can be
supplemented, and sometimes replaced, by the information-centered ap-
proach.

There will, of course, be problems for which it is technically difficult to
apply the information-centered approach and it will still be necessary to
resort (o the algorithm-centered approach. This will be particularly the
case for complicated ‘‘real-world"’ models. With time, we expect the
technical difficultics to be overcome for harder and harder problems.
Today, algorithms are often obtained on the basis of ad hoc criteria. Using
such criteria has several disadvantages: ad hoc criteria may nol be very
good; and, if ad hoc criteria are used, there is no idea of how far the
algorithm is from optimal, and, in practical terms, how much money is
being wasted.

We use one well-known algorithm to illustrate the limitations of the ad
hoc approach.

5.1 Example of Ad Hoc Criteria: Gauss Quadrature
The family of Gauss quadrature methods is widely used in practice. The
methods are derived under three assumptions:

l. Methods of the form ¢ = X7, a,f(t;) are considered.
2. The information f(1,), ..., f(1,) is nonadaptive.

62 J. F. TRAUB AND H. WOZNIAKOWSKI

3. The 2n parameters a,, ..., ., I, ..., I, are chosen by.thc criterion
that the error of integration should be zero if fis a polynomial of degree,
at most, 2n — 1.

We discuss these three critenia. It is unlikely‘;ha-t lh; ﬁ‘rlst two criteria

i d in a text; the assumptions are made implicitly.
WI'lll“lz:eﬁrr.::r(‘:rilcrion is that the algorithm is Ii.ncar. Smolyak (!965) showefi
that under a fairly weak assumption rcgardmg ".IC class' of !nlc.grand'sr,hlt
can be concluded that the optimal algorithm fc_»r integration is linear. T e
advantage of proving that the optimal glgonthm is linear, mlhgr_t an
deciding to study only linear algorithms, is clear. If an ad h.oc dems!o;: is
made to study only linear algorithms, a much bel.lcr algonl.hm whic [:
not linear may be missed; if it is proved tha': an optimal algorithm must

he linear ones, that cannot happen. '
fOl'lI'r;g: as'::(;‘:dl ad hoc criterion is that the informalion i§ nonadaptive.
Under the same assumption mentioned prcvnou‘sly .rcgardmg the c'lass' of
integrands, Bakhvalov (1971) proved that nothing is lost by considering
ive information.
on'llyh:‘:;:ﬁza:(: hoc criterion is that polynomials-of sufﬁgienlly low (.ieg‘ree
are exactly integrated. Is there any reason .lo think this isa gogd criterion
if the integrand is not a polynomial? A§ will be slyown in $ecllon 5.2,hw:ve
can pay an exponential penalty ll)y using Gauzs information rather than
i information even for analytic integrands. o

Op:;l:l:l Iclass of integrands is sufficiently “Polynomlal-lnkc, the.n these
criteria lead to good algorithms. Thus, if F is the r:Iass of analytic func-
tions with uniform bounded norm on the disk of radius r, lh'en, for large. r,
Gauss nodes and Gauss quadrature formulas are nearly qpl!mal (Barnhill,
1968 Larkin, 1970; Pinkus, 1975). Note lha! the restr.1cuons on F are
severe, The integrands must be “‘almost’’ entire and uniformly boupdcd.

We have no particular quarrel with (.}m'lss qtfadralure. We use it be-

cause it is widely known and because it is typlcal of the numerous al-
gorithms obtained on the basis of ad hoc criteria. Indeed, there is a very
beautiful mathematical theory involving .famlhes of orthogonal polyn'oml-
als (Ralston and Rabinowitz, 1978) that is used to analyze G_auss quadra-
ture. However, the elegant theory of onhogopal polynomials does not
necessarily lead to good information and algorithms.

5.2 How Bad Can Gauss Information Be for Analytic Integrands?

The title of this section refers to Gauss information rather than to Gauss
algorithms. We will show that Gauss information can be poor, and there-

INFORMATION AND COMPUTATION 63

fore any algorithm using Gauss information must be poor. (By Gauss
information we mean integrand evaluations at the Gauss nodes.)

Let F be the class of real functions on (=1, 1] whic
extended to the unit disk and whose extension is u
norm. Let N denote Gauss information and let N*
mation. Kowalski ef al. (1983) show that

r(NC) ~ 1/n?,
whereas Bojanov (1974) has shown that

r(N*) ~e=Vn, >0

h can be analytically
niformly bounded in
denote optimal infor-

Thus, an exponential penally is paid for using Gauss information rather
than the optimal information.

5.3 Is There a Relation between the Exactness Criterion and
Optimal Algorithms?

The Gauss quadrature coefficients are chosen to exactly integrate all
polynomials of degree, at most, 2n — 1. Is there any relation between
exactness and optimal algorithms?

The answer is negative. For example, the optimal algorithm discussed

in Section 2.7,
v= 5§f(2'z; l)-

turns out to be exact only for first-degree polynomials. Werschulz (1983)
has shown there exists a class of integrands for which not even constants
are exactly integrated by an algorithm which is optimal for that class.

6. An Abstract Model

We present an abstract model; the following sections are numbered and
titled to correspond to those of Section 2. We emphasize that even though
anumerical example was used in Section 2, the abstract formulation is not
confined to such applications.

This is a normed worst-case model because uncertainty is mea-
sured by a norm. A model where uncertainty is measured without a norm
is briefly mentioned in Section 8: average-case models are also discussed
in Section 8. We limit ourselves to uncertainty caused by partial informa-
tion. [The theory of approximate information and further development of

64 J F. TRAUB AND H. WOZNIAKOWSKI

a model where uncertainty is measured without a norm may be found in
Traub ef al. (1983).)

Although we will formulate an abstract model and present a number of
important results, we will keep the presentation as simple as possible. For
example, we will not cover rather deep connections with pure approxima-
tion theory [for which, see Traub and WoZniakowski (1980a, Chapter 2,
Sect. 6; Chapter 3, Sect. 5; Chapter 7, Sect. 4)].

6.1 Problem Formulation

Let § be a linear or nonlincar operator (mapping)
S: F—G.

We wish to compute the element S(f), f € F. In general, we have to settle
for an approximation to S(f). We want to compute an element x = x(f)
such that

IS - sl <e (6.1)

for some preassigned € > 0, and x = S(f) if ¢ = 0. We say x is an e-
approximation. It measures the uncertainty in our knowledge of S(f). We
assume F is a subset of a lincar space F* over the real or complex field and
that G is a normed linear space.

We must know something about fto compute an e-approximation. We
assume we know the element N(f) where

N:F—-H

is a linear or nonlinear operator (mapping). We say S is the solution
operator, F is the class of problem elements, N is the information opera-
tor, and N(f) ts the information.

The operators § and N and the abstract set F are the basic concepts of
our formulation. We call this the SFN model. We seek an g-approxima-
tion for all £ € F. This normed worst-case model may be formulated as
follows:

Problem: Compute an e-approximation to S(f), Vf € F.
Information: N(f).

In Table 1 we relate these concepts to the integration example of Sec-
tion 2. The left-hand column has the abstract concepts and on the right are
the corresponding concepts for the integration example.

By special choices of S, F, and N, we specialize to areas which are
major disciplines. Thus § = I (the identity operator) is the approximation

INFORMATION AND COMPUTATION 65

Tamek |

ProsrLeM FormMuLATION CONCEPTS

Abstract concept Intcgration example

J An integrand
SN SN = fs fin di
F Set of integrands such that
Irnf=s
N N = LA, ..., fFUN
IsSN-xi<e IR f(di - x| < e

problem (optimal estimation). On the other hand, N = [is typical of the
problems treated in algebraic and combinatorial complexity.

6.1.1 Linear Problems

The case that § is a linear operator is of special interest for two reasons.

For many applications, § is linear. Examples include approximation
(optimal estimation), integration (especially multivariate integration), in-
terpolation (especially multivariate interpolation), and linear partial dif-
ferential equations. Furthermore, the theory, not surprisingly, is far more
developed for linear S. [See Micchelli and Rivlin (1977) and Traub and
Wozniakowski (1980a, Chaplers 1-6) for the worst case; see Traub et al.
(1981), Wasilkowski and Wozniakowski (1982), and WoZniakowski (1982)
for the average case.)

It is desirable to consider the case that the set F is generated by a linear
operator. Recall that F is a subset of a linear space F'. We now add the
assumption that T, T: F' — K, where T is linear and where K is a linear
normed space over the real or complex field. Assume

F={f€F and |Tf] =1} (6.2)

We assume S, §: F — G is also linear. If these assumptions hold we say
the problem is linear.

The definition of linear problem may seem artificial, but many problems
are of this form. The integration example formulated in Scction 2.1 is
linear. Often, Tf = f*. The assumption | Tf}| < | is for convenience; it is
cquivalent to the assumption that || Tf] is uniformly bounded.

The important assumption is that Tf exists. The quantity || 7] appears in
the formula for radius of information. If || 7f]| is unbounded, the radius of
information and thercfore the uncertainty are also unbounded.

In Section 7.2 we will discuss whether linear problems have “‘lincar
optimal algorithms."’

66 J. F. TRAUB AND H. WOZNIAKOWSKI

6.2 Radius of Information

There exists a quantity called the radius of information which measures
the intrinsic uncertainty of solving a problem when information N is avail-
able. The concept of radius of information is motivated by the following
considerations.

Fix f € F. We know y = N(f). Assume that N is a many-to-one opera-
tor, thatis, N(f) is partial information. Let V(y) be the preimage set of y
in . That is, it is the set of elements in F indistinguishable under N (see
Fig. I). Let U(y) be the image set of V(y) under S. L

It should be clcar that with the information N(f) we cannot distinguish
the clement S(f) among the elements U(y). Hence the *‘size’’ of the set
U(y) is a measure of the intrinsic uncertainty due to N. A standard mea-
sure of the size of a set is the minimal radius of a *‘ball’’ which contains it.
Let rad(U(y)) denote the radius of U(y). We now vary f and define the
radius of information (for the worst case) by

r(N) = sup rad(U(y)).
y € N(F)
The preceding discussion serves as a sketch of the proof of

Theorem 6.1 The information N is strong enough (o determine an ¢-
approximation, Vf€ F, iff (N) <e. ®

F S(F)

V(y)

INFORMATION AND COMPUTATION 67

A formal definition of radius of information and proof of Theorem 6.
may be found in Traub and WoZniakowski (1980a, Chapter I, Definition
2.1, and Theorem 2.1).

Observe that the radius of information should be written (N, §, F).
We write it simply as {(N) for simplicity and because we will usually keep
S and F fixed and study the radius as a function of information. Of course

§ and F also supply information (see Traub er al. (1981, Sect. 6) for a
quantification).

The radius of information defined here bounds the uncertainty caused
by partial information. The generalization that includes uncertainty
caused by approximate information and restriction to a class of realizable
algorithms may be found in Traub er al. (1983, Chapters 2 and 3, Appen-
dix H).

6.3 Algorithms

An idealized algorithm (or simply, algorithm) is any mapping for com-
puling an approximation knowing the information N(f) and knowing

that f€ F. Thus, an algorithm is any linear or nonlinear mapping
¢: N(F)—> G.

6.4 Optimal Algorithms
The error of approximating S(f) using the algorithm ¢ is defined as

ele.) = I5() — o(N(.
The algorithm error e(yp) is the worse elp, f) forall f€ F. That is,

e(p) = sup e(p, /).
JeF

The radius of information is a lower bound on the algorithm error. We
have

Theorem 6.2 For any algorithm ¢ which uses the information N(f)
e(p) = r(N).
Furthermore, this lower bound is best possible. m

We say ¢ is an optimal error algorithm (or simply an optimal algorithm)
if

e(p) = n(N).

60 J. F. TRAUD AND H. WOZNIAKOWSKI

We denote an oplimal algorithm by ¢*. A second notion of optimality
(optimal complexity algorithm) is defined in Section 6.11.

6.4.1 How to Generate Good Algorithms

We define two paradigms for generating optimal or near-optimal al-
gorithms.

An interpolatory algorithm, ', simply chooses any clement of U(y)
(defined in Section 6.2) as an approximation to S(f). An example of an
interpolatory algorithm is given in Fig. 2.-Which element of U(y) should
be chosen? The set V(y) consists of all £ € F indistinguishable from
f under N. Choose an element f from V(y) which is **simpler’’ than f.
Then the interpolatory algorithm is S(f).

For example, if F is some class of scalar functions, then fcan be chosen
as a polynomial or piecewise polynomial p such that p € F and N(p) =
N(f). Then the interpolatory algorithm is S(p).

Although this seems like a very crude process, any interpolatory al-
gorithm (in the worst-case normed linear space setting described in Sec-
tion 6.1) is within at most a factor of two of having optimal error! Let
(N be any interpolatory algorithm. We have

Theorem 6.3
elp') = 2r(N). w
F S (F)
v(y) u(y)
s
’ f u-Slf)

N1 ¢
N(F)

y=N(f)

G, 2.

INFORMATION AND COMPUTATION 69

A central algorithm ¢ chooses a “*center’ of the set U(y), if it exists,
as an approximation to S(f). (Not every set has a center.) A central
algorithm is always optimal. That is, we have

Theorem 6.4
e(p) =r(N). a

Formal definitions of interpolatory and central algorithms and proofs of
the two theorems may be found in Traub and Wozniakowski (1980a,
Chapter 1, Sect. 2).

Note that because r(N) is a sharp lower bound on the error of any
algorithm, interpolatory and central algorithms provide tight upper
bounds.

" If it is desired to actually construct a good algorithm for a particular §,
F. N, it is possible to proceed as follows: (1) the definitions of interpola-
tory and central algorithms provide simple paradigms for generating good
algorithms, and a decision is made about which of these to use; (2) apply
the paradigm for a particular S, F, N.

Although the first step is conceptually easy, the second may be hard.
Depending on S, F, and N, it can be technically diflicult to obtain the
radius of information and the optimal algorithm. Furthermore, these
quantities vary if any of S, F, or N change. For fixed S, F, N, the optimal
algorithm need be obtained only once. Therefore the analysis may be
viewed as a precomputing cost. An interpolatory algorithm is often fur
easier to construct than a central algorithm.

Many examples of the radius of information and optimal algorithms
may be found in Traub and Wozniakowski (1980a, Chapters 6 and 8) and
in Traub ef al. (1983, Chapter 6).

We emphasize that Theorems 6.3 and 6.4 hold for the normed worst-
case setting. If uncertainty is not measured by a norm, an interpolatory
algorithm might be useless (sce Traub ef al., 1983, Appendix A). In this
more general setting, we introduce *‘interior’” and **midpoint’ algorithms
and show that they have good ervor properties.

6.4.2 Spline Algorithms

We briefly discuss spline algorithms which have many desirable prop-
erties.
Let the class F be given by

F={f]m=1}, 6.3)

70 J. F. TRAUB AND H. WOZNIAKOWSKI

where T is a linear operator. Let f € F, be indistinguishable from funder
N, and have minimal T-norm, that is,

771 = min{]| Tgl: N(g) = N} (6.4)

A spline algorithm, ¢*, is defined by ¢* = S(f).

We mention some of the desirable properties of spline algorithms. They
are interpolatory and therefore close to optimal. If the norm of Egs. (6.3)
and (6.4) is a Hilbert norm, $ a linear operator, and T(ker N) is closed,
then the spline algorithm is a linear central algorithm. (See Section 6.5 for
the definition of linear algorithm.) Traub and Wozniakowski (1980a,
Chapter 4) develop other useful properties of spline algorithms for the
worst-case model. Spline algorithms also enjoy optimality properties for
the average case (see Traub er al., 1981; Wasilkowski and Wozniakowski,
1982).

6.5 Linear Algorithms

We say an algorithm ¢ is a linear algorithm if
e(N() = 2 LiNgi,
i=l

where the g; are clements of G and where N(f) = [L(f). ..., L(/)].

Linear algorithms are easy to implement. Because g,, ..., g, are inde-
pendent of f, they can be precomputed. Given the g;, we perform at most
n multiplications of elements from G by a scalar and n — 1 additions of
elements from G. Given the information N(f), the cost of forming
o(N()) is linear in n and usually small with respect to the complexity of
computing N(f). Traub and Wozniakowski (1980a, Chapter 5) present a
discussion of the complexity of linear algorithms.

It is desirable to use an optimal algorithm which is linear. A linear
optimal algorithm always enjoys close to optimal complexity (see Section
6.11). When does a linear optimal algorithm exist? It might be hoped that
linear problems always enjoy linear optimal algorithms, but this turns out
not to be the case (see Section 7.2 for further material).

Another desirable property of linear optimal algorithms is that if they
use optimal nonadaptive information, they enjoy close to optimal parallel
speedup. An example was given in Section 4.5.1.

6.6 Optimal Information

We have assumed that the information operator N is fixed. We now
vary N and pose the problem of optimal information.

INFORMATION AND COMPUTATION A

We confine ourselves to linear information. Arbitrary nonlinear infor-
mation operators are usually too powerful and all problems become trivial
(sce Traub and Wo#zniakowski, 1980a, Chapter 7).

Without loss of generality we say N is a linear information operator if
N =L, ..., L,], where the L;, i = I, ..., n, are lincarly independent
linear functionals. We call n the cardinality of N. To stress dependence on
cardinality we sometimes write N,.

Note that in the integration example we chose L(f) = f(1,). The
cardinality was the number of sample points. Linear information is very
commonly used in practice. It generalizes information such as evaluation
of functions and derivatives.

Fix n. Let N} be such that

r(N?) = inf r(N,).
N,

Then we say that N is optimal information of cardinality n (or simply,
optimal information). The infimum is taken over all linear information of
cardinality n. Sometimes the infimum is taken over a restricted class of
linear information of cardinality n. For example, for the integration exam-
ple, we restrict ourselves to information consisting of function evalua-
tions.

6.7 Example

An illustration of these concepts can be found in Section 2.7.

6.8 s the Information Strong Enough?

So far, we have fixed n, the cardinality of information. Recall that we
want to compute an g-approximation. It may turn out, even using optimal
information, that n is not large enough.

We therefore vary n and ask what is the smallest n such that the infor-
mation is strong enough to determine an e-approximation. Recall that we
can determine an e-approximation, V f € F, iff r(N) < e. As before, lect
N? denote the optimal information of cardinality n. Define the e-cardinal-
ity number as

min{n: r(N?) < &} for £>0,

m(e) = [min(n: r(N?) = 0} for £ =0,

with the convention min(@) = o, In words, we consider the optimal infor-
mation of cardinality n and then vary n, secking the optimal information
of smallest cardinality whose radius of information is less than €.

72 J. F. TRAUB AND H. WOZNIAKOWSKI

Can it happen that r(N?) = o for all finite n? This would imply that no
e-approximation is possible for any finite £, no matter how large, using
optimal linear information of finite cardinality. The answer is yes, even if
S is lincar (see Traub and WoZniakowski, 1980a, Chapter 2, Sect. 3).

6.9 Computational Complexity

If r(N) < €, an e-approximation can be determined and we can ask what
is the computational complexity. First we must define our model of com-
putation.

6.9.1 Model of Computation

We indicate our model of computation, which consists of a set of primi-
tive operations, permissible information, and permissible algorithms.

1. Let p be a primitive operation. Examples of primitive operations
include arithmetic operations, comparisons, taking the maximum of n
numbers, and the evaluation of a radical, an integral, a linear functional,
or a nonlinear functional. L.et comp{p) be the cost of p. We assume that
comp(p) is finite. Suppose that P is a given collection of primitives. The
choice of P and comp(p), p € P, are arbitrary and can depend on the
particular problem being solved.

2. Let N be an information operator. We say N is permissible with
respect to P if there exists a program using a finite number of primitive
operations from P which computes N(f) for all £ € F. If N(f) requires the
evaluation of primitives p,, pa, -.., px. then

[
comp{N(f)) = 2 comp(p;).

We call comp(N())) the information complexity of computing N(f).
3. Let ¢ be an algorithm which uses the permissible information N. To
evaluate ¢(N(f)) we

compute y = N(f),
compute p(y).

The complexity of computing y is given by (2). We say that ¢ is permissi-
ble with respect to P if there exists a program using a finite number of
primitive operations from P which computes o(y) for all y = N(f), f€ F.
Let comp(e(y)) be the combinatory complexity of computing ¢(y). Thus,

INFOHMATION AND COMPUTATION 73

if ¢(y) requires the evaluation of primitives gy, ..., g;, then

J
comp(p(y)) = D, comp(q).
i=]

In the model of computation in Section 2.9, the primitive operations are
function evaluation and the four arithmetic operations. In the algorithm
e (N* () in Section 2.10, k = j = m. Therefore the information complex-
ity is mc and the combinatory complexity is m.

6.9.2 Delinition of e-Complexity

Suppose that r(N) < ¢ for a permissible N and let ®(¢) denote the class
of permissible algorithms that use N and for which e(p) < €. Assume that
&(e) is not empty. Let ¢ € ®(e). Then the algorithm complexity of ¢ is
defined by

comply) = ISl_lr;lcomp(N(D) + comp(p(N(N))].

We define the e-complexity for the information N as
comp(N, €) = inf{comp(p): ¢ € P(e)}

with the convention that inf{®} = +.

To define e-complexity we must first specify a class of permissible
information, ¥. An example will show why this is necessary. We wish to
approximate f§ f(1) dr. If all linear functionals were permissible informa-
tion, the integral could be exactly computed with one piece of informa-
tion. For this problem it is natural to assume that only function evalua-
tions (or its derivatives) are permissible.

For a given class of permissible information operators we define the e-
complexity in the class ¥ as

comp(¥, €) = inflcomp(N, €): N € V.

Note that all the concepts presented here depend on the solution opera-
tor §. The e-complexity in the class ¥ might be denoted by comp(¥, S, ¢€)
rather than by comp(¥, €). Because § is fixed, it is omitted for simplicity.

If the class ¥ is understood from the context, we can write comp(e)
instead of comp(¥, £). We call comp(e) the e-complexity. We sometimes
refer 10 e-complexity as problem complexity or computational com-
plexity.

6.10 Example

An example of computing upper and lower bounds on e-complexily
may be found in Section 2.10.

74 J. F. TRAUB AND H. WOZNIAKOWSKI

6.11 Optimal Complexity Algorithms

We say ¢** is an optimal complexity algorithm in the class ¥ iff o**
uses an information operator N from ¥ and

comp(p®*) = comp(e).

Note that we have two major notions of optimality: oplima! error al-
gorithm (which we have been calling optimal algorithm) and optimal com-
plexity algorithm.

6.11.1 When Is an Optimal Error Algorithm Nearly an Optimal
Complexity Algorithm?

We discuss the relation between an optimal error algo_rilhm and an
optimal complexity algorithm. Suppose t-herc exists an optimal error al-
gorithm whose combinatory complexity is small.relatwc (? the informa-
tion complexity. Such an algorithm is close to being an optimal complex-
i orithm.
lly’l’z;:igs is a very favorable situation because the algorithm fninimizes both
ervor and cost. This suggests the question: For which soluuor} operators §
does there exist an optimal error algorithm with small combinatory com-

ity?
plel?(l)?tlt;nately, for many practical problems §, we can ﬁm.l an optimal
error algorithm with small combinatory complexn(y. For m.slancc., for
many linear S (although not for all; sec Section 7.2) l_hcrc exists a linear
optimal error algorithm. It is easy to show lha_t a Ilnca.r optimal error
algorithm is always close to an optimal complexity algorithm (see Traub
and Wozniakowski, 1980a, Chapter 5). . .

For some nonlinear § we can also find an optimal error algorithm with
small combinatory complexity. An example is provi(!ed b-y the zer.o-ﬁm.i-

ing problem for functions which change sign.-The bisection a!gonlhm.ns
an optimal error algorithm with constant combinatory cgmglcxnlx. that is,
the combinatory complexity is independent of the cardinality of informa-
tion (see Traub and Wozniakowski, 1980a, Chapter 8, Sect. 3).)

What is the relation between these notions? Because (!m combmz.awfy
complexity of an optimal ervor algorithm may be very high, there is, in
general, no relation. In the following section we will present condm?n.s
under which an algorithm that minimizes error must come close to mini-

mizing cost.

7. Some Results

In this section we give some results in the model introduced in Section
6. In Sections 7.1-7.3 we state three types of results which enable us to

INFORMATION AND COMPUTATION 75

cut the search space for optimal information and optimal algorithms: () 1s
nonadaptive information optimal? (2) Is a linear algorithm optimal? (3) Is
a special type of information optimai?

We cmphasize that we cut the search space by proving that the optimal
information or algorithm must be of a particular, simple form. This should
be contrasted with cutting the scarch space heuristically, as in artificial
intelligence.

In Section 7.1 we give conditions under which nonadaptive linear infor-
mation is optimal in the class of adaptive linear information. The signifi-
cance of such results is that, when we seek optimal information, we can
confine our attention to nonadaptive information. Because the structure
of nonadaptive information is far simpler than that of adaptive informa-
tion, this is most advantageous.

‘In Section 7.2 we give conditions under which a linear algorithm is
optimal in the class of all algorithms; in Section 7.3 we give examples
where function evaluations are optimal in the class of adaptive linear
information.

We move (o a different theme in Section 7.4. Intuitively, the smoother a
problem, the lower the complexity for its solution. We discuss what has
been established to date.

In the concluding section we quote a result from mathematical eco-
nomics and a result regarding locally convergent iterations, cach of which
indicates that some n? scalar pieces of information are required to solve
nonlinear equations in n dimensions.

7.1 Can Adaption Help?

In Section 4 we discussed why it is of interest to know whether non-
adaptive information is as powerful as adaptive information. We gave
examples where adaption is much more powerful, as well as cxamples
where adaption does not buy you anything. Here we present some
gencral results regarding this question.

7.1.1 Some Concepts

First we must define some concepts. We begin by defining nonadaptive
and adaptive information for the case of linear information operators. If
N™(f) = [L(f). ..., L{N)], where L, ..., L, are n independently given
linear functionals, then N*%(f) is nonadaptive linear information, and we
write N™" to denote a nonadaptive information operator.

If N) = [L(), LASy) oo LSy1 s ooes Ya-1)], Where L; depends
linearly on its first argument and y; = L{f:y;, ... yi-1). then N*(f) is
adaptive linear information. Note that adaptive information can use any

76 J F. TRAUB AND H. WOZNIAKOWSKI

function of any previously computed functionals to determine the next
functional.

7.1.2 Two Theorems

Theorem 7.1 For any linear problem and any adaptive linear informa-
tion N* of cardinality n, there exists a nonadaptive information operator,
N™a of cardinality at most n, such that

r(N*) 2 {r(N*"). © (.1
[See Gal and Micchelli (1980) and Traub and Wo#niakowski (1980a, Chap-
ter 2, p. 48).)

We discuss the implications of this thecorem. Because the radius of
information, r(N), is a sharp lower bound on the error of any algorithm
using N, we measure the power of the information operator N (hrough
r(N). That is, if r(N) is smaller, then N is more powerful. The thcorem
tells us that adaption, at best, can reduce the radius by one-half and this
is independent of n. For many linear problems we have the stronger result
that

r(N*) = r(N™). (1.2)

Theorem 7.1 is a special case of a more general result (see Traub er al.
1983, Chapter 4, Theorem 3.2).

A second theorem giving a condition under which nonadaptive informa-
tion is just as powerful as adaptive information may be found in Traub ef
al. (1983, Chapter 4, Theorem 3.1). The fact that adaption does not help
for binary search (discussed in Section 4.4) is a special case of this
theorem.

7.2 Does a Linear Optimal Algorithm Exist?

As we discussed in Section 6.11.1, a linear optimal algorithm is always
close to being an optimal complexity algorithm. Therefore, linear optimal
algorithms are very desirable. If the problem is linear, must an optimal
linear algorithm exist?

The answer is negative. C. A. Micchelli (private communication, 1978)
has constructed an example of a linear problem for which no linear opti-
mal algorithm exists (see Traub and Wo#niakowski, 1980a, Chapter 3,
Example 4.1). To get his counterexample, Micchelli uses a nonstandard
norm. We know of no linear problem arising in practice which does not
have a lincar optimal algorithm.

INFORMATION AND COMPUTATION 77

We state three theorems which give positive results.

Theorem 7.2 Assume the problem is linear and that § is a real linear
functional, Let N be a real linear operator. Then there exists a linear
optimal algorithm. ®

This result is due to Smolyak (1965). We state it here in our termi-
nology.

Next we consider the case where § is any linear operator. Then we
have

Theorem 7.3 Lel the problem be linear. Let N be a linear informa-
tion operator of finite cardinality. Then there exists a linear algorithm
e(N(f)) such that r(N) = e(o(N(f))) < cr(N), where ¢ depends only on
Nkker7). =

Theorem 7.4 In addition, let the range of T be a Hilbert space and let
TNker N) be closed. Then ¢ = | in the previous theorem and ¢ is a linear
optimal algorithm. m

The proofs for the theorems may be found in Traub and WoZniakowski
(1980a, Chapter 3, Theorems 4.1 and 4.2). These are constructive and
indicate how the finear algorithms are obtained.

7.3

We can sometimes cut our search space by proving that a certain type
of information must be optimal. We provide two illustrations selected
from recent research.

The first illustration is provided by the zero-finding problem alrcady
discussed in Section 4.1, for which we now discuss a further result. Recall
that the problem is to find an e-approximation to a zcro of the nonlinear
function f where f is continuous on [0, 1] and f(0) < 0, f(I) > 0. We
assumed that the type of information available is n evaluations of f and
concluded that, relative to this type of information, bisection information
{(which is, of course, adaptive) is optimal. The radius of optimal informa-
tion is 2°™*" and the bisection algorithm is optimal. ‘

Suppose now that we assume only that we can use adaptive linear
information as defined in Section 7.1. What is the optimal information in
this very large class?

In Traub and WoZniakowski (1980a, p. 170) we conjectured that the
optimal adaptive linear information is just function evaluations. This con-

Is a Certain Type of Information Optimal?

78 J. F. TRAUB AND H. WOZNIAKOWSKI

jecture was established by Sikorski (1982). Thu? a:ul/ alglogl_l(l'l‘l’n”usll)rrlg‘,:::;
i ive i i t have error of at leas .

r adaptive information mus ' . . .
l'::: a resﬂll is difficult, and Sikorski uses a very ingenious a.rgl‘lrlp:ntlhe
) The second illustration is provided by the problem of al‘)f)roxu.na i fsin
i se function, f~'. Let F be the set of all monou?n-u.ally increasing
;‘nve:isons on [0 'I) We scek an g-approximation to f~! in the supremum

unc SR

no\rh'::l.silkowski (1982) proves that if N* is arbitrary adaptive linear infor-

mation, then
r(N*) = 1/(4(n + 1)).

Let .
N‘(D = lf(’l)v N'vf(’n)lv ',' = '/(" + I).

Note that N* uses only function values at equispaced points and is non-
adaptive. Yel
r(N*) = H(2(n + 1)).

Thus nonadaptive function evaluations are almost optimal in the class of
adaptive linear information.)) -
dd:‘tpis interesting to contrast the inverse funcllonhand fqro-ﬁ:(el::r:slrce::el(;%
i luating f~'(0). Thus, itisas
ero finding can be stated as evalua] .
Z(c):rrnpuling gf—l. However, optimality results are in sharp conl'r‘z'ist. F(r)‘r
zero finding, adaptive information is exponentially ;lr(:flgcr‘nlfo‘::1 ar:?on
ive info i tion inverse, nonadaplive i
¢ information. For the func ; - . :
?sd :'e)::lly optimal. Furthermore, the inverse function problem is exponen
tially harder than the zero-finding problem.

7.4 Do Smoother Problems Have Lower Complexity?

iti lower complexity. We quantify
tively, smoother problems _havg . quar
lhilsn;::'; pai’ticular problem and briefly indicate what has been established

in general.

7.4.1 An Example

i i i he class of integrands

i e considered scalar integration fo.r t e
f rlnwsh(;cc:::ol;’ft‘;], < 1, ¢t € [0, 1]. It would be of interest to consider the
0 —_— ¥ .
i ati blem for smoother functions.) .
ml:rig(:::m:cl::rigcly we seck an e-approximation to [} f(l.) d! usmg-thc
informati':m NU) - Lf(1,), ... f(1,)]. Let F be the set f)f[_mnodlc.f}lncu?n;
with period one such that |/“()] < I, ¢ € |0, 1]. [This definition o

INFORMATION AND COMPUTATION 79

SErves our present purpose: for 3 precise definition, see Traub apd
WoZniakowski (1980a, pp. 90, 109).)

This problem has been studied by Motornyj (1974) and we report his
resulls using our terminology. The optimal information s

N =1 (). (), S | R

The radius of optimal information is
r(N*) = K,/Qmny. (7.4)
Here K, is the rth Favard constant defined as
K, = alm 3 (=10 4y, (7.5)
i=Q
Itis known that X, = /2, K, =n8, K, = w324, and that | = Ko< K, <

<dmr<o<K < K, = m/2. Thus the smallest number o
samples, m, such that we can compute an e-approximation js

= |G)]+ &

Furthermore, the averaging algorithm

f integrand

IS 28 - l)
* * = - [
PN = ~ Zf(5 (1.7)
is an optimal algorithm using optimal information (relative to information

of the form N() = IA)), vy SCL)D.

Assume each arithmelic operation costs unity and each function evalu-
ation costs ¢. Then the e-complexity, comp(e), is given by

K' l Ir
comp(e) = (c + 1) (l(QT)’ E) J + I) + a, (7.8)
where @ = —1 or 0. Thus ¢*(N*(f)) is an almost optimal complexity

algorithm.

We discuss these results. Observe the Knuthian nature of Egs. (7.4)
and (7.5). We do not have just an order-of-magnitude result for the radius
of optimal information; we know the constant,

The optimal information and the optimal algorithm using optimal infor-
mation, given by Egs. (7.3) and (7.7), are extraordinarily simple. Indecd,
the optimal algorithm js Just the averaging algorithm at n equispaced

points. We used this example precisely because the answers are so
simple.

80 J F. TRAUB AND H. WOZNIAKOWSKI

The approximation of integrals where the set of integrands is generated
by a linear restriction operator T always enjoys nonadaptive optimal in-
formation and linear optimal algorithms (as defined in Section 6.1.1).
However, the formulas are not always simple (see, for example, Traub
and WoZniakowski, 1980a, Chapter 6, Sect. 4).

Note how well we know the problem complexity. It has exactly one of
two possible values an integer apart. The tight lower and upper complex-
ity bounds arc typical when there is a lincar optimal algorithm. [See Traub
and Wozniakowski (1980a, Chapter 3) for a general investigation of when
a linear optimal algorithm exists.]

Observe that if r = 0, then Eq. (7.4) shows that the radius of optimal
information is unity. This implies that no e-approximation exists, for any
£ no greater than unily, for the class of integrands which are periodic,
continuous, and bounded, no matter how large the number of function
samples!

Finally, we want to discuss an important implication of Eq. (7.8). It
shows quantitatively how e-complexity decreases with the smoothness of
the class of integrands which is measured by the parameter r. In particu-
lar, we see that complexily decreases as smoothness increases.

Observe that an argument based on the simple observation that the
class of functions with smoothness r + 1 is contained in the class of
functions with smoothness r fails because the class of functions such that
[£“*Y < 1 is not contained in the class for which |f*| = I.

Does complexity gencrally decrease as smoothness increases? We dis-
cuss this in the next section.

7.4.2 An Open Question and a Partial Result

It seems intuitive that more regular problems should be casier 1o solve
and should therefore enjoy lower e-complexity. Traub and WoZninkowski
(19804, p. 147) asked whether this is true in general.

A partial answer is provided by Werschulz (1982a). He answers the
question affirmatively in the case that § is linear and that regularity is
mecasured by a Sobolev norm or seminorm.

7.5 An Example From Mathematical Economics

The examples we have used, such as integration, zero finding, and
binary search, are drawn from numerical analysis and computer science.
We want to provide the reader with an example of an information result
from mathematical economics. We do not define the concepts used in this
scction, but refer the interested reader to the papers cited below.

INFORMATION AND COMPUTATION 81

Saari and Simon (1978) consider how much information is required for a
price mechanism to converge to an economic equilibrium. They formulate
this as obtaining a solution of a certain nonlinear system in n dimensions.
Usually, the nonlincar systems are solved by an iteration which uses fand
S’ (or its approximation) at each step. In # dimensions this requires the
evaluation of the n components of f and the n? components of f. The
cconomic interpretation of knowing £ is that it is necessary to know how
changes in demand for the jth commodity affect changes in the price of
the kth commodity, where j and & range from | to n. We quote Saari and
Simon (1978):

For practical problems, this is a staggcring amount of information. Consequently, the
natural question is whether there exist effective mechanisms with a more modest depen-
dence on information content. ... We investigate this question in this paper, and our
results show that the information required cannot be relaxed by any significant amount.

Price mechanisms studied by Saari and Simon correspond to iterations
which are not necessarily locally convergent. The problem of what infor-
mation is required by locally convergent iterations for the solution of
nonlinear equations has been studied in many papers [sce Traub and
Woiniakowski (1980a, Part B)). Here we report a result of Traub and
Wozniakowski (1976, Lemma 4.3 and Theorem 4.2) which is of the same
flavor as the result of Saari and Simon.

We wish to approximate a simple zero of f where [is a nonlincar
operator, f: D C B, — By, where B, and B, are Banach spaces of dimen-
sionn, | =pn < too, We have

Theorem 10.1 Any locally convergenl onc-poinl tteration that uses
lincar information requires at least the evaluation of fand /7. =

Thus, for both effective price mechanisms and locally convergent one-
point iterations, roughly n? scalar pieces of information must be used.
This gives a measure of the inherent difficulty of solving nonlincar cqua-
tions.

8. Other Models

So far we have made three major model assumptions: (1) uncertainty is
measured by a norm, (2) the model is worst case, and (3) information is
exact. We briefly discuss models where these assumptions are not made.

82 J. F TRAUB AND H. WOZNIAKOWSK!

8.1 Measuring Uncertainty without a Norm

The normed setting we have used so far is appropriate for some c'onlin
uous problems such as integration, approximation, and .compu(mg. al
extremum of a continuous function. There are, however, simple continu
ous problems which cannot be formulated in the normed model presente:
in Section 6. For example, find x such that |f(x)] < €. |See Wcr§chulz
(1982b) for a discussion of this example.] Furthermore, there are discret:
problems where uncertainty is not measured by a norm. .

Traub er al. (1983) show how uncertainty can be measured without
norm. The model uses abstract sets and the solution operator is assume:
to salisfy two **nonrestrictive’ axioms. This formulation permits a syn
thesis between the study of discrete and continuous problems.

8.2 Average-Case Models

The model we have discussed so far is worst case. That is, we guaran
tee an e-approximation for every clement of F. Worst-case models ar
sometimes too pessimistic and we therefore study the average case.

Average-case analysis is far more difficult than wors't-case analysis
This is because integration with respect to a measure 1S far harder t
analyzec than the supremum operation. This is especially the case becaus'
the set F usually lies in an infinite-dimensional space and the analysi
thercfore requires rather hcavy mathematical machinery such as measur
theory in infinite-dimensional spaces. .

A general study of the optimal reduction of uncertainty for an average
case model was initiated by Traub ef al. (1981). We bricfly summarize th
results. ' _ .

The setting is linear problems on a finite-dimensional space equippe
with a weighted Lebesgue measure. An average-case mod.el is specifiec
and general notions of radius of information, optimal algorlthm, and opt
mal information are introduced. Among the results obtained are (1) th
same algorithm is optimal in the worst and average cases, (2) the sam
information is optimal in the worst and average cases, and Q) adaptiv
information is not more powerful than nonadaptive information.

We discuss these results. The first two conclusions are favorab!c'lo.lh
user because the same algorithm with the same information minimize
both the worst and average ervor. This is the spline algorithm (see Sectio
6.4.2). As we saw earlier, adaptive information does not help for the wor:
case. Many researchers believe this is true only in the worst-case setlin|
The last conclusion states the counterintuitive result that adaption dot
not help even on the average. .

How does the average radius of information, r***N). compare with tt
worst-case radius of information r(N)? It is possible that r*8(N) < r(N

INFORMATION AND COMPUTATION 83

However, for “‘reasonable’’ measures and *‘typical” problems the two
are comparable (see Traub ef al., 1981, Sect. 6).

The infinite-dimensional case is under investigation. Wasilkowski and
Wozniakowski (1982) obtain optimal algorithms and optimal information
for linear problems in infinite-dimensional Hilbert spaces. They show that
for any measure, a splinc algorithm is optimal among linear algorithms.
The spline algorithm is defined in terms of the covariance operator of the
measure. If the measure is ‘‘orthogonally invarian(,”’ then the spline al-
gorithm is optimal among all algorithms. Orthogonal invariance means
that the measure of a set is invariant under certain linear mappings. Ex-
amples of orthogonally invariant measures include Gaussian measures
and, for the finite-dimensional case, weighted Lebesgue measures. Under
the assumption of orthogonal invariance of the measure, WoZniakowski
(1982) has shown that adaption does not help even on the average.

8.3 Approximate Information

In Section 3 we listed three reasons why problems cannot be solved
exactly. In our discussions we have confined ourselves to just one of
these causes of uncertainty, partial information.

Approximate information is a very important cause of uncertainty. Op-
timal algorithms and optimal information for approximate information are
studied in Traub ef al. (1983).

In many application areas the information is stochastic. Of particular
importance is the average case with stochastic information, and this will
be one of the focuses of future research.

8.4 Asymptotic Models

We motivate our interest in asymptotic models with the following ex-
ample. We seek to approximate [} f(r) dt knowing the information

N(f) = [f('l)’ -"nf(ln)l'

Let F be the set of integrands such that f(r) is continuous on [0, 1].
Unlike the approach developed in Section 2, we do not assume a bound
on f"(1).

It ts not difficult to show that (N) = o for any finite n. Therefore it is
impossible to compute an e-approximation for any finite &.

Despite the infinite radius of information, we can proceed as follows.
Let

N = [r0.1 (). 1 (25). - 1]

84 J F. TRAUB AND H. WOZNIAKOWSK!

.

We choose as our algorithm the composite trapezoidal rule

a-2 :
N = B + f0 + b 5 (=).

n-1
Then the error is given by

edo) = [SUY di = AN = LONOAn = V), 6, €O D)

This error is of the form

ep, f) = h{f, n)g(n),

where h{f, n) = f(8,), g{n) = 1/(12(n - 1)?). Observe that if we var)
over all integrands in F, then h(f, n) is unbounded for any a. This is wi
the radius of information is infinite in the worst-case model. However, f
any fixed f, the sequence {@.(N,(f))} converges o [3f(1) dt and the spes
of convergence is proportional to n 2

The way that this algorithm is used in practice is that the scquence
approximations is terminated with some finite n, which depends on
according lo some *‘termination criteria.”” The user is not sure .lhal ‘
e-approximalion is computed whenever the termination criterion is sall
ficd. Thus, the uscr is gambling that for his fhe will be lucky.

If the user knows || < L, 1 € {0, 1], then he can guarantee :
s-approximation by choosing a1 such that

LI(12n — D) s e.

This is, however, equivalent to the worst-case model.

Traub and Woiniakowski (1980a, Chapter 10, Scct. 5) present :
asymptotic model which is an abstraction of the example prescI.\I‘
here. Some interesting results on the asymptotic case have been obtain
by J. M. Trojan (private communication, 1982). The currcn(‘slule ol? o
knowledge indicates that for linear problems, the asymplotic case I8
“had™ as the worst case! Further research should be done on this modi
which is very important in practice. The average asymptotic model shou
also be investigated.

9. Comments Regarding the information-Centered Approach

Our information-centered approach has stimulated many commen
and questions. Some of these have been very perceptive ar}d have infl
enced our work. We have also received some comments which we rega
as missing the point, but feel they deserve a thoughtful response.

INFORMATION AND COMPUTATION 85

One frequent comment is that in real-world problems, the user does not
know how to choose F. This is true; dealing with this case is extremely
important and will be the area of much future work (see Section 10.2.1).

It has been pointed out that in many applications, the information is not
exactly known. Furthermore, the available information may come from
various sources, be of varying quality, and may even be contradictory.
This is true, and the models will be extended to deal with this.

One scientist complained that it took as much work to specialize the
general theory to his application as to just solve his problem from scratch.
This addresses the fundamental intellectual claims of science. Most scien-
tists would agree that scienlific progress is made by showing that diverse
phenomena can be uniformly explained. A sound general theory exhibits
structure which is invisible to someone looking at a particular problem. It

“also suggests entirely new questions and approaches. For example, some

diseases could be cured before the germ theory of disease transformed
medicine, but many more could be cured after that understanding was
achieved.

Because of our emphasis on information, people have asked whether
information theory contains our results. It does not. Indeed, Shannon and
Weaver called what they did the mathematical theory of communication,
which is very descriptive of their work. One of us (JFT) benefitted from a
discussion with Robert Gallager. Our conclusion was that although there
is some overlap between our work and information theory, the subject
malter and methodology are very different. Traub et al. (1983, Sect. 6.9)
show how an example from information theory can be formulated in our
framework.

We have been told that what we want to achieve with the notion of
radius of information has been accomplished by the notion of Shannon
entropy. The notion of Shannon entropy has been found useful in many
applications, but it is not the same as our fundamental invariant, radius of
information. Traub er al. (1983, Sect. 6.9) give an example where Shan-
non entropy is shown to be related to our notion of average cardinality
number.

Many people have expressed surprise that adaption does not help for
lincar problems. There is widespread belief that adaption helps for prob-
lems such as quadrature. Furthermore, there is much current research on
algorithms using adaptive information.

Why are people’s beliefs that adaption helps at such variance with our
theorems that adaption does not help for either the worst or average
case? There are a number of possible explanations. First, our results may
not be applicable. For example, one of our results is that adaption does
not help for linear problems. If a problem is linear, then F is convex and

86 J. F. TRAUB AND H. WOZNIAKOWSKI

balanced (see Traub and WoZniakowski (1980a, p. 32). If someone wishes
to solve a problem where § is linear but F is not convex or not balanced,
then the results obtained so far do not apply and adaption may help.

Furthermore, the evidence cited in support of adaptive quadrature is
obtained by tests run for particular integrands. As Einstein noted in a very
different context, ‘It is the theory which decides what we can observe.™’
Once the theory has shown that it is the structure of a class of integrands
which determines whether adaption helps, this can be verified by
testing.

Our theory has been called too hard. Many theories which were initially
considered difficult are no longer so regarded. We believe the informa-
tion-centered approach is not difficult, just new. Indeed, the information-
centered approach permits vast simplifications.

We have been asked if we are serious about algorithms. We are very
serious. We want to create real algorithms used to solve real problems on
real computers. The comment refers to the fact that we do not work
within a formal model of computation, such as the Turing-machine model.
We refer the reader to Section 3.1.3 for a discussion of the relation be-
tween our notions of idealized and realizable algorithms and other notions
of algorithms.

One scientist commented that the optimal algorithm is ncver wanted.
We believe this comment was made in the mistaken belief that an optimal
algorithm need be complicated. Although that may be true for some areas,
we hope we have convinced the reader that the optimal algorithm is often
simple. Indced, one of the contributions of this theory is to ascertain
when the optimal algorithm is simple, and Sections 7.1-7.3 are devoted to
this topic.

Finally, a scientist said to us, ‘'l never solve problems for a class of
matrices, just for a single matrix. Therefore your notion of the class F is
irrelevant to me."”" The person who made this comment was referring to
his experience with matrix eigenvalue problems, but our response applies
generally. We believe it is fairly uncommon for someone to be interested
in only one matrix (or, more generally, in a single /), although there are
circumstances when this is so. After all, we expect to solve these prob-

lems on a computer. Our program will have to work not just for one
matrix, but for a variety of matrices.

10. Where Are We and Where Are We Golng?

We discuss the history and nature of e-complexity and indicate some of
the directions for future work.

INFORMATION AND COMPUTATION 87

10.1 e-Complexity

.We refer l.o the information-centered approach for dealing optimally
W.llh uncertainty as e-complexity. We will give a brief history of the field,
discuss whether e-complexity is a new discipline, and discuss alternate
names.

10.1.1 A Very Brief History

We indicate the work which we believe initiated research in analytic
complexity, iterative complexity, and e-complexity.

The pioneering work on analytic complexity was done by Kiefer, Sard,
and Nikolskij around 1950. Regrettably, Kiefer and Sard both passed
away recently.

Kiefer (1953) showed that if function evaluations are used, then Fi-
bonacci search is optimal in searching for the maximum of a unimodal
function. Professor Kiefer has informed us that this work was done as a
master’s thesis at the Massachusetts Institute of Technology in 1948, but
was published only later with the encouragement of J. Wolfowitz.

Sard (1949) studied optimal algorithms for quadrature which use func-
tion evaluations at fixed points and discussed extending his results to the
approximation of linear functionals. Independently, Nikolskij (1950)
posed the same problem and permitted the points of evaluation (o be
optimally chosen. Sard and Nikolskij assumed that the algorithms were
linear.

lteration complexity had its inception in the work of Traub (1961, 1964).
Iterative algorithms are classificd by the information they use. Theorems
are obtained and conjectures are proposed on the maximal order of itera-
tive algorithms for solving scalar nonlinear equations. Such maximal or-
der results are needed to obtain lower bounds on complexity.

The work on analytic and iterative complexity was brought together for
the first time in the research monograph of Traub and WoZniakowski
(1980a). This monograph includes a brief history and an annotated bibliog-
raphy with over 300 of the most important *‘core’’ papers and books.

The general study of e-complexity has been initiated by Traub er al.
(1983).

10.1.2 Is e-Complexity a New Discipline?

Only time will provide an answer to this question. The program of &-
complexity is ambitious: a general theory for dealing optimally with un-

88 J F. TRAUB AND H WOZNIAKOWSKI

certainly. Many of the concepts and points of view are novel. We regard
the information-centered point of view as fundamental and powerful.

How is e-complexity related to other disciplines? It has been heavily
influenced by computational complexity, the mathematical theory of ap-
proximation, applied mathematics, and numerical analysis. Because
much of e-complexity deals with infinite-dimensional problems, the tech-
nigues and language of functional analysis are heavily used. In the aver-
age-case sclting, the tools of measure theory in infinite-dimensional
spaces are utilized.

As we have repeatedly stressed, most mathematically formulated prob-
lems can be solved only with uncertainty. Therefore, applications can be
found everywhere. A partial list of applications that have been studied
and plans for the investigation of new applications may be found in Scc-
tion 10.2.2.

10.1.3 What's in a Name?

The name we have suggested is e-complexity. Other names could also
be used. Some people prefer to use optimal algorithm theory (see, for
example, Belforte et al., 1982). We often refer to the information-centered
approach, which suggests that information-centered theory should be the
name of the field.

An ideal name would be information theory. That, unfortunately, has
been used o denote something else.

10.2 Future Work

Although much has been accomplished, a vast amount remains to be
done. There are numerous open problems ranging from very theoretical to
applied. We indicate just a few of these in the following.

10.2.1 Future Theoretical Research

We briefly indicate some directions for future theoretical research.

Average-Case Models. This has been discussed in some detail in Sec-
tion 8.2. We list it here without further comment.

F Not Known. In numerous applications, the user does not know the
class of problem clements. We give a simple cxample. Let f represent the
temperature distribution of the atmosphere as a function of the distance
above the earth's surface. The smoothness of the class would depend on
whether there was a temperature inversion.

Dealing with the case that Fis not known is essential if we are to extend
our methods to the solution of certain important problem areas.

INFORMATION AND COMPUTATION 89

N Not Known. In numerous applications, N is not known exactly. For
example, N might be stochastic. We plan to extend our models to deal
with this case.

Optimal Information and Optimal Algorithms for Particular S,F,N. We
have provided concepts and general theorems, Applying our methodology
to particular instances of §, F, and N, can be technically difficult (see
Traub and WoZniakowski, 1980a, for numerous examples). This must be
done if the theory is to be widely applied.

10.2.2 Future Applications Research

Numerous applications have already been studied. Areas for which
results are reported in Traub and WoZniakowski (1980a) and Traub er al.
(1983) are integration, interpolation, large lincar systems, linear function-
als, linear partial differential equations, nonlinear equations, optimal re-
covery, oplimization, and polynomial zeros. We have also illustrated our
theory by examples from algebraic coding theory, binary scarch, continu-
ous binary search, database securily, decision theory, and information
theory.

These applications are for problems arising in scientific computation
and compulter science. There are numerous areas and disciplines dealing
with uncertainty which we plan to investigate using the information-cen-
tered approach. We give some very brief examples in the following.

Remote Sensing. Numerous important applications involve remote
sensing. Examples include seismology, remote sensing of the atmo-
sphere, and lomography (see, for example, Twomey, 1977). We hope to
answer questions such as: What are the best measurements? What is the
best way to combine these measurements? What is the minimal number of
measurements to guarantee a good answer in either a worst or average
casc?

Onc of the remote-sensing areas we plan to investigate is seismology. In
particular, we will apply our techniques to the Backus-Gilbert theory [for
which, see Backus and Gilbert (1970) and Burridge (1974-1975)].

Estimation, Prediction, Control. A group at the Politecnico di Torino
has been using the information-centered approach to solve problems in
estimation (Belforte ef al., 1982). They also report excellent results in
prediction (G. Milanese, private communication, 1982). We anticipate
that this will be a very active area for future research.

Distributed Computation. As we observed earlier, even problems capa-
ble of exact solution on a uniprocessor will be solved only under uncer-
tainty in the distributed environments of the future because complete,
exact information on the current state of the distributed system will not be
available.

90 J. F. TRAUB AND H. WOZNIAKOWSKI

We plan to model distributed systems. In particular, we wish (o investi-

gate distributed databases.
Signal Recovery and Processing. This very important area seems well

suited to our techniques.

Statistics. This is a huge discipline which deals with uncertainty. We
wish to understand how it is related to our work. We are hopeful that we
can pose and solve problems of interest to statisticians.

A first step has been taken by Kadane and Wasilkowski (1983), who
investigate relations between our average-case model and optimal deci-
sions and experiments in Bayesian statistics.

ACKNOWLEDGMENTS

It gives us pleasure to acknowledge our debts. We wanl to thank Z. Galil, R. M. Karp, E.
Packel, K. Sikorski, S. Stolfo, G. W. Wasilkowski, and A. G. Werschulz for reading the
manuscript. We bencfitted greatly by their comments. We are indebted to K. March for
typing the manuscript and to K. McLaughlin and B. Borske for preparing the revised
manuscripl.

This research was supported in part by the Nationa! Science Foundation under Grant
MCS-7823676. 1. F. Traub wishes to acknowiedge the support of the Advanced Research
Projects Agency under contract N00039-82-C-0427.

REFERENCES

For additional references, see Traub and Wozniskowski (1980a, Part C), who provide an
annotated bibliography of some 325 of the most important papers and books.

Backus, G., and Gilbert, F. (1970). Uniqueness in the inversion of inaccurate gross carth
data. Philos. Soc. Trans. London 266, 1970.
Bakhvalov, N. S. (1971). On the optimality of linear methods for operator approximation in
convex classes of functions. Zh. Vychisl. Mar. Mat. Fiz. 11, 1014-1018, USSR Comput.
Math. Math. Phys. (Engl. Transl.) 11, 244-249 (1971).
Barnhill, R. E. (1968). Asymplotic properties of minimum norm and optimal quadratures.
Numer. Math, 12, 389-393. .
Belforte, G.. Milanese, M., and Tempo, R. (1982). " Optimal Algorithm Theory and Estimi-
tion with Unknown but Bounded Eror.”* Dipartimento Di Automatica-Informalica
Report, Politecnico Di Torino, ltaly.
Bojanov, B. D. (1974). Best quadrature formula for a certain class of analytic functions.
Zastosow. Mat. 14, 441-447.
Burridge, R. (1974-1975). “*Some Mathematical Topics in Seismology,™ Sci. Rep. Courant
Institute of Mathematics, New York University, New York.

Gal, S.. and Micchelli, C. A. (1980). Optimal sequential and non-sequential procedures for
evaluating a functional. Appl. Anal. 10, 105-120.

Garey, M. R., and Johnson, D. S. (1979). “*Computers and Intractability.” Freeman, San
Francisco, California.

Kacewicz, B. (1976a). An integral-interpolation iterative method for the solution of scalar
cquations. Numer. Math. 26, 355-1365.

Kacewicz, B. (1976b). The use of integrals in the solution of nonlincar equations in N

INFORMATION AND COMPUTATION 9N

dimensions. /a ** Analytic Computational Complexity"*
> plexity (J. F. T . ed. L 127-
Academic Press, New York. a ravb. ed.). pp- 127-141.
Kacewicz, B. (1979). Intcgrands with a kemel in the soluti i i
) : on of [i
dimensions. J. Assoc. Comput. Mach. 26, 239-249. romlineat cquations in N
Kadane,)., and Wasilkowski, G. W. (1983). Avera i
3 GowW. . ge case e-complexity: i i
Valencia Int. Meet. Bavesian Stat., 2nd, 1983. plextty: A Bayesian view.
Kannfnrhr.‘ N.. u'rd Knrl.r. R. M. (1982). An cfficient approximation scheme for the one-
) dimensional bin-packing problem. 23rd Annu. Symp. Found. Comput. Sci, pp. 312-320

chl';;.sl. (1953). Sequential minimax search for a maximum. Proc. Am. Math. Soc. 4 502;

Kownlslfi, M. A, Wcrs.chluz. A G., and Wotniakowski, H. (1983). *'Is Gauss Quadrature
Opi.lmal'for Analytic Functions?'" Rep. Division of Science and Mathematics, Fordham
University and Dept. of Computer Science, Columbia University, New York.

Kuhn, H". W., Wang, Z., and Xu, S. (1983). *'On the Cost of Computing Roots of Polynomi-
a’ls. Rep. Dept. of Mx.ubcmatics. Princcton University, Princeton, New Jersey.
Larkin, F M. (1970). Optimal approximation in Hilbert spaces with reproducing kemel

functions. Math. Comput. 24, 911-921.

MFCOI’\ﬁ.JCl, P. (1979). **Machines Who Think." Freeman, San Francisco, California.

Mlcclrcl!l. C A'., and Rlylln.‘ T. 1. (1977). A survey of optimal recovery. In *'Optimal
Estimation in Approximation Theory' (C. A. Micchelli and T. J. Rivlin, eds.), pp. 1-54
Plenum, New York. ' .

Motomyj, V. P. (1.974.). On the best quadrature formulae of the form 5., pif(x)) for some
classes of periodic differentiable functions. Dokl. Akad. Nauk SSSR. Ser. Math 38
583-614. o

Murota, K. (1982). Global convergence of a modificd Ncwton iteration for al i

, eb -
tions. SIAM J. Numer. Anal. 19, 793-799, gehmic equa

Nikolskij, S. M. (1950). On the problem of approximation estimate by quadra

ture fi
Usp. Mat. Nauk $, 165-177. Y Quadrature formulac.

Pinkus, A. (1975). Asymptotic minimum norm quadrature formulac. Numer. Math. 24 163~
175. '

Rabir}. M. O. (1976). Probabilistic algorithms. In ** Algorithms and Complexity: New Direc-
tions and Recent Results' (3. F. Traub ed.), pp. 21-39. Academic Press, New York.

Ralston, A., and Rabinowitz, P. (1978). *'A First Course in Numerical Analysis."” McGraw-
Hill, New York.

Rivest, R l..: Meyer, A. R, Klcitman, DD. J., Winklmann, K., and Spencer, J. (1980).

i (oping with errors in binary search procedures. J. Comput. Syst. Sci. 20, 196404,

Saari, D. G., and Simon, C. P. (1978). Effective price mechanisms. Econometrica 46 1097-
1125. '

Sard, A. (1949). Best approximate integration formulas; best approximation formulas. Am
J. Math. 71, 80-91. ‘

Schbr!hagc. A (1982). **The Fundamental Theorem of Algebra in Terms of Computational
Complexity,” Rep. Mathematisches Institut, Universitat Tibingen,

Shub, .M.. and Smale, S. (1982a). **Computational Complexity On the Geometry of Polyno-
mna_ls and a Theory of Cost: Part 1,” Rep. Center for Pure and Applied Mathematics,
University of California, Berkeley.

Shub, M., and Smale, S. (1982b). On the average cost of solving polynomial equations.
Proc. Rio Conf. Dyn. Syst., 1982.

Sikorski, K. (1982). Bisection is optimal. Numer. Marh. 40, 111-117.

Slkor.slu. K. (1983). **Optimal Solution of Nonlincar Equations Satisfying a Lipschitz Condi-
tion,” Rep. Dept. of Computer Science, Columbia University, New York. (To be
published in Numer. Math.)

92 J. F. TRAUB AND H. WOZNIAKOWSKI

Smale, S. (1981). The fundamental theorem of algebra and complexity theory. Bull. Am.
Math. Soc. 4, 1-36.

Smolyak, S. A. (1965). On optimal restoration of functions and functionals of them. Candi-
date Dissertation, Moscow State University (in Russian).

Soluvay, R., and Strassen, V. (1977). A fast Mante-Carlo test for primality. SIAM J. Com-
pui. 6, B4-8S; erratum, 7, 118 (1978).

Sukharev, A. G. (1976), Optimal search for a zero of function satisfying Lipschitz’s condi-
tion. Zh. Vychisl. Mar. Mat. Fiz. 16, 20-30; Optimal scarch for the roots of a function
satisfying a Lipschitz condition, USSR Comput. Math. Math. Phys. (Engl. Transl.) 16,
17-26 (1976).

Traub, §. F. (1961). On functional iteration and the calculation of roots. Prepr. Pap., Nail.
ACM Conf., 161h, 1961, Sess. SA-1, pp. 1-4.

Traub, 1. F. (1964). “lerative Methods for the Solution of Equations.” Prentice-Hall,
Engelwood Cliffs, New Jersey. (Reissued 1982. Chelsea, Bronx, New York.)

Traub, }. F. (1974). Parallel algorithms and parallel computational complexity. Inf. Process.
74, 685-687.

Traub, J. F. (1978). The influence of algorithms and heuristics on mathemalics, science, and
education. Proc. Anniv. Symp., L.R.L.A., 10th, 1978,

Traub,). F., and Wotniakowski, H. (1976). Optimal lincar information for the solution of
nonlinear equations. In *‘Algorithms and Complexity: New Directions and Recent
Results” (J. F. Traub, cd.), pp. 103-119. Academic Press, New York.

Traub, J. F., and Wotniakowski, H. (19802). **A General Theory of Optimal Algorithms.™
Academic Press, New York.

Traub, J. F.. and Wozniakowski, H. (1980b). *'On the Optimal Solution of L.arge Linear
Systems,” Rep. Dept. of Computer Science, Columbia University, 1980. (To be pub-
lished in J. Assoc. Comput. Mach.)

Traub, J. F., Wasilkowski, G. W., and WoZniakowski, H. (1981). Average case optimality
for lincas problems. Theor. Comput. Sci. (10 be published).

Traub, J. F., Wasilkowski, G. W., and Wofniakowski, H. (1983). **Information, Uncer-
tainty, Complexity.'* Addison-Wesley, Reading, Massachuscits.

Twomey, S. (1977). ““Introduction to the Mathematics of Inversion in Remote Sensing and
Indirect Mcasurements.'* Elsevier, Amsterdam.

Wasilkowski, G. W. (1982). Inverse function problem. Rep. Dept. of Computer Science,
Columbia University, New York. (To be published in J. Inf. Process. Cybernetics—
EIK.)

Wasilkowski, G. W., and Wotninkowski, H. (1982). **Average Case Optimal Algorithms in
Hilbert Spaces,™ Rep. Dept. of Computer Science, Columbia University, New York.

Werschulz, A. G. (1982a). Does increased regularity lower complexity. Rep. Division of
Science and Mathematics, Fordham University and Dept. of Computer Science, Co-
jumbia University. (To be published in Marh. Comput.)

Werschulz, A. G. (1982b). Mcasuring uncerntainty without a norm. Rep. Division of Science
and Mathematics, Fordham University and Dept. of Computer Science, Columbia Uni-
versity. (To be published in Aequationes Math.)

Werschulz, A. G. (1983). ""Countecrexamples in Optimal Quadrature,’ Rep. Division of
Science and Mathematics, Fordham University and Dept. of Computer Science, Co-
lumbia University, New York.

Woiniakowski, H. (1982). *Can Adaption Help On the Average?'* Rep. Dept. of Compuier
Science, Columbia University, New York.

