The DADO Parallel Computer

Salvatore J. Stolfo

Department of Computer Science
Columbia University
New York City, N. Y. 10027

CuCs~-63-83

Abstract:

DADO is a parallel, tree-structured machine designed to provide significant performance improvements in
the execution of large production -+ :tems. A [ull-scale production version of the DADO machine would
comprise a large {on the order of » :undred thousand) set of processing elements {PE’s), each containing
its »wn processor, a small amount (8K bytes, in the current prototype design) of local random access
me:nory, and a specialized /O switch. The PE’s are interconnected to form a complete binary tree,

This paper describes the organization of, and programming language for two prototypes of the DADO
" system. We also detail a general procedure for the parallel execution of production systems on the DADO
imachine and outline how this procedure can be extended to include commutative and multiple,
independent production systems. We then compare this with the RETE matching algorithm, and indicate
how PROLOG programs may be implemented directly on DADO.

Table of Contents

1 Introduction t

1.1 Production Systems 1

1.2 Goal of the Research 1

2 The DADO Machine Architecture 3

2.1 The Binary Tree Topology ' 3

3 Tze DADO Prototypes 7

3.1 The Prototype Processing Element 2

3.2 The PE kernel 0

3.2.1 SIMD Mode of Operation 9

3.2.2 MIMD Mode of Operation 10

4 Programming DADO 10

4.1 Conventional PL/M 11

1.2 Parallel Processing Primitives: PPL/M 11

1.3 MIMD Mode Primitives 12

1.4 Examples 14

> The Production System Algorithm 16
5.1 Allocation of Productions and Working Memary 17 -

5.2 The Matching Phase 18

5.3 The Selection Phase : 19

5.4 The Action Phase 16

3.3 Specialized Production Systems 20

'5.6 Disvussion i 20
5.6.1 Compiling patterns a7

5.6.2 Data Elements may contain variables 1

5.6.3 Temporal Redundancy 21

5.6.4 Wl-subtree overflow S

5.6.5 Duplicate WM elements 22

6 Future Research : 29

7 Conelusion : 23

Figure 1:
Figure 21
Figure 3
Figure 4:
Figure 3:
Figure 6:
Flgure T:
Figure 8:

List of Figures

An Example Production.

Interconnection of two Leiserson Chips.
The Leiserson Printed Circuit Board.
Hyper-H embedding of a binary tree.

The DADO Prototype Processing Element.
Loading DADO sequentially.

Associative Probing: using DADO as a content-addressable memory.

Functional Division of the DADO tree.

S O U o LD

1 Introduction

As knowledge-based systems grow in size and scope, they will begin to push conventional computing
systems to their limits of operation. Even for experimental systems, many researchers reportedly
experience frustration based on the length of time required for their operation. For applications requiring
real-time response from an expert system (for example, electronic warfare or autonomous robot control
systems) conventional implementations may not be practical.

DADO |[Stolfo et. al. 1982, Stolfo and Shaw 1982] is a parallel, tree-structured machine designed to
provide highly significant performance improvements in the execution of very large production systema,
Production systems form the basis for a wide range of approaches to the implementation of knowledge-
‘based software. A number of working systems implemented by researchers in the field of Artificial
Intelligence (Al} have demonstrated the considerable utility of rule-liased representation schemes applied
to a number of significant tasks requiring extensive domain expertise. Medicai diagnosis [Davis 1976), the
_ideatification of uaknown chemical compounds [Buchanan and Feigenbaum 1978}, mineral exploration
[Duda et. al. 1979] and telephone cable maintenance [Vesonder et. al. 1983} are just a few examples. As
has been reported by several researchers, rule-based systems appear well-suited to the aquisition of
knowledge lrorn human experts, and are easily implemented and readily modified and extended.

1.1 Production Systems

A production systemn [Newell, 1973; Davis and King 1975; Rychener, 1976} is defined by a set of rules, or
-productions, which form the production memory (PM), together with a database of assertions, called the
working mumiory (WAM), Each production consists of a conjunction of pattern elements, called the left-
hand :ide (LHS) of the rule, along with a set of actions called the right-hand side (RHS). The RHS
specifies wfoemution which is to be added to {asserted) or removed from WM when the LHS successfully
matches against the contents of WM. ’

[n operation, the PS repeatedly executes the following cycle of operations:

1. Mateh: For each rule, determine whether the LHS matches the current environment of WM.
3. Seleci: Chouse axactly one of the matching rules according to some predeflined criterion.

3. Act: Add. to or delete from WM all assert.io_ns specified in the RHS of 'he selected rule.

For pedagogical reasons, we will initially restrict our attention to the case in which both the LHS and RHS
are conjunctions of predicates in which all first order terms are conmposed of constants and existentially
quantified variables. Data elements in WM will have the form of arbitrary ground literals in the first order
predicate raleulus. {When PROLOG is considered in a later section. we briefly describe how WM elements
may contain general first-order terms.) A negated pattern in the LIS causes the matching procedure to
[ail whenever WM contains a matching ground literal, while a negated pattern in the RHS rauses all
_matching data elements in the WM to be deleted,

An example production is presented in ligure 1. (Variables are prefixed with an equal sign.)

1.2 Goal of the Research

In practical applications of the sort anticipated by most researchers in the field of Al the set of
productions {and henve the set of LHS patterns against which VWAl must be matched on each cycle) are
expected to typically be quite large, In the case of the R1/XCON program [McDermott 1981], for
example, roughly 2400 specialized productions presently exist to coafigure a Digital Equipment
Corporation " VAX computing system. To [ulfill their promise for the very-large-scale embodiment of

Figure 1: An Example Production.

(part-category =part electronic-component)

(used-in ==part =product)

{Supplied-to =product =customer)

(NOT Manulactured-by ==part =customer)

--> (Dependent-on =customer ==part}
(NOT Independent =customer)

domain-specific expertise, production systems are likely to require at least an order of magnitude more
cules, making the question of efficiency a potentially critical concern. R

Because the matehing of each rele against WM is essentially independent of the others {at least in the
absence of contention for data in WM), it is natural to attempt a decomposition of the matching portion
of each syele into a large number of tasks suitabie for physically concurrent execution on parallel
hardware. While this task is in {2t considerably more complicated than it might first appear, we believe
the immense potential value of a powerful and highly general production system machine warrants serious
attention by parailel machine architects and VLSI designers. :

Thus, simply stated, the goal of the DADO machine project is the design and implementation of a (cost -
effective) high performance rule proceseor capable of rapidly executing a production system eycle for very
large rule bazes {ideally in an amount of time independent of the number of rules). Our goais do not
include the design of a high-speed parallel processer capable of (a fruitless) parallel search through a
combinatorial solntion space.

Much of the experimentat research conducted to date on specialized hardware for Al applications has -
focussed on the realization of high-performance, cleverly designed, but for the most part, architecturally
conventional machines, (MIT's LISP Machine exemplifies this approach.} Such machines, while quite
possibly of great practical interest to the research community, make no attempt to employ nardware
parailelism on the massive scale characteristic of our own work.

Recently. several Al researchers (see [Nilsson 1980], for example) have suggested that significant increases
in the performance of contemporary Al systems might be realized through distributed processing or the
use of specialized parallel hardware. Some attention has been given to issues of parallelism in system
organizations for cooperating distributed Al subsystems {Lesser and Erman 1979, Lesser and Corkill 1979);
special hardware for high speed property inheritance and related operations in systems based on semantic
network-like formnalisms [Fahiman 1979, Hillis 1982]; and the design of machines supporting the parallel
execution of certain relational algebraic operations having practical importance in large-scale knowiedge-
* based systems [Shaw et. al. 1981, Bonuccelli et. al. 1983]. The potential applications of very large scale
hardware parallelism to the execution of rule-based systems, however, has remained largely unexplored.

{n this paper, we describe DADO, 2 tree-structured, multi-processor based architecture that utilizes the
emerging technology of VLSI systems in support of the highly efficient paraliel execution of large-scale
production systems. Our research has convineed us that DADO may support many other Al applications
including the very rapid execution of PROLOG programs and a large share of the symbolic processing
- typical of knowledge-based systems.

A smali (13 processor) prototype of the machine, constructed at Columbia University {rom components
supplied by Intel Corporation, is operational. Based on our experiences with constructing this small
prototype, we helieve a larger DADO prototype, comprising 1023 processors, to be technically and
economically leasible for implementation using current technology. We believe that this larger
experimental device will provide us with the vehicle for evaluating the performance, as well as the

hardware design, of a full-scale version of DADO implemented entirely with custom VLSI circuits.

2 The DADO Machine Architecture

DADO is a fine-grain, parallel machine where processing and memory are extensively intermingled. A
full-scale production version of the DADO machine would comptrise a very large {on the order of a
hundred Ithousand) set of procesaing eiements (PE’s), each containing its own processor, a small amount
(8K bytes, in the current design of the prototype version) of local random access memory (RAM), and 2
specialized I/0 switch. The PE’s are interconnected to form a complete binary tree,

Within the DADO machine, each PE is capable of executing in either of two modes. In the [irst, which we
will call S7MD mode (for single instruction stream, multiple data stream 'Flyrn 1972]), the PE executes
instructions broadcast by some zncestor PE within the tree. In the second, which will be referred to as
MIAD mode (for multiple instruction stream, multipie data stream), each PE executes instructions stored
in its own local RAM, independently of the other PE’s. A single vonventional coprocessor, adjacent to the
root of the DADO tree, controls the operation of the entire er =mble of PE's.

"When a DADO PE enters MIMD mode, its logical state is changed in such a way as to effectively
“disconnect” it and its descendants from all higher-level PE’s in the tree. In particular, a PE in MIMD
morie Joes not receive any instructions that might be placed on the tree-structured communication bus by
one of its ancestors. Such a PE may, however, broadcast instructions to be executed by its own
descendants, providing all of these descendants have themselves been switched to SIMD mode. The
DADO machine can thus be configured in such a way that an arbitrary internal node in the tree acts as -
the root of a tree-structured SIMD device in which all PE's execute a single instruction {on different data)
at a given point in time. This flexible architectural design supports multiple-SIMD execution (MSIMD).
Thus. the marchine may be logically divided into distinct partitions, each executing a distinct task, and is
the primary source of DADO's speed in executing a large number of primitive pattern matching operations
concurrently. to be Jetailed shortly.

The DADO /O switch, which will be implemented in custom VLSI and incorporated within the 1023
provessing element version of the machine, has been designed to support con:~unication between
physicaily adjacent tro~ neighbors. In addition, a specialized combinational circuit incorporated within the
I/O switeh will allow «or the very rapid selection of a single distinguished PE from a set of candidate PE's
in the tree. Currently, the 135 processing element version of DADO performs these operations ir firmware
embodied in its oif-the-shelf components. '

In the following sections we outline the reasons for implementing a binary tree organization. We then
discuss the precise semantics of both execution modes of a DADO PE, and the methods employed to
simulate each in the current DADO prototype design. Subsequently we define PPL/M, a variant of the
PL/M language, providing several primitives for specifying parallel computation on DADO. The basic
BADO aigerithris for production system execution are then described and evaluated,

2.1 The Binary Tree Topology

As VLSI technology continues its downward trend in scaling, many PE’s may be implemented on a single
silicon chip. {f the minimum feature size is halved, for example, four times .5 many components can be
placed on a single chip. Thus, future microcomputer technology may provide additional speed, function
and storage rapacity of a single PE on a chip. Alternatively, as is the case with many of the approaches
to [ine-grain parallielistm, many simpler processors may be integrated on the same chip. [t is crucial,
therefore, to interconnect a large number of processors in the most area-efficient topology possible.
Further consuleration must also be given to methods which efficiently drive the large number of device
components to be placed on the chip, and which are not restricted by the severe pin-out limitations of
packaging technology. :

| work, several alternative parallel machine architectures were studied to determine a suitable
organization of a special-purpose production system machine. High-speed algorithms for the parallel
execution of production system programs were deveioped for the perfect shuffle [Schwartz 1980} and
binary tree machine architectures [Browning 1978]. Forgy (1980} proposed an interesting use of the mesh-
connected ILLIAC IV machine {Lowrie et. al. 1975] for the parallel execution of production systems, but
to lind all matching rules in certain circumstances. Of these
hosen for reasons of efficient impiementation in VLSI

In our initia

recoghized that his approach failed
architectures, the binary tree organization was ¢

technology.

First we note that the entire binary tree of PE's can be implemented using a number of identical chips.
This design. first reported by Leiserson {1981}, embeds both a compiete subtree of PE's and 2 single
interior node on each chip (see figure 3). Four data ports enter the chip. One, called the T port, connents
to the root of the chip's subtree, while the other three ports, called F, L and R, connects the singie interior-

PE node to its father, left child and right child, respectively.

A simple recursive procedure allows the construction of an arbitrarily large binary tree using oaly chips of
this type. Figure 2 illustrates this construction for two chips. Note that the resulting circuit consists of a
larger binary tree, together with a singie unconnected interior node. This scheme may be extended to
dllow the construction of a planar printed-circuit board layout (also due to Leiserson), which is illustrated
in figure 3. Note that the area required for routing wires within the PC board is strictly proportional to
the number of chips, allowing the efficient implementation of boards of arbitrary size. -

Figure 2: [Interconnection of two Leiserson Chips.

T R

[ttt il | i il E]

1
|
1
t
{

I

]

+

b

: ¥
_—,:; '
| |

|

wh 1
]

| 1

!

]

1

L]

1

i

y
£
t
[}
[}
1
1

PR K R) - - wk @ W m -

The suhtres of PE's incorporated within each chip is configured according to the “hyper-H"” embedding as
. lirst reported by Browning (1980] (see figure 4). This constraction is highly regular, is area-optimal (in
that the asmount of silicon area is proportional to the number of PE's) and is easily extended to
incorporate larger numbers of PE’s a8 device dimensions scale downward. (Note that the number of ports

Figure 3: The Leiserson Printed Circuit Board.

B WM o4
'l.
"B

=1]
—

¥

-
FYEEE)

L]
L
I

== |
A

| I—r;i‘

entering the Leiserson chip remains constant as larger numbers of PE's are incorporated.) It should be
stressed that this architectural design is not only highly efficient from a theoretical perspective, but
inexpensive to implement {and replicate) in a working device.

Although binary trees implemented in this fashion may seem to scale indeflinitely, an interesting
theoretical resuit reported in [Patterson et. al. 1981} suggests that synchronous binary tree systems with
massis» numbers of PE's may not be practical due to the asymptotically growing lengths of wires in the
tree. This'wire length problem' may introduce severe clock skew as well as other anomalous electrical
problams. Our statistics suggest that for the DADO system this is not a severe limitation since the
aumber of PE's in a fuil-scale version would be limited to a manageuble number. (See [Fisher and Kung
1982] for x discussion of this problem in terms of clock skew for synchronous systems and possible
solutions.)

Other [actors contributed to our choice of designing DADO as a binary tree machine. The most
important of these factors is the requirement of broadeasting data to a very large number of processors,
The contemporary models of VLSI computation dictate that global communication reguires an amount of
time no less than the jogarithm of the number of recipients. [t should he noted that no architecture based
on components having & bounded valence {that is, a fixed maximum number of external connections) ean
perform this function in less than logarithmic time. While this lower bound is achieved by tree-structurad
machines and by certain other “‘area-expensive’’ organizations, iike the perfect-shuifle, other topologies do
not share this property. For example, linear arrays require an amcunt of time for broadcast that is
propottional to the number of recipients, while mesh-connected devices require time that is proportional to
the square root of the number of recipients. In such systems consisting of many thousands of PE's, a
significnat deiay is unfortunately introduced, thus requiring complex pipelined communication schemes
suggssting an asynchronous design. :

Figure 41 Hyper-H embedding of a binary tree,

Finaily. we note that binary trees do have certain limitations of practical importance. Although
broadeasting » smail amount of information to a large number of recipients is efficientiy handled by
binary trees. the conVerse is, in general, unfortunately not true. That is, for certain computational tasks
{permutation of data. for example} the effective bandwidth of communication is restricted by the top of
the tree. It is easy to prove that il n items stored at the leaves of a binary tree are to be randomly
permuted, the number of such items which must pass through the root of the tree is proportional to
n. Fortunately. as we shall see shortly, this “binary tree bottleneck' does not arise in the execution of
production systems or PROLOG.

Many of the -tacisions made in designing DADO were strongly influenced by the organization of the NON-
VON supercomputer [Shaw 1982] and the Caltech tree machine [Browning 1978|. Perhaps the best way to
distinguish DADO from these two tree machine architectures is by considering the modes of execution of
each of the constituent PE's, and the implications for the hardware design.

The proposed Caltech tree machine is a full MIMD device incorporating thousands of PE's in a full-scale
version. Each PE executes its own independent program and thus requires a substantial amount of local
memory as is the case in the DADO machine. Communication is supported by a buffered message passing
protocol, where the recepient of each message is identified by relatively complex<1fO circuitry at each
node, whereas other forms of communication (for example, global broadcast)rare implemented by
sequential logic.

NON-VON, by comparison, is a full SIMD, massively-parallet synchronous device incorporating millions of
simple, highly-area efficient PE’s, each associated with only 64 bytes of locat RAM. In generzl, each
NON-VON PE executes an instruction broadcast from a single control processor, located at the root of
the tree, and thus requires a highly-efficient method of global broadcast. The 1/O switch incorporated
within each node of the NON-VON tree contains a few inverters driving the signals along the broadcast
bus. and therefore communication is implemented by high-speed combinational logic. '

DADO. on the other hand, is capable of executing in both SIMD and MIMD modes, and thus contains
elements of both machine designs. DADO incorporates a combinational /O switch similar to that

employed in NON-VON. However, each DADO PE may drive the [/O switch, in addition to the single
coprocessor of DADO. Thus, DADO also supports very high speed global broadeast. Howevsr, because of
the replication of substantial programs within various PE's in the tree, 2 DADO PE has been designed
with a more general (8 bit) processor as well as an 8K byte RAM. Thus, DADO cannot achisve the same
processor density as is possible in NON-VON.

The DADO design attempts to synergistically merge the advantages of both the NON-VON and the
Caltech tree marhine. It is not ¢lear whether or not the NON-VON approach to single-instruction stream,
massive parall~lism will be substantially limited by its inability to execute independent programs
coneurrently. Nor is it clear whether or not the Caltech approach of large-scale paralielism, albeit
substantinlly lower than that of NON-VON for certain computational problems, can achieve the same
throughput capahle of NON-VON. It is our hope that experimentation with the DADG prototype may
rrovide some of these answers, and begin to elucidate the precise nature of the tradeoffs involved with
both approsches.

3 The DADO Prototypes

A 15-elerzent DADO! prototype, constructed from (partially) donated parts supplied by Intel Corporation,
has been operational since Aprif 25, 1983, The two wire-wrap board system, housed in a chassis measuring
3.5 by 185 by 17.5 inches * volume (roughly the size of an IBM PC), is clocked at 3.5 magahertz -
producing 4 ruillion instructiv... per second (MIPS). (The effective useable MIPS is considerably less due to
the significant overhead incurred in interprocessor communication. For each byte quantity communicated
through the aystem. 12 machine instructions are consumed at each level in the tree while executing an
asynchronous. 4-eycle handshake protocol.) DADOIL contains 124K bytes of user Jom access storage
and 60K bytes of read only memory. A much larger version, DADOS, is currently under construction
which will incorporate 1023 PE's constructed from two commercially available Intel chips. DADO1 does .
not provide enormous computational resources. Rather, it is viewed as the development system for the
software base of DADO?2, and is not expected to demonstrate a significant improvement in the speed of
execution of a production system application.

DADO2 will be implemented on 18 printed circuit boards, manufactured through the DARPA supported
MOSIS silicon foundry system, and housed in an IBM Series [cabinet (donated by IBM Corporation). The
svstem, which will be integrated within a standard 19 inch rack, provides 8 megabytes of user storage. A
DEC VAN 11/750 (partially donated by DEC Corporation) serves as DADO?2's coprocessor (although an
Apolio or SUN workstation may be used as well) and is the only device a user of DADO?2 will see. Thus,
DADO? is considered a transparent back-end processer to the VAX [1/750. The DADO2 system will have
roughly the same hardware complexity as a DEC VAX 11/750 system, and if amortized over 12 units will
cost in the range of 70 to 90 thousand dollars to construct considering 1983 market retail costs. The
DADO?2 custom [/O chip is planned for implementation in gate array technology and will aliow DADO2
to be clocked at 12 megahertz, the full speed of the Intel chips. The effective machine instruction ecycle
time achievable is 1.8 microseconds, producing a system with a raw computational throughput ¢ 370
million instructions per second. Note that little of this computationai resource is wasted in communication
overhead, as in the DADO1 machine, since asynchronous communication is replaced with a synchronous
combinational logie circuit,

. In the following sections we detzil the prototype processing element design as well as the software systems
implemented [or the prototypes.

3.1 The Prototype Processing Element

Each PE in the DADO1 prototype system incorporates an Intel 8751 microcomputer chip, serving as the
processor, and an 8K X 8 Intel 2186 RAM chip, serving as the local memory. {A simple logic gate
packaged in a Texas Instrument TI-7408 chip is used to properly integrate the RAM and processor.)
DADO?2 will incorporate a slightly modified PE. The Intel 2187, which is fully compatible with but faster
than an Intel 2186, replaces the DADOIL RAM chip allowing the processor to be clocked at its fastest
speed. Further, the custom I/O chip will contain extra circuitry to quickly refresh the Intel 2187, and
thus replaces the TI chip employed in DPADOL. The resulting system consists of 2 3 chip PE, 64 of which
may be integrated on a single printed circuit board.

Although the original version of DADO had been designed to incorporate a 2K byte RAM within each PE.,
an 8K byte RAM was chosen for the prototype PE to allow & modest degree of flexibility. in designing and
implementing the software base for the full version of the machine. In addition, this'extra “breathing
coom” within each PE allows for experimentation with various special operations that may be
incorporated in the full version of the machine in combinaticnal circuitry, as well as affording the
opportunity to eritically evaluate other proposed (tree-structured) parallel architectures through software
simulation.

(It is worth noting though that the proper choice of “grain size” is an interesting open question. That is,
through experimental evaluation we hope to determine the size of RAM for each PE, chosen against the -
number of such elements for a (ixed hardware complexity, appropriate for the widest range of production
system applieations. Thus, future versions of DADO may consist of a number of PE's each containing an
amount of RAM significantly targer or smaller than implemented in the current prototype systems.)

The Intel 8751 is a moderately powerful 8-bit microcomputer incorporating a 4K eraseable programmable
read only memory (EPROM), and a 256-byte RAM on a single silicon chip. One of the key characteristics -
of the 8751 processor is its [/O capability. The 4 parallel, 8-bit ports provided in a 40 pin package has
contributed substantially to the ease of implementing a binary tree interconnection between processors.
[ndeed, DADO1 was implemented within 6 months of delivery of the hardware components. Figure
5 illustrates the DADQ1 prototype PE at about twice actual dimensions.

In DADOL the communication primitives and execution modes of a DADC PE are impiemented by a
small kernel system resident within each processor EPROM. The specialized 1/O switch envisaged for the
larger version ol the machine is simulated in the smaller version by a short sequential computation. As
noted, the 1023 element prototype would be capable of executing in excess of 570 MIPS (on 8 bit data},
assuming inter-processor communication to be implemented with a combinational logic I/O switch.
Althe :gh pipelined communication is employed in the kernel design, it is expected that only 130 miltion
instructions per second would be achieved using the current Jesign. Thus, the design and implementation
of a custom [/O chip forms a major part of our current hardware research activities,

It should be noted that, in keeping with our principles of *low-cost performance,” iwe have selected a
processor technelogy one generation behind existing available microcomputer Lechnology. For example.
DADO? could have been designed with 1023 Motecrola $8000 processors or [ntel 80286 chips. Instead, we
have chosen a relatively slow technology to limit the aumber of e¢hips for each PE, as well as to
demonstrate our most important architectural principals in a cost elfective manner.

Furthermore, since the Intel 8751 does not press current VLSI technology to its limits, it 1s surely within -
the realm of feasibility to implement a DADO2 PE on a single silicon chip. Thus, although DADOZ2 may
appear impressive (an inexpensive, compact system with a thousand computers executing rcughly 600
million insTiuctions per second) its design is very conservative and probably at least an order of magnitude
less powertul than a similar device using laster technology. It is our conjecture though that the machine
will be practical and useful and many of its limitations will be ameliorated as VLSI continues its
downward trend in scaling. (DADO3 may serve to prove this conjecture.)

Figure 5: The DADO Prototype Processing Element.

P
| TI1-7408
4K x 8
EPROM
BK x 8
RAM
256 x §
RAM [] 11
T
IKTEL 8751 INTEL 2186

3.2 The PE kernel

As noted, the 4 EPROM of the Intel 8731 stores the system kernel of 2 PE, which includes code
performing the most basic communication and synchronization functions as well as the simulation of
SIMD and MIMD modes of execution. Presently, the kernel software occupies less than LK bytes of
EPROM. Thus, many frequently used procedures (pattern matching, for example) are planned lor
impiementation in DADO2's EPROM.

The kernel system is designed in such a way as to logically divide the 8K RAM space of the Intel 2186
chip into two portions for each of the execution modes. The size of these two portions is specified by the
software declarations. By convention the initial portion of RAM, referred to as STAD RAM, is a reserved
data space for variables and constants operated upon by a PE while in SIMD mode. The remaining
portion of RAM is used for storage of code, as well as the local variables used during the MIMD mode of
operation. (The 8 megabyte memory provided in DADO2 is {ully distributed in 81X quantities. A
program written for DADO is, thus, limited to an 8K address space.) A set of reserved memory locations
within the SIMD RAM have special significance to the kernel system. In the foilowing sections we define
each of these reserved locations when appropriate and briefly deseribe their use.

3.2.1 SIMD Mode of Operation

A processor in SIMD mode {henceforth, a SITMD PE) can be instri. .-d to enter one of two states, as
determined by the contents of a special single bit variable, called ENI1, resident withia the SIMD RAM of
the PE. Il ENL is set high (logical 1) within a PE, the processor will be in the SIMD enabled state,
otherwise it is in the SIMD disabled state. The kernel simulates the SIMD mode of operation in the
following way. ' : ' '

10

SIMD ENABLED state

A DADO PE in SIMD enabled state will repeat the following steps:

1. Accept an instruction from the broadcast bus (received lrom its parent).

Pass the instruction on to its descendants, provided the PE is not o leaf processor and its
. mmediate tree neizhbors {children} are logically connected {see below).

e

3. Execute the instruction.
SIMD DISABLED state
A DADO PE in SIMD disabled state will repeat the [ollowing steps:

1. Accept an instruction from the broadeast bus.

2 Asin the enabled case, it will pass the instruction on to its descendants if they are logically
connected, however .,

3. The instruction is ignored unless it is one ol he following special functions, to be detailed
shortly:

- RESOLVE
- ENABLE

- & communications instruction {SEND, RECV, BROADCAST or REPORT)

13.2.2 MIMD Mode of Operation
Likewise. the kernel system simulates the MIMD mode of operation {henceforth, a MIAID PE) in the
foliowing way:

1. A MIMD PE is logically disconnected from its parent. {Thus, instructions from the broadeast
bus will not be accepted.) '

2. The PE executes code from its local memory (Unless otherwise instructed, the tree below the
processor remains logically connected and thus, can be utilized as a SIMD processor.)

- 3. Upon terminating its MIMD operation, it enters SIMD disabled state, after broadcasting an
instruction to disable its descendants.

4 Programming DADO

PL/M [Intel 1982 is a high-level language designed by Intel Corporation as the host programming
environment for applications using the full range of Intel microcomputer and microcontroller chips. A
superset of PL/M. which we call PPL/M, has been implemented as the system-level language for the
DADO prototypes. PPL/M provides a set of facilities to specify operations to be performed by
independent PE's in parallel. In this section we discuss the additions to PL/M of new data types, buiit-in
functions and syntactic conventions for the parallel execution of DADO programs.

11

4.1 Conventional PL/M

Before defining the primitives for parallel computaticn on DADO, we begin with a briel overview of
PL/M. Intel's PL/M language is based on:

- a statement-oriented syntactic structure based largely on PL/I,

- a full range of supported statements typical of a high-level language including assignment,
nested i vase, and several forms of iteration (while, and auto-increment),

- bloek structure, employing severak forms of the PL/I DO statement,

- a full range of data type facilities including arrays, structures and poinfer-based dynamic
variables, as well as subroutine and function definition statements,

- and fastly, all data is either of type BIT, BYTE or WORD (2 hytes).

A PL/M program is constructed from blocks of associated statements, delimited by either a DO or
PROCEDURE statement, and a terminating END statement. As is typical of a block oriented language,
n'esting is permitted foliowing the usual conventions for variable scoping. Explicit data definition and
typing is specified primarily with the DECLARE statement. '

4.2 Parallel Processing Primitives: PPL/M

The following two syntactic conventions have been added to PL/M for programming the SIMD mode of

operation of DADO. The design of these constructs was influenced by the methods employed in specifying

parallel computation in the GLYPNIR language [Lowrie, et. al. 1975] designed for the ILLIAC IV parallet -
processor. The SLICE attribute defines variables and procedures that are resident within each PE. The

second addition is a syoptactic construct, the DO STMD block. which delimits PPL/M instructions

broadeast to descendent SiMD PE's. {In the following deflinitions, optional syntactic constructs are

represented within meta brackets.) :

The SLICE attribute:

DECLARE variable[{single-array-dimension]| type SLIt

name: PROCEDURE!(parameter-list})| {type] SLICE;

Each declaration of a SLICEd variable will cause an allocation of space [or the variable to occur within
the SINMD RAM of each PE. SLICEd procedures are zutomatically loaded within the MIMD portion of
RAM {by an operating system executive resident in DADQO’s coprocassor),

Within a PPL/M program, an assignment of a value to a SLICEd variziie will cause the transfer to occur
within each enabled SIMD PE concurrently. A constant appearing in the right hand side will be
automatically broadeast to all'enabled PE's. Thus, the statement

X=i

where X is of type BYTE SLICE, wiil assign the value 5 to each occurrence of X in each enabled SIMD
PE. (Thus. at times it is convenient te think of SLICEd variables as vectors which may be operated upoen,
in whole or in part, in paraflel.) However, statements which operate vpon SLICEd variables can only be
specilied within the bounds of a DO SIMD block.

12

DO SIMD block:

DO SIMD;
r-statemento;

r-stnthenLn;
END;

The r-stalement is restricted to be either

- an assignment statement incorporating only SLICEd variablea and constants, or

-4 call to a subroutine that has been dectared to be of type SLICE (user defined SLICEd
procedures may not execute any MIMD mode primitives}, or

- a call to a loeal user defined procedure, by way of the MIMD [unction (to be detailed shortly).

A non-SLICEd variable may appear within an r-statement only as an argument to the BROADCAST
function. to be defined shortly. The parameters of a SLICEd subroutine are assumed to be of type SLICE
by default. Examples of the use of these features are provided in a later section.

4.3 MIMD Mode Primitives _

In addition to the full range of instructions available in PPL/M. a DADO PE in MIMD mode will have
available to it the following list of built-in functions. (It should be noted that DADOQO's coprocessor may
execute the full range of PPL/M instructions as well.) These functions have been modelled after the
machine instructicns employed in the NON-VON supercomputer as reported in {Shaw 1982]. For
consistency. the NON-VON registers are used in precisely the same manner as that defined in the NON-
VON instr:-tion set. :

Call RESOLVE: -- the SLICEd variable Al, resident in 2l PE's,
is set to zero except in the “first” PE.
The register CPRR in the MIMD PE is set high.
If no descendent PE has Al=1, CPRR is set low.

Call REPORT; - the contents of A8 in the one enabled descendent PE
) is written to the register CPIO in the MIMD PE. If
more than one descendent PE is enabled, the result
is undefined.

Call BROADCAST(<byte>);
- the value of the single byte argument is stored

13
in the A8 variable of every descendent SIMD PE.

Call SEND{<neighbor-PE>);
-- the contents of register 108 of < neighbor-PE> is
58t to the vaiue stored in A8. <neighbor-PE> may be
one of: LC left tree child
RC right tree child

" Call RECV{<nrighbor-PE>);

.- the contents of register A8 15 set to the value
stored in [O8 of <neighbor-PE>. <neighbor-PE>
may be one of LC, RC, and P {parent)

Call MIMD{<addrezs>)
-- any ENABLED SIMD PE will enter MIMD mode of
operation and execute code stored locally in RAM
starting at address <address>

Call EXIT: -- the MIMD PE will termirate its MIMD operation,
The PE will issue an instruction to SIMD
descendants-to disable themseives [set ENI low)
and will reconnect itself to its parent in SIMD
Jdisatled state.

Call E.\'ABLE;- -- the ENT variable of all descendent PE’s are set ¢
high. thus enabling the entire subtree. :

Call DISABLE; -- the EN1 variable of all descendent PE’s are set
tow, thus disabling the entire subtree,

The BROADCAST lunction is used to communicate a specifiel BYTE value from a MINMD PE or DADO';
coprocessor te all [enabled) PE's in the subtree it roots. The REPORT instruction, on the other hand,
provides the means for the contents of a variable of 2 single enabled PE to bhe communirated to the
MIMD PE. As a side effect, the DADO2 IfQ chip provides the means for the byte quantity to be
simultaneously BROADCAST to all (connected} processors within the tree. The REPORT instructien is
intended for use only when it is known that at most one PE is currently enabled, for example. alter use of
a RESOLVE instruction detailed below.

The SEND and RECYV instructions are uzed for communication among physically adjacent PE's, Two
special SLICEd variables of 1ype BYTE, called A8 and [O8, take part in the data transfer operation.
Unlike the RECY instructions, 2 PE can not SEND data to its parent, since this operation would he
undefined il Loth children of that parent were enabled. A parent is ~apable of receiving data from its
children through the nse of RECV instructions. It should be noted that it is always possible to RECYV data
from a PE. regardless of whether it is enabled, but an attempt to SEND data to a disabled PE will not
result in a transfer of data. In the case of a disconnected or nonexistent PE all /O operations return a
value of 0.

14

A PE may be disabled by transferring a 0 into its EN1 variable using an ordinary assignment statement in
PPL/M, or by use of the DISABLE [unction. In a typical application, the vontents of ENL will be set to
the result of some boolean test prior to the execution of sueh a store instruction, resuiting in the selective
disabling of all PE's for which the test fatls. This technique supports the “eonditional™ execution of a
particutar code sequence. Following the execution of such a sequence, an ENABLE instruction is issued to
vawaken' ali disabled PE's.

The RESOLVE instruction is used in practice to disable all but a single PE. chosen arbitrarily from among
a specified set of PE's, First, the Al flag, also a SLICEd variable, is set to one in ali PE's to be inciuded
in the candidate set. The RESOLVE instruction is then executed, causing all but one of these flags to be
changed to zero. (Upon executing 2 RESOLVE instruction, one cf the inputs to the MIMD PE will
become high il at least one candidate was found in the tree, and low if the candidate set was found to be
empty. This condition code is stored in the SLICEd variable CPRR, which exists within the MIMD PE.)
By issuing an assignment to ENI1, all but the single. chosen PE may be disabled, and a sequence of
instructions may be executed on the chosen PE alone. In particular, data from the chosen PE tnay be
communicated to the MIMD PE through a sequence of REPORT commands.

If the candidate set is first saved [using another flag in each PE), each of the candidates can be chosen in
turn, subjested to individual processing, and removed {rom the candidate set, allowing the sequential
processing of ail candidates. Typically, the individual processing performed for each chosen candidate
involves the broadcasting of information contained in, or derived from, that candidate to other PE's
within the DADO tree. This paradigm for sequential enumeration is employed as a sort of “outer loop™ in
a number of parailel DADO algorithms.

in DADOL. the RESOLVE function is implemented using special sequential code, embedded within the
EPROM, that propagates a series of “kill" signals in parallel {rom all candidate PE’s to all (higher-
aumbered) PE's in the tree. In DADO?, the RESOLVE operation has been generalized to operate on 8-bit -
data. producing the mazimum value stored in some candidate PE. Repeated use of this max-RESOLVE
Function ailows for the very rapid selection of multiple byte data. This circuit has proven very useful for 2
number of DADO algorithms which made use of the SEND and RECYV instructions primarily for ordering
data within the tree. The use of the high-speed max-RESOLVE often obviates the need for such
cornuunication instructions. Consequently, the view of DADO as a binary tree architecture has become,
fortuitously. nearly transpareat. The 1 bit RESOLVE implemented in DADOL is exhibited in the
examples which lollow. '

Finally, the MIMD [lunction causes an enabled SIMD PE to begin executing in MIMD mode. The
argument alddress is first broadcast as the base address of the local user defined procedure to be executed.
(PPL/M proviles a very simple and direct means for specifying the adilress of an object within 2 prograrm.
including the base address of a subroutine.) Return to SIMD mode is nerformed by the EXIT function
when the MIMD PE terminates its computation. (Synchronization can be performed with sequential logie
to explicitly test whether or not data may be transferad to the MIMD PE. Thus, when such a test
indicates that data may be transfered, the MIMD PE has terminate its operation and reconnected itself
to the tree above in SIMD mode by way of the EXIT function. Several algorithms for the synchronization
of MIMD PE's within DADO have been reported elsewhere {Stolfa 1981].)

- 4.4 Examples

Code for two fundamental operations are presented in this section: the first loads the DADO tree
sequentially: the second is used to associatively mark all PE's that match a given search string.

Figure 6: Loading DADO sequentially.

/% We will assume that this program is executsd sithin

DADO's CP. The systsa function READ is used to load

string data igto a tuffer from soms sxtarnal eource. */
g,

DECLARE Iatelligent-record(84) BYTE SLICE; /+ An instancs +/
DECLARE Not-dome BIT SLICE; /+* of sach of these SLICE .14
DECLARE I[ndex BYTE SLICE; /* variables apprears in sach PE +/
DECLARE Buffer(84} BYTIE;

DECLARE i BYTE;

DC SIND;

Call ENAB'E: /+ All PE's are snabled. #/

Not~done = 1; /* All slices initialized. */

Iodex = 0;

END;

Call READ(Buffwr); /* Daza provided by soma
sxtarnal source, */

U0 ¥HILE length(Buffer} > 0; /* AND CPRR »/
DO SIND;
Call ENABLE; /+ All PE’s not yet loaded with data »/
Al = Not-done: /* bave Al set high. +/
Call RESOLVE; /+ Ouly ome AL iz now get.)
ENL = Al; /+ Selectirvely disable all but ons PE. ¢/
Not-done = 0;
END;
IF NOT CPRA THEN quit; /% No PE's apabled, thus overflow.s/
D0 i = ¢ to length(Buffer) - L ;
00 SIMD;
Call BROADCAST{Buffer(i)); /* The single enadled PE +/
Intelligent=record(lIndex) = AB; /+ will sxecuts thisge/
Iddex = Index + I; /* code alone. */
END;
END:
Call READ(Buffer);
EXD; /¥ Repeat for other PE'¢ ia the DADD tres. =/

END;

18

The second example implements the most basic operation for associative matching on DADO. This
procedure was the [irst PPL/M program executed on the DADOIL system.

Figure 7: Associative Probing: using DADO as a content-addressable memory.

ASSOCIATIVE-PRGBE: PROCEDURE (Search);

DECLARE Intelligsot-Record(84) BYTE SLICE; /* An instance 7
OECLARE Index BYTE SLICE; /+ of each appears in every PE.+/

/+*We assups sach of the ingtances of Intelligent-Record
have been previously loaded within the DADQ trus.s/

DECLARE i BYTE: /* i is local %o this routine.s/

DECLARE Search(84) BYTE; /+The search string is provided by
- soms externsl source. */

0C SIND:
Call ENABLE; /*All descendeat PE’s sntsr SIND enabled state.*/
Al = 0; /+ ALl Al flags within the tree below are cleared. v/

END:

DO i =t to length{Search) ; /*Repsat the follewing for
sach charactar of the search string.+/

DO SIMD; .
¢all BROADCAST(L); /*The valus of the index variable i is
- broadcast and loaded in sach SLICEd
. A9 variable within the tree, - +/
Index = AB; /vand transfered to a local SLICE4
variable.=/

Call BROADCAST (Search{i)); /+Ths 18 character of the
gearch string is then broadcast and
loaded in each A8 register.+/

ENL1 = A8 = I[ntslligent-Record(ladex);

/*Alter comparing the search
character, currsntly stored in AS,
with the locally stored dats,
disable those PE’s rhich do not
match (by assigomeat of logical 9
to the enabie variable ENi}. */

END:
END;
DO SIND;
Al = i; /* Only those PE's that remain enabled, that is

only those which satch the ssarch striang, will
get their Al variables high. +/

Call RESOLVE; /*Lastly, we test for thether or not

any Al flags ia the tree ars high.
CPRR is set accordingly. */

END;
IF CPRR THEN /* we havs responders! ¢/ ;
END ASSOCIATIVE-PROBE:

5 The Production System Algorithm

The general production system algorithm implemented on DADO is presented in this section. Following
this we compare the algorithm with RETE-based matching systems and outline several ways the
algorithm may be modified to adequately treat various anomalous situations.

L7

5.1 Alloeation of Productions and Worklng Memory

In order to execute the preduction system cycle on the DADQO machine, the /O switches are configured in
such a way as to divide the DADO machine into three conceptually distinet components. One of these
components consists of all PE’s at a particular level within the tree, ralled the PAlevel, which is chosen
in a manner to be detailed shortly. The other two comporents are the upper portion of tha tree, which
comprises all PE's located above the PM-level, and the lower partion of the tree. which consists of all PE's
foumi below the PM-level. This functional division is illustraterl in figure 8.

Figure 8: Functional Division of the DADO tree.

Upper Tree:
synchronize,
seiect & act

- - N ——PM Lavei:
. maich, determing reievance
& instanuate .

WM Subtrees:
coment - addressact:
MeMmories

Each PE at the PM-level is used to store a single production (although rhis restriction is easily relaxed at
. the expense a modest cost in time for matching). The PM-level must thas be chosen such that the
number of nodes at that level is at teast as farge as the number of productions in PM. The subtree rootel
by a given PE at the PM-level will store that portion of WM that is relevant to the production stored in
tiat PE. A ground literai in WM is deflined to be relevant to a given production if its predicate symbol
agrees with the predicate symbol in one of the pattern literuls in the LHS of the production, and all
constants in the pattern literal are equal to the corresponding ~onstants in the ground literal. Intuitivety.
the set of ground literals relevant to a given production consists of exactly those literals that might match
that production, given appropriate variable bindings.

The constituent subtrees that make up the lower portion of the tree will be referred to as the WM-
subtrees. For simplicity, we will assume in this paper that each PE in a WM-subtree rooted by some
production contains exactly one ground literal relevant to that production. (In a f» hion similar to that for
production allocation, “packing’ techniques may be employed at the expense of a ..;odest increase in time
for matching). It should be noted that, since a single ground literai may be relevant to more than one
production, portions of WM may in general be replicated in different Wil-subtrees,

During the match phase, the WM-subtrees are used as content-addressable memorfes, allowing parallel
matehing of a single pattern element in time independent of the size of WM. The upper portion of the

13

tree is used to select one of the matching productions to be executed in Oflog P) time, where P is the
nuinber of productions, and to broadcast the action resuiting from this execution. Details of these
functions foilow.

5.2 The Matching Phase

At the beginning of the matching phase, all PE's at the PM-level are instructed to enter MIMD mode. and
to simultaneously (and independently) match their LHS against the contents of their respective WA
subtrees. The ability to concurrently match the LHS of ail productions accounts for some. but not all, of
the paralielism achieved in DADO’s matching phase. In addition, the matching of a single LHS is
perforried in a parallel manner, using the corresponding WM-subtree as an associative procezsing device,
The simiplest sase involves the matching of a single LHS pattern predicate containing at most one instance
of any variable. (The reader may wish to peruse the Associative-Probe procedure detailed in figure
7 before proceeding.) In order to match the predicate |

{Part-category =spart electronie-component},

for exampie, the PM-level PE corresponding to the production in question would first broadeast a
sequence of instructions to all PE's in the WM-subtree that would cause each one to simuitaneously -
compare the (ield beginning in, say, its fifth RAM cell (the location of some SLICEd variable, for instance)
with the string {or so.ie syntactic token representing) “Part-category”. All non-matching PE's would
then he disabied. causing all subsequent instructions to be ignored for the duration of the match. Next,
the string “elestronic-omponent’ would be broadeast, along with the instructions necessary to match this
string against. say. the field beginning in the thirty-fifth RAM location of all currently enabied PE's.
Alfter angain Jisabling all ~on-matching PE's, the only PE's still enabled would be those containing a
ground literal that matches the predicate in question. If this were the only predicate in the LHS,
matehing would terminate at this point. As noted. the time required for this matching operation depends
only on the complexity of the pattern predicate, and not on the number of ground literals stored in the
WALsubtree,

We should mention though that the depth of the DADO tree defines DADO's machine cycle time. Thus
although we state that access to WM is achievabte in time independent of the number of WM elements, it
is actuully dependent on a logarithmic function of the number of PE's in the tree. Since WM is [ully
distributed among the majority of available PE's, it is also logarithmic in the number of WM elements.
However. this delay is bounded by log{n) combinational gate delays, which is proportional to the iatency
period [or aceess to a conventional RAM of comparable size and hardware complexity. and thus may he
ignorad in analysis of the time complexity. '

The general matching algorithm, which accommodates a LHS consisting of a number of conjoined
predicates. possibly including common pattern variables, is considerably more complex. In this case, after
associatively probing for the first pattern predicate, each value contained in a matching Wi element,

“stored in the same relative location as a pattern variable, is sequentially enumerated and used for further
associative probing for subsequent patterns. In the worst case, this operation may require enumeration of
each of the elements in WM. However, the high-speed content addressable memory operations reduse the
“look-up” time to a constant factor, and obviates the need for expensive overhead incurred by indexing
schemes required of sequential implementations. The result of this general matching operation is a set of
variable binlings corresponding to all possible instantiations of the production in question that are
consistent with the contents of WM. '

19

5.3 The Selection Phase

Since each production is asynchronously matched against the data stored in its WM-subtree, the
production matching phase will in general terminate at different times within each PM-level PE. At the
end of the matching phase, the PM-level PE’s must thus be synchronized before initiation of the selection
phase. In support of this synchronization operation, each PM-level PE sets a tocal flag upon completion of
its own matching task. The DADO RESOLVE circuit permits the DADO tree to compute a logical
sonjunction of these flags in time equal to Oflog n) gate delays. (In this case, the max-RESOLVE fuaction
of DAD(operates on flags set to O upon termination, and 1 otherwise. A low bit result signals
synchronization.) DADO's tree-structured topology, along with the combinational, as opposed to
sequential, computation of this n-ary ‘'logical AND", lead to a synchronization time which is dominated
by that required for matching, and which may, as in the case of WM access, be ignored in analysis of the
time complexity of the production system cycle.

The selection of a single production to “fire” from among the set of all matching productions also requires
time proportional to depth of the tree. Unlike the synchronization operation, however, the primitive
operations required for selection are computed using sequential logic in DADOL. We assume that each
PM-level PE performs some local computation prior to the synchronization operation that yields a single,
numerical sriority rating. PE's containing matching productions are assigned positive values, while other
PM-level PE's are assigned a priority of zero. We also assume that each PM-level PE has a distinet PE
tag, stored in SLICEd variable within its local memory, which may be used to uniquely identify that PE.

After synchronization, ail PM-level PE's are instructed to enter SIMD mode. Each such PE is then
instructed to send its priority rating to its parent. Each parent compares the priority ratings of its two
children, retai..ng the larger of the two, along with the unique tag of the “winner’’. The process is
repeated at suceessively higher levels within the tree until a single tag arrives at the root. This tag is then
broadcast to all PM-level PE's for matching, disabling all except the one having the highest priority~
rating, which remains enabled for the action phase. Note that in DADO2, this operation is replaced by a
few sequential steps employing several applications of the max-RESOLVE circuit.

5.4 The Action Phase

At this point. the “winning” PE is instructed to instantiate its RHS, which is then reported to the root.
Next, all PM-level PE’s are enabled, and the RHS of the winning instance is broadeast to all. The details
of the action pruse are made more complex by the importance of avoiding unnecessary replication of WM
literals within the lower portion of the tree, and of reclaiming local memory space freed by the deletion of
such literals. These functions are based on associative operations similar to those employed in the
matching operation.

The PE’s at the PM-level are instructed to eater MIMD mode and to concurrently update their WAL
subtrees as spesified by the RHS of the winning instance.

First, the PM-level PE's perform an associative probe for each literal to be deleted from W\, enabling
only those PE’s tn the W-subtrees whose local memories are to be reclaimed. The enabied PE’s are then
instructed by the PM-level PE to overwrite their stored ground literal with a special free-tag identifying
empty PE's. This tag is the target of the subsequent associative probe executed for each of the ground
- . literals to be added to WM.

When processing an asserted literal, the PM-level PE first determines whether or not the literal is relevant
to its stored production. Next, the associative operation identifies those relevant literals which are not
present in the \WWil-subtree, and thus are to be stored in some empty PE.

After probing {or the free-tag; sll PE's are disabled except the empty PE's. To avoid duplication of
asserted literals, all but one of these PE's is disabled by the RESOLVE circuit. The asserted literal is then
broadecast to the one enabled PE. ' '

20

As in the matching phase, the action phase in general will terminate at different times in each PM-level
PE. After synchronization, another cycle of production system execution begins with the production
matching phase.

5.5 Specialized Production Systems

The general scheme for production system execution on DADO can be extended to support commutative
produstion systems, as well as “cooperating expert systems' based on multiple, independently erecuting
production systems.

A commutative production system allows each of the matching rules on every cycle of operation to be
selected for execution. The same combinatorial hardware used in the action phase to select a single
arbitrary “free” PE supports this operation by enumerating each of the matching productions in an
arbitrary sequential order. Each of the RHS's so reported to the root are then processed by the action
phase.

In our exposition of the general production system algorithm, it was assumed that the upper tree was
rooted at the (physical) root of DADO (see figure 8). Since each PE in the DADOQ tree can execute its
own independent program, the upper tree can be rcoted at an arbitrary internal nede of DADQ. Thus,
multipie. independent production systems are executed on the DADO machine by rooting a lorest of upper -
trees at various levels of the DADO tree. (The “buddy system" of memory allocation provides a simple
means to allocate multiple production systems on DADO.) Communication among these independent
production systems is implemented in the same fashion as communication among the PM-level PE's
Juring the action phase of the {commutative) production system cycle. '

5.8 Discussion

By way of summary, the basic DADO algorithm for PS execution operates in the following way:

1. By assigning a single rule to a unique PE at a fixed level within the tree {referred to as the
PAl-level), executing in MIMD mode, each rule in the system is matched concurrently. Thus,
the time to calculate the set of matching rules on each cycle is independent of the number of
productions in the system.

2, By assigning a data item in Working Memory (WM) to 2 single PE below the PM-level
executing in SIMD mode, WM is implemented as 2 true hardware content-addressable memory.
Thus, the time required to match a single pattern element in the LHS of a ruie is independent
of the number of facts in WM,

3. Lastly, the selection of a single rule for execution from the conflict set is also¥performed in
parallel. Thus, the logarithmic time lower bound of comparing 2nd selecting 2 single item from
a collection of items is achievable on DADO as well.

This algorithm offers a number of advantages over the RETE algorithm reported by Forgy, while
maintaining much of RETE's efficient characteristics. We quote from [Forgy 1982]:

...Certainly the [RETE| algorithm shouid not be used for ail match probiems; its use is
indicated oniy-if the following three conditions are satisfied.

- The patterns must be compilable [to more primitive match tests]...

- the objects must be constant. They cannot contain variables or other non-constants as
patterns can.

- The set of objects must change relatively slowly. Since the algorithm maintains state
between cycles, it is inefficient in situations where most of the data changes on each
cycle.

5.8.1 Compiling patterns

In its current form, the DADO algorithm does not provide a means to compile patterns into primitive
‘match tests, although it does not directly exclude this possibility. However, the ability of 2 DADO PE to
execute code imdependently of other PE’s permits pattern matching tests common to several rules to he
performed in parallel, as weil as a more powerful pattern match operation, ynification, discussed below.

5.6.2 Data Elements may contain variables

Data items within DADO's WM may contain varizbles or other non-constants. In this case, the
Associative-Probe procedure is replaced by a SLICEd unification procedure local to each PE in a WM-
subtree. Thus, an entire partially instantiated pattern element is first broadcast to all PE's, locally unified,
and variable bindings are subsequently reported from those which successfully matched the pattern
element in question.

This capability forms the basis of the implementation of PROLOG on DADO. ([Taylor et. al. 1983]
describes this procedure modified to permit the entire set of PROLOG clauses to be fully distributed
throughout the DADO tree. The sequential semantics of PROLOG is maintained in the reported design
through the use of the max-RESOLVE circuit applied to integers associated with each clause. Each of
these integers represent the '‘position’ of the clause in the PROLOG data base, and thus determines the
order in which ¢lauses are_reported to the coprocessor and subsequently applied. (This parallel associative
PROLOG implementation is the focus of 2 doctoral investigation undertaken by Stephen Taylor working
in collaboration with Gerald Maguire.) :

It should be noted that the introduction of general first order terms within elements stored in WM has
substantially complicated the design of the general matching procedure. This difficulty is a direct
consequence of the umfication process which generates objects-that may grow exponentially. For example,
in order to unify the literals:

p{fxy. xph ['(.\:2. x‘.‘.)""'f{xn-l’xn-l))
p(x.:. .‘(3. .‘(nj
X, is forced to be bound to a term consisting of 2% symbols. Thus, the implementation requires a
representation scheme based on pointer structures (which can represent the unified literai a1 question in
linear space), and dooms any attempt to represent such objects in character form to failure. (See the finear
_time unification algorithm reported in {Paterson and Wegman 1978].) The 8K RAM space of 2 DADO PE
is more than sufficient to adequately handle such objects. {A report presently in preparation by Taylor
describes the use of the Paterson and Wegman algorithm in a distributed environment.)

5.8.3 Temporal Redundancy

The DADO algorithm does not restrict the amount or scope of WM modifications, but rather permits
targe global changes to be made to WM very efficiently (by broadcasting such changes from the root PE),
However, the DADO aigorithm as outlined above does not save state between cycles. Rather, in
-situations in which few WM changes are made on each cycle, the DADO aigorithm recomputes much of its
match results ealculated on the previous cycie. However, the basic DADO algorithm can be easily
extended to directly implement this temporal redundancy by executing the match for only those literals
recently asserted in WM while saving previous rule instantiations directly within the WM-subtrees. An
implementation including this feature is presently under development.

Lastly. we note that the basic DADO algorithm can be modified to accomodate certain anomalous
situations which may arise in practice. We briefly describe these in tura.

0

5.5.4 WM-subtree overflow

In the event that the number of literals to be stored within a WM-subtree is too large, two productions
may be stored within a single PE one level higher than the PM-level. The resulting configuration produces
a Wh-subtree twice as large, at the expense of slowing the match phase to accomodate two sequential
production matchings. Other allocation schemes are possible. For example, the entire upper portion of the
DADO tree may be used to store productions for matching, at the expense of a log(P} time matching
operation, where P is the depth of the upper tree. This last configuration is particularly useful when
considering the following problem.

5.86.5 Duplicate WM elements

As noted, an instance of a WM element relevant to several rules will exist within several distinct WM-
subtrees. In order to achieve the maximum for parallel matching of rules, in the worst case an exact copy
of WM may exist for each rule. {Contrast this with “shared memory"” models of computation in which a
single glotal remory is accessible to some large number of asynchrous processors.) This duplication
problem is imposed on us by the [ully distributed model of storage and computation in the DADO
machine. In order to reduce the number of duplicate. elements, a subsumption principle may be used to
effectively partition the productions distributed within the upper tree white maintaining 2 log(P) time for
rule matehing.

If the LHS of rule Py is a generalization of the LHS of rule P, (that is, rule P matches a superset of the
literals matched by Po) then Py is placed in the subtree rooted by P,. Rule Py thus shares a subset of
WM-sublrees accessible to P I the LHS of Py is disjoint from that of P2 then both rules may be placed
in sibling subtrees without sharing a common WM-subtree. Finally, in the case where the LHS of P,
overlaps with that of Pa, but it is not a generalization of Ps, then they may either be loeated within the
same PE. or their relative positions may be determined by their respective relationships with other rules in
the production system.

There ars many degrees of freedom and tradeoffs involved with this allocation scheme (which forms a
major pact of a doctoral investigation being conducted by Daniel Miranker).

8 Future Research

v

Thus far. 12 people have written PPL/M programs for DADO. The applications that have been written,

at various stages of completion, include system-level diagnostics and Al applications.

The diagnostic programs, which are currently being integrated within the kernel system, exercise the
processor and RAM chips whenever a PE is in a non-busy state. The coprocessor has been designed to
periodically assess the status of the entire system by performing-a high-speed logical disjunction of the
error Mags of all PE’s to identify any that may have failed. Furthermore, we have included in the design
of DADO? a simple sequential circuit passing through each connector in the sysiem which is used to
detect any lauity connections. Other than this simple "“hardware hack”, we have paid little attention to
the issue of fault tolerancy thus far. Nonetheless, the statistics on the error rate of the Intel chips we have
employed indicates that soft errors will appear in DADOZ every 1800 hours of operation.

. The bulk of our effort has concentrated on the develbpment of the interpreter for the parallel execution of

production system programs. A Testricted model of production systems, Winston's animal program
[Winstan 1977]. has been implemented in PPL/M and is currently being tested. Qur plans include the
completion of an interpreter for a more general version of production systems in the coming months
including a dJirect implementation of the RETE matching algorithm. A modified algorithm for the rapid
evaluation of hierarchical production systems, typified by MYCIN-like systems, is being investigated for
implementation on DADO as well. Indeed, the envisaged PROLOG implementation may subsume this
effort,) ' '

-Fahlman [1979] has proposed a special-purpose parallel architecture for high-speed property inheritance in
systems based on semantic network-iike formalisms. Although it is too early in our investigations to make
any precise claims, we believe that DADO may in fact provide significant improvement in the execution of
semantic network based systems over von Neumann machines. Currently, we have implemented the
essential elements of a frame-matching operation, but nave not yet explored the possibilities of appiying
DADO's hardware parallelism to property inheritance operations.

Lastly, we note the relationship of LISP to DADO. Part of our work has concentrated on providing LISP
with additional parallel processing primitives akin to those employed in PPL/M. Thus, we have heen
actively pursuing the opportunity of providing SLICEd iist structures within a rconventional LISP
environment.

More importantly, though, we have begun to formulate the essential aspects of LISP execution which may
be regarded as purely associatively-based, and thus suitable for direct execution on DADQ. Examples of
such operations include:

- finding variable bindings on an association list,
- property list operations, including the access and instantiation of Minction definitions,

- linding and allocating, as well as [reeing, a cona cell from a large space of {ree memory cells.

The time required for each of these operations on a sequential machine is, in general, lineat in the size of
the list structures in question. For certain of these operations space-expensive hashing may reduce the
time to a constznt. Within DADO, cn the other hand, these operations may be executed in constant time
without a significant overhead in storage management (see [Bonar and Levitan 1981]).

By way of surnmary, it is our belief that DADO can in lact suppart the high-speed execution of a very
large class of Al applications. Coupled with an efficient implementation in VLSI technology, the large.
scale parallelisin achievable on DADO will indeed provide signilicant performance improvements over von
Neumann machines. We are presently preparing detailed experimenss to empirically evaluate the
performance of DADOZ2. IT pressed to give some indication of its capabilities, we have estimated that
DADO?2 iy execute R1/NCON, for example, at an average rate in excess of 150 production system
cyeles per second. Presently, R1/XCON runs on 2 VAN 11/780 at a rate from 2 to 600 cycles per minute.
The envisaged implementation of R1/XCON, which provides this rough estimate, consists of a PM-level of
32 PE's. performing the match, 31 PE's within the upper tree, performing selection, and 30 PE's in ea-h
of the 32 WMNl-subtrees.

7 Conclusion

A large part of our work continues to involve the analytical investization of new parallel algorithms and
languages for Al applications. Several researchers are actively investigating methods for the rapid
execution of frame-based systems, as well 25 methods for improving the performance of “conventional” Al
languages including a parallel implementation of PROLOG. New methods for the paraliel execution of
hierarchical production systems are being investigated as weli.

A large share of our efforts, though, are devoted to the hardware Jdesign and implementation of a larger
experimentaj device. Although adequate for further development of Lhe software base for DADO, the 15
. element DADOG1 system is too limited in storage capacity and processing power to demonstrate a
significant performance improvement in the execution of Al systems. {A large share of the machine’s
processing power is utilized in system control and interprocessor commiunication,) However, as the
nurmber of processors in the system increases, the proportion of this “‘wasted” processing power will
decrease dramatically. Concomitant with increasing the number of processing elements in the system, 3

24

set of new technical problems dealing with interprocessor communication and fault-tolerance must be
solved to achieve the predicted speed-up.

However, these problems can only be investigated if a large-scale, experimental device is implemented.
Thus, using a slightly modified hardware design of the DADO1 system, we are currently implementing a
much larger version of DADO, comprising 1023 processing elements. This version, DADO2, will
incorporate a rustom VLSI chip, currently being designed at Columbia University, to perform the most
hasic sommunieation functions in combinational logic. This custom IC is expected to produce a significant
iniprovernent in operating speed, and would be a required component of a full version of DADO
implemented entirely in VLSL. The existing DADO software will require only minor medification to run
on the newer design. :

Our future plans inctude the demonstratien of the DADO?2 prototype using several existing large-scale
expert systems which use the production system paradigm. Digital Equipment Corporation has expressed
an interest in suppiving a copy of R1/XCON for implementation on DADO. Bell Laboratories has also
expressed a wiliingness to supply a copy of ACE, an expert system that has been developed to perform
telephone vable maintenance. Other systems are being actively sought from other sources in the Artificial
Intelligenece corarnunity.

Acknowledgements

It is a great pleasure to thank the many people and organizations who have contributed to the DADO
project. Daniel Miranker, 2 Ph.D. student at Columbia, is responsible for many of the detailed hardware
and software designs of the machine and is the driving force in the effort to implement the OPS family of
languages on the system. Stephen Taylor, also a Ph.D. student, working closely with Chris Maio, Andy
Lowry and faculty co-investigator Professor Gerald Maguire have made tremendous progress in specifying E
the exerution of PROLOG on DADO. Their design of the PROLOG system is as elegant as the hardware
solutions provided by our project engineer, Shunsaku Ueda, who eserves special mention. Professor
David Shaw has had a tremendous impact on our work, and we are very grateful lor his involvement.
Many researchers have contributed in substantial ways, too numerous to specify in great detail. We thus
would like to acknowledge the efforts of Janvid Cheng, Eugene Dong, Wai Man Wong, Jody Weiss, Mike
Weisbery. Jim Gilpatrick, Monique Fei, Daphne Tzoar, Doug Degroot, Mark Lerner, Alex Pasik and Ted
Sabety. We would also like to thank Lanny Forgy, Allen Neweil and Mike Rychener for very interesting
and thought-provoking conversations about DADO. .

The Defense Advanced Research Projects Agency is our primary source of support through contract
NOON39-82-C-0477. Intel Corporation has contributed most of the components used in the construction of
DADOL. and continues to support our development effort of DADO?2. Digital Equipment Corporation has
provided computational resources for our software development. Valid Logte Systems has donated the
prototype hoards used in the construction of DADO1! and has continued to aid our research. Finally, we
acknowledge the assistance of IBM Corporation for providing components for DADO2 as well as taking a
more active role in supporting our research. Presently, IBM researchers are heiping to prepare experiments
for the statistical analysis of our PROLOG work. o

