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Abstract

This paper surveys a portion of the field of natural language processing. The main
areas considered are ‘those dealing with representation schemes, particularly work on
physical object representation, and generalization processes driven by natural language
understanding. Five programs serve as case studies for guiding the course of the paper.
Within the framework of describing each of these programs, several other programs,
ideas and theories that are relevant to the program in focus are presented. Our current

work which integrates representation and generalization is also discussed.




[ 87

1. Introduction

Recent advances in natural language processing (NLP) have generated considerable
interest within the Artificial Intelligence (AlI) and Cognitive Science communities.
Within NLP researchers are trying to produce intelligent computer systems that can
read, understand and respond to various human-oriented texts. Terrorism stories, airline
flight schedules and how to fill ice cube trays are all domains that have been used for

NLP programs.

In order to understand these texts and others, some way of representing information is
needed. A complete understanding of human-oriented prose requires the ability to
combine the meanings of many readings in an intelligent manner. Learning through the
process of generalization is one such mechanism. The integration of representation and

generalization in the domain of NLP is the subject of this paper.

The need to integrate rcpresentation with generalization comes about when one is
faced with the problem of understanding how several objects and/or events compare
with each other. For example, a particular representation system might be able to
encode that a chair has a seat, a back and legs. Furthermore assume that this system
has represented within itsell several different chairs that all have these three basic parts.
Now suppose that this system finds out (reads) about a bench that has just a seat and
legs. In order to recognize that the bench is just like a chair only without a back, the
representation system needs the ability to make generalizations. Here the generalization
would be, “"an object to sit on must have a seat and and legs.” One could argue that a
complete representation of chairs and benches requires knowledge of their common parts.
Thus, generalization is intertwined with representation. The generalization process is, of

course. more than just a way of structuring knowledge. Generalization is one very

important aspect of learning.

As a matter of convenience, representation, generalization and their interrelation will

be referred to as representation /generalization in this paper.

Our current research centers around building an intelligent information system that
will be able to read, understand and remember a large number of patent abstracts. One
main problem in designing this system is how best to represent the set of complex

physical objects that are described. Furthermore, there are many patents about similar



objects which an intelligent method for structuring representations can combine. By
making generalizations about the components. properties and purposes of physical
objects, a knowledge base that encodes most of the information present in the abstracts

can be generated.

This paper surveys a portion of the field of NLP. The main areas considered are those
dealing with representation schemes, particularly work on physical object representation,
and generalization processes driven by natural language understanding. An historical
account of how research has proceeded in these areas is given with emphasis on the past

few years, during which the field of NLP has grown tremendously.

Because representation and learning are rather extensive fields, we will concentrate
mostly on work that has immediate relevance to our current research. Somewhat more
emphasis is given to work done in representation than in learning (generalization). This
is simply due to the overwhelming amount of research that has been done in conceptual
representation. Early work in learning did not deal with complex representations of
events or objects, so there was little need to integrate generalization with representation.
Therefore, much of the material in this paper will appear to be divided into two distinct

groups. representation and generalization.

We have chosen to present the work in representation/generalization by following the
chronological progression of computer programs written for NLP. The reasons for doing
this are twofold. Most researchers in cognitive science with a computer science
background at some point embod:v‘th'éir ideas in a program as a vehicle to test them on
real-world problems. Thus NLP programs written to date generally span the body of
research done in this field. The second reason to discuss these programs is that they
incorporate ideas from outside the field of Al. Any single functioning NLP program
must in some way incorporate concepts that many researchers outside of computer
science grapple with. A focus on programs still allows us to report work done by
cognitive scientists that lack a computer science leaning, as well as those researchers that
are program-oricnted. By following the chronological progression of these programs we

can get a feel for where current NLP research came from and where it is headed.

The five programs that will guide the course of this paper are: SHRDLU [Winograd
72]. MARGIE [Schank 75|, GUS [Bobrow et al. 77], OPUS [Lehnert and Burstein 79] and



IPP [Lebowitz 80, Lebowitz 83al. Our current work on object
representation/generalization processes, is discussed in the concluding section. Within
the framework of describing each of these programs, several other programs, ideas and

theories that are relevant to the program in focus will be presented.

The first program, SHRDLU, provides a context for discussing a very important
technique used in representation systems, semantic networks. Some rudimentary
learning techniques were also explored in conjunction with this program and they are

mentioned in this section.

Conceptual Dependency (CD) [Schank 72| forms the backbone of MARGIE. CD and
other similar svstems offer language-independent means for representing knowledge

derived from natural language input. Other related linguistic theories are also
mentioned while describing MARGIE.

GUS was one of the first NLP programs to employ Minsky's frame idea [Minsky 75} for
representing knowledge. KRL [Bobrow and Winograd 77a), a language built
concurrently with GUS, and designed to provide an environment for developing frame-

based systems, is also treated in this section,

The next two programs presented, OPUS and IPP, are recent developments dealing
with physical object representation and memory-based generalizations, respectively.
OPUS uses Object Primitives, an extension to CD, to represent real-world objects. IPP
employs Memory Organizational Packets (MOPs) [Schank 80. Schank 82] to encode
action-oriented events in a system that makes generalizations about terrorism stories.
These two programs, and several other ones discussed within their contexts, represent
the state of the art in NLP, as far as physical object representation/generalization are

concerned.

2. SHRDLU - Representation Using Semantic Nets

We start by considering a system concerned with problems similar to the ones faced by
many researchers working on representation/generalization.  Representing physical
objects and understanding natural language about them, is what SHRDLU [Winograd 72]

was all about.

In the early 60's work in NLP centered on computationally intensive programs that



applied a small set of general, usually svntactic.! rules to some input text, in order to
achieve a desired result. These programs are typified by those that tried to do machine
translation of one natural language into anéther( As is well known these attempts were
unsuccessful [Tennant 81].  Several years later, as researchers realized that more
specialized rules were needed and computers became more capable, NLP programs
changed in nature. The result was that programs could employ many specific rules for
processing purposes and/or include large amounts of data for representational uses.
This. of course, brought about the problem of what kinds of rules to use and how to

control them.

SHRDLU was one of the first of this new wave of NLP programs. It was a [fully
integrated program that dealt with a very specific domain, the blocks world. As
implemented, the computer created a simple setting containing images of cubes,
pyramids. etc. on a video display, along with an imaginary arm that could move these
objects around. Within this world SHRDLU allowed the user to request rearrangements
of the blocks, ask questions about of the state of the world and converse about what was

possible within this world.

What made SHRDLU a truly landmark program was the way it accomplished its goals.
Three major components made up the system: a syntactic parser based on an
Augmented Transition Network (ATN) [Thorne et al. 68, Woods ‘70]; a semantic
processor used to interpret word meanings; and a logical deductive segment which
figured out how to perform the user’s requests and answer questions about what is

possible in blocks-world.

The functioning of the various components of SHRDLU proceeded as follows: the ATN-
based syntactic parser would figure out what possible meanings the input text might
have: next the semantic procedures would pick one of these meanings based on its
knowledge of the state of the blocks-world; finally the logical deductive components
would create a plan for fulfilling the user’s request. Although this process is fairly
Interesting to study, it is not of central importance in this paper. The data

representation scheme used by this system is, however.

'IS ntactic is used to mean the simple subject, verb, object ordering of a sentence.
Whole or even partial grammars were not used in early machine translation attempts.
Most sentences were translated on a word-by-word basis.



SHRDLU maintained its knowledge in both procedural and declarative formats. The
declarative knowledge was represented in the form of a semantic network. Semantic
nets, as they are commonly cal.lgd,'were first described in [Quillian 68]. They are
arbitrarily complex networks in wl;i-cfl nodes represent actions, ideas or, in the case of
SHRDLU, physical objects. Ares connecting nodes represent relations among them. For
example, if there is a pyramid on top of a block, where the pyramid is represented by a
single node and so is the block, then an arc connecting them would represent the relation
SUPPORTED-BY. An IS-A link (arc) is what is used to represent the concept that one
node is an instance of another. For example, a dog IS-A mammal. All of the properties
that a mammal might have can be inherited by a dog. Thus, if the network had the fact
that a mammal breaths air encoded in it, then it would be assumed that a dog also
breaths air. Any relation the programmer chooses can be represented by arcs in
semantic nets. Aside from static physical relations, like SUPPORTED-BY, and
classification relations, like IS-A, more emphatic relations, like MUST-BE-SUPPORTED-
BY and CAN-NOT-BE-A, are possible. Thus, a mammal CAN-NOT-BE-A reptile. The

deductive reasoning procedures in SHRDLU make use of these relations.

Much has been written about semantic nets ( [Woods 75] for example). rThey have
been (and perhaps, still are) the dominant knowledge representation system used in NLP,
if not all of AI. SHRDLU exemplified the best points about semantic networks. The
simple node-arc formalism provides for easy representation of associations. Thev are
uselul at encoding static factual knowledge and are versatile in that they permit a wide
range of data to be encrypted. Because of the limited domain of knowledge needed to
understand the blocks-world, few of the difficulties and limitations of this scheme
surfaced [Wilks 74|, which is one of the reasons why SHRDLU was so successful. Among
the shortcomings of classical semantic nets are: no universally accepted meanings for
links; difficulty in representing time dependent knowledge; problems resulting from the
need to organize and manipulate a large network. Nevertheless, semantic nets are a very

useful tool for knowledge representation.

One of the consequences of picking a good representation system is that some
seemingly difficult problems become relatively easy to solve. By using semantic nets to
represent the physical objects in a blocks-world, learning about simple object structures
can be carried out. Of particular interest is the work Winston [Winston 77} did with a

program (ARCH) to learn concepts, such as the form of an arch. An arch can be
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represented by a 3-node semantic net. After presenting the ARCH program with a
correct example of an arch, subsequent 3-node nets are inspected by the computer along
with external input declaring each example to be either correct, nearly correct or
incorrect. From this data, the program generalizes what it means for a structure
(semantic net representation) to be an arch, and updates the semantic net. Specifically,
the program compares the training examples it is given and extracts the information
commen to the correct examples that does not contradict what has been learned from
the incorrect examples. Winston's work demonstrated the usefulness of generalization,
particularly in the context of NLP. The objects generalized were fairly simple compared

to the tvpe used in later programs, such as [PP.

In SHRDLU, semantic networks were sufficient to capture simple relations among
block-like objects. A complex physical object with many sub-parts could be represented
by a simple semantic network, but it would become an unwieldy computational object to
manipulate. For example, representing an automobile would be a rather messy thing to
attempt using this scheme. Furthermore, the fact that a car is usually thought of as one
object is lost to a conventional semantic net representation because all nodes have an

equal status. Thus, the car’s tire could seem as important as the whole car.

One way to overcome the inability of most semantic net representation systems to deal
effectively with large networks of data, is to chunk information into regions within the
network and treat these chunks as if they were individual nodes. Thus, a large semantic
net with 10,000 nodes could logically be reduced to a network of, say, 200 chunks in
which each of the 200 chunks would contain sub-networks of a small size. This

partitioning of a network was proposed by Hendrix [Hendrix 79].

Several advantages over simple semantic nets are apparent in his scheme. By
separating low-level knowledge from high-level knowledge, the encoding process can
represent more varied information. For example, the color, shape and size of an object
could be linked together within a partition and the partition itself could have links to

other nodes or partitions (e.g., indicating higher level facts about the object’s purpose).

This hierarchical partitioning results in smaller numbers of objects at any one level
that need to be manipulated. Furthermore, partitions are useful for grouping objects so

that they can be quantified. That is, a section of a semantic net can be designated so
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that all its members have some particular property while no objects outside it do.
Frames |Minsky 75] are another way of solving many of the same problems as

partitioned semantic nets (see section 4).

2.1. Summary

The SHRDLU program was a milestone in NLP research. It made extensive use of
semantic networks as a means of representing knowledge about a blocks-world. By using
a syntactic parser, it could perform the commands- requested by users and answer
questions posed in English. Few limitations of the program were apparent because of the

very limited domain in which it dealt.

Semantic networks have proved to be an extremely useful knowledge representation
technique. They were used in SHRDIL U to represent simple physical objects, but can be
used to encode practicallv anything. Although they are very versatile, they have some
important limitations, including the lack of standardized meanings for links and
difficulty in manipulation of large network structures. The use of partitioned semantic
nets generally solves the large network problem by breaking it into groups of small

sections.

The structure of semantic nets allows them to be used for generalization. Links that
allow for inheritance of properties from a higher level nodes in the network, are the key

to carrying out simple learning from examples.

Although SHRDLU and ARCH are among the oldest programs described in this paper,
they are in some sense the most similar to our current work. They addressed the issues
of representation and generalization in a NLP environment. However, they left many
questions to be answered as far as accomplishing our task of intelligently representing a

large number of complex real-world objects.

3. MARGIE - Conceptual Dependency and other
Linguistic Theories
Syvntactic parsing worked fine in the blocks-world domain, but a deeper understanding
of language is called for when usu;g Lrepresentation/generalization schemes that encode
complex data. This section describes one approach to representing the meanings of

components that are presented via a natural language.



While researchers in psychology, like Quillian, and in computer science, like Winograd.
were working out representational issues using semantic nets and the like. linguists were
making great strides forward in a relatively new field called computational linguistics.
This branch of linguistics is mainly concerned with using computers to simulate NLP.
One way of breaking down computational linguistics is into syntax, semantics and

pragmatics.

Svntax, in a computational linguistic environment, implies the study of sentence
analysis and generation {rom a purely structural viewpoint. Chomsky's theories of
generative grammars [Chomsky 65] and his classification hierarchy of formal languages
were the modern starting points in this subfield. In addition to Chomsky's work, there
has been a fairly large effort in describing and building syntactic parsers. An example of
the research in this area are ATNs (Augmented Transition Networks) [Thorne et al.
68, Woods 70|, which form the basis of several powerful computer parsers, including the
one used in SHRDLU.

Chomsky is credited with revolutionizing linguistic theory. However, he has aroused
many critics who point out his failure to deal with semantic and pragmatic issues in
language comprehension. Semantics is generally understood to be the study of language
meanings while pragmatics concerns itself with connecting meaning to real-world
experiences. Although these definitions are easy to state, in practice, the distinctions

between semanties, pragmatics and syntax are often blurred.

Following the demise of early attempts to do machine translation among natural
languages, many cdmputational linguists began focusing their attention on problems of
semantics. The early NLP ,progrz‘m;é were strictly syntactic in nature. Many researchers
felt that these programs, were incapable of doing an adequate job of understanding,
necessary to perform machine translation or paraphrasing.?‘ Semantics seemed to offer a
way to greatly improve upon the performance of these programs. Writing programs that
could understand the meanings of the words that they were reading became one new

theme of NLP research.

D)

It should be noted that early NLP programming attempts did not do an adequate job
of svntactic processing. Since then there have been major advances in the ability to use
svntax as the basis of NLP systems. Many of today's NLP programs rely on”syntax,
often mixed with other processing techniques, and perform quite well.
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One such program. MARGIE [Schank 75], was created with several objectives,
including the paraphrasing of single sentences, while serving as a testbed for a new
theory of semantic representation called Conceptual Dependency (CD) [Schank 72].
Schank, the principle designer of CD, set out to synthesize some recent work in
linguistics and psychology into a consistent and useful theory that would lend itself to
computerization. CD is a language-independent, primitive-based representation scheme
for NLP. It is primarily based on both the ideas of semantic primitives and case
grammars which will be discussed below. MARGIE was the first attempt at testing this

theory in a computer environment.

MARGIE functioned in two similar modes. In paraphrase mode, MARGIE would read
Enclish sentences and parse them into an internal CD representation. In this form
various inferencing systems would produce other CD-forms. The last stage of this mode
would generate an output sentence based on the CD-forms. The inferencing mode of
MARGIE worked in a similar manner. However, instead of producing a complete
paraphrase of the original sentence, MARGIE would output a series of statements

concerning what inferences it made about the meaning of the input text.

To get an idea of what MARGIE’s capabilities were, consider the following examples.

taken from [Schank 75]: .

In paraphrase mode the input text:

John advised Mary to drink the wine.

would cause the output:

John told Mary that drinking the wine would benefit her.
to appear.

This shows that MARGIE must know something about the meaning of the verb
“advise”. In fact, CD provides the program with a method for classifying all action-
based verbs (ACTSs). Although verb classification is not directly applicable to physical
object representation, CD provides a paradigm for developing primitive-based
understanding schemes. Before a description of CD is presented, consider how MARGIE

worked in the inferencing mode.
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The input:
John gave Mary an aspirin.

would cause MARGIE to display the following inferences it had made (among others):

1. John believes that Mary wants an aspirin.

(2]

. Mary is sick.
3. Mary wants to feel better.

4. Mary will ingest the aspirin.

These examples illustrate that CD must also be capable of representing the meaning of
causal connectives. That is, inference (1) (and other beliefs) causes inferences (2) and (3)
to be made, which explain the stated action of John giving Mary the aspirin. MARGIE
must also have encoded within itself the knowledge that aspirin is usually ingested. in

order to make inference (4).

CD works on the theory that all actions (verbs) can be reduced in meaning to
combinations of a small group of primitive ACTs. For each ACT represented, there are
a fixed number of arguments that accompany it. That is, an actor, recipient, object or
other possible case slots must be filled for each ACT. Thus, for example, “John gave

Mary an aspirin” would have the representation:

(ATRARS
ACTOR: John
FROM: Jobn
T0: Mary
OBJECT: aspirin)
ATRANS, one of the primitive ACTs, is used to represent the meaning of the verb
“gave” and indicates Abstract TRANS{er (of possession) of an object. Other verbs, such

as ‘take"”, are also represented by ATRANS, but have their case slots filled differently.

CD is capable of representing a wide range of actions and situations. In addition to the
basic ACTs. both mental and physical states of a being or an object can be encoded.
The fact that an event may enable, disable, cause or generally affect a state, is also
representable within CD. Using these connectives, it is possible to represent the meaning

of a series of sentences that comprise a story with one complex CD structure.
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Schank's theory of Conceptual Dependency was not completely new to the field of
linguistics. Two main areas of research contributed to its synthesis. The first was the
development and study of case grammars [Fillmore 68]. Case grammars were a
byproduct of both classical linguistics and Chomsky's transformational grammar. They
reflect classical linguistics in the sense that they identify the various parts of a sentence
such as the main verb phrase and noun phrases. However, it is not the surface structure
of the sentence that is extracted, but rather the meaning. Thus, regardless of the formal
structure of the sentence the “case frame’ extracted by using case grammars will be the
same for sentences employing the same main verb. Structurally, the case frame looks
very much like what was presented in the CD examples (above) with actor (or agent),
object, instrument and a few other slots available. Case grammars classify verbs by
what slots (cases) must accompany a particular verb. Thus, for example, if the verbs
open and throw require the same slois-(OBJECT, AGENT and INSTRUMENT) for their
case frames then they would be grouped together. CD goes beyond case frames by
defining a system of primitives and rules to manipulate them, that captures the meaning

of a sentence. rather than having a case frame for every verb.

The second building block of CD comes from both linguistic and psychological
research. Semantic primitives are generally defined to be the lowest level of symbolism
in a representation system. In practice, an understanding/representation system uses
semantic primitives as a way of classifying some group such as actions or physical
objects. CD is an example of a non-hierarchical classification scheme using semantic

" primitives.

The :use of semantic primitives in a representation scheme can also be of help in
processing. That is, inference rules can be grouped according to which primitive classes
they apply to. This allows a processing system to easily determine what inference rules
should be tried, which reduces search time. For example, the ATRANS ACT in CD can
have the rule if the FROM slot filler is not speci fied, then fill it with the ACTOR slot
value, attached to it. Other ACTs may not need such a rule and they need not have one

since rules can be specifically bound to a given semantic group.

Some recent psyvchological research (see [Rosch et al. 76|, for example) has investigated
the existence of fundamental classes of physical objects. They give a fair amount of

evidence which shows that there exist natural categories of objects that people use while
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perceiving physical objects in the real world. Other work by Miller [Miller 75] has given
strong support to the thesis that verbs can be categorized as well. In one study he found
that English has over 200 words which have the semantic component, *'to move”. These
studies show that humans make considerable use of categorization as a way of perceiving
and understanding input from _the real world. Furthermore they suggest that

fundamental meanings in natural language might be tied to real-world objects and/or

events.

The concept of categorization 1s related to the idea of semantic primitives.
Categorization is a hierarchical way of grouping entities so that some organization is
apparent. Biological taxonomy is an example of such a categorization system. Semantic
primitives strive to reduce real-world knowledge into meaningful groups, usually in a
non-hierarchical structure. Thus, categorization and semantic primitives are both ways

of helping people and/or machines perceive data from the real-world.

Wilks has developed a system that he calls preference semantics [Wilks 73] which also
uses semantic primitives. Preference semantics is a system whereby the meanings of
some words help to disambiguate the meanings of other words while parsing input text.
Each word that his system can understand consists of a dictionary entry which classifies
the word into one of five major categories. Within the definitions are data that inelude
how to interpret other words read in the same context. Thus, for example, the sentence

“John grasped the idea.” is understood by using information encoded in the definitions
of each word and inferring that il John is grasping a non-physical object then the .
meaning of “‘grasp’” must be ‘‘understand”. Wilks also built a program [Wilks 75] that
uses preference semantics to do translation of English text into French. This was
accomplished by making use of the fact that preference semantics distinguishes different
word senses. Thus. when a given word sense was detected in the English input, its

equivalent meaning in French was stored for use in output generation.

Other NLP systems that use represlentation mechanisms similar to Wilks's program and
MARGIE are: The Word Ezpert Parser [Small 80], a system much like preference
semanties that is totally dictionary-based; SAM [Cullingford 78, Schank and Abelson 77],
a program that uses CD representations built into higher level knowledge structures
called scripts; and PAM [Schank and Abelson 77, Wilensky 78], a high-level

representation system that understands stories in terms of plan-based schemes. SAM and
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PAM share an English language p-a;ser called ELI [Riesbeck and Schank 76]. Both
programs are a continuation of Schank’s work; they are more advanced than MARGIE
in that they understand stories in terms of real-world events. That is, scripts are used to
group events into logical units, such as the chain of activities that occur in a restaurant
setting. Plans are used to satisfy goals and explain events by specifying a sequence of

actions that are needed to achieve a desired result.

3.1. Summary

MARGIE was basically a way of testing CD. Later programs like SAM and PAM used
CD as the basis for limited natural language understanding systems. CD has proven
itsel{ as a robust representation scheme that is particularly well suited to action-oriented
events. It has the expressiveness necessary to accurately capture causality and the
conciseness to avoid ambiguity. However, it has several drawbacks. The use of a small
set of primitives results in the loss of some meaning in certain contexts. Furthermore,
static factual knowledge (e.g., physical object descriptions) is almost completely

neglected by most CD implementations.

The main reason for studying CD and similar systems is that they have demonstrated
the usefulness of primitive-based, semantic representation systems for use in NLP. Case
frames. suitably modified for physical object relations, and semantic primitives seem to
offer powerful tools for formulating a theory of object representation. Furthermore, the
formalism of case frames is quite helpful for performing generalization, as will be seeﬁ

when IPP is discussed.

The relevance of the work, presented in this section to representation/generalization
research. lies in the theory behind a CD-like representation scheme. We believe that a
primitive-based. language-independent system is essential to an intelligent understander
of complex physical objects. CD has been successful, and will hopefully serve as a good

model for developing such systems.

4. GUS - Frame-based Representation Schemes
Semantic networks offer a plausible formalism for physical object representation
systems. but have several problems. The solution seems to be the partitioning of a

network into groups of nodes that are logically compatible. Hendrix introduced
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partitioned semantic networks as one possible scheme; another scheme was used as the
basis of GUS [Bobrow et al. 77].

SHRDILU and MARGIE were very useful experimental programs but they did not have
much application to real-world situations. GUS was designed to provide information on
airline flight schedules. Although GUS was still an experimental program, and dealt
with only a small number of airline flights, it represented a move in the Al community
toward using natural language input/output modules (front-ends) for databases. GUS

was one of the first programs to explicitly make use of Minsky's frame concept.

GUS’s domain of discourse was very limited; in fact, it only knew about airline flights
scheduled for cities within California. It played the role of a travel agent during a
conversation with a user. An initial database was extracted from the Official Airline
Guide. With this data in a suitable frame format, and a parsed user request, GUS

reasoned out a correct and appropriate response.

Frames are conceptual objects that are used as an organizational mechanism for
grouping pieces of knowledge into logically consistent blocks. They are most easily
thought of as an extension of semantic networks where each node is a comparatively
large structure that contains enough'information to adequately describe an item at some
level of detail. While a node in a semantic net usually is simply the name of an item, a
frame can possess information about how to classify an item, how to use it, what
attributes it has and virtually anything else that might be useful to know about an event
or object. Furthermore, the knowledge encoded in a frame need not be static
(declarative). it may be dynamic (procedural), or it can be a combination of these
[Winograd 75]. For example, if an airline reservation system used a frame to represent

each date a plane reservation was made on, it might have slots in the frame as follows:

YEAR:

MONTH:
DAY-OF-MONTH:
DAY-QF-WEEK:

The information filling the YEAR, MONTH and DAY-OF-MONTH slots might be
filled with static data (probably single numbers). The DAY-OF-WEEK slot might

contain procedural knowledge as follows:

(It YEAR and MONTH and DAY-OF-MONTH are filled
then (FIGURE-WEEKDAY))
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GUS ran by using information encoded within several different frames to guide its
operation. For example, at the start of a conversation, GUS would try to find the data
necded to satisfy the requests of a prototypical dialog frame. The attempt at filling in
slots would lead to the need to fill in lower level frames before the dialog frame would be
complete. Thus the dute frame might have to have its slots filled in before it could be
included as part of the dialog frame. By having a sequence of prototype frames to

follow. GUS achieved its goal of acting like a travel agent.

The term slots refers to the “important elements’ [Winograd 75| in a frame. Slot
fillers can be thought of as references to other frames, which is what Minsky originally
proposed. In any particular application of a frame system, a considerable amount of
thought must be given to how many’slots should be used and what they should contain."
A guiding principle for frame slot selection is, ““A frame is a specialist in a small domain"”

[Kuipers 75].

One very important aspect of the use of frames as a knowledge representation scheme
is the default filling of slot values for instantiated frames from stereotypical frames. An
instantiated frame is simply one that has its slots filled, at least partially. Default values
for frame slots can be easily set up by placing them in a stereotype frame and
programming a system so that if no value for a particular slot is specified. then it is
inferred from the stereotype. Generally, this default processing seems to make sense.
For example. if the YEAR was not explicitly given in the date frame (shown above) then
it would be reasonable to assume that the value of the slot should be the current year {as
most airline reservations are not booked too far in advance). However if the DAY-OF-
MONTH was not given. it would obviously be a mistake to assume some value from a

stereotype (assuming that only a few reservations are made on any given day).

In order to effectively use frames as a representation system several other operations,
aside from default processing, are essential. These include: matching one frame against
another: allowing for inheritance of properties from higher level frames; type checking
the values that can fill a slot in order to ensure that only certain ones are accepted: and
general abilities to manipulate a connected network of frames. KRL [Bobrow and
Winograd 77a), a language that was developed specifically to allow for knowledge
representation in the form of frames, includes facilities for the aforementioned functions

and others. Many of these functions, particularly matching and inheritance, are of
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importance for use in systems that perform some sort of genmeralization about their

knowledge.

Although GUS was not a particularly intelligent or robust system, it was a great asset
in the refinement of some of Minsky's ideas about frames. [t also served as a model for
other programs written in KRL, such as COIL (by Lehnert [Bobrow and Winograd 77b]),
an NLP program that concerns itself with drawing inferences about physical objects.
Other NLP systems that are also strongly framed based include: Ms Malaprop [Charniak
77]. a program that reads stories about painting; SAM [Cullingford 78] and PAM
[Wilensky 78] discussed earlier; and IPP [Lebowitz 80].

Many other very high level representation languages for Al exist. KLONE [Brachman
79] and FRL [Roberts and Goldstein 77] are two systems that are similar. in purpose, to
KRL.

KLONE is both a language (embedded in LISP) and a methodology for organizing
partitioned semantic networks. Objects represented in KLONE are structured much like
they are in a frame-based scheme. However, KLONE's structural formalism also
provides a way of establishing inheritance hierarchies. A distinction is made between
stereotvpical objects and instantiated ones. Thus, the properties of an object can be
attached either to a stereotype for that object or to the object itself. Because of the
hierarchical nature of KLONE, complex, but well organized inheritance dependencies -
can be established. By using a limited set of possible links, the semantics of the network
are clearly defined. The meanings of the allowed links have been chosen so that

consistency and accuracy prevail in the final representation.

FRL is much like KLONE, but instead of imposing restrictions on the semantics of
links, it forces the network of frames to be hierarchically connected. That is, all frames
must be joined together using INSTANCE and A-KIND-OF links. Therefore. the
representation tree (actually a network that is tree-like) has as its root the most general
object (frame) and its leaves are the lpwest level instances of whatever the network is
representing. For example, if one were representing car models, the root frame might be
all automobiles: below that, frames encoding General Motors, Ford and Toyota cars; and
at the bottom of the tree there would be Celicas, Skylarks, Mustangs and so forth. The
A-KIND-OF links point backward, so that Buicks are A-KIND-OF General Motors car.
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Unless otherwise specified, Buicks would inherit all the properties that are common to
General Motors cars. This type of representation is very helpful in forming and storing

generalizations made about objects or events.

4.1. Summary

GUS uses frames as a way of representing data on airline flight schedules. It also
makes use of framed knowledge to guide its goal-oriented processing. Frame
representation schemes are an improvement over those using simple semantic nets. They
allow for grouping data, much like partitioned semantic networks. Furthermore, most
systems employing frames allow for them to be structured in a hierarchical manner so

that categorization and inheritance dependencies can be established.

KRL, FRL and KLONE are languages that are based on frame or frame-like
representations. They all offer ways for describing inheritance, matching one frame
against another, and various other functions. KLONE is the newest and most successful
of these. It provides a consistent set of semantics for linking together frames, and thus

solves one of the problems that has plagued semantic network schemes.

The use of frames linked together into hierarchical structures is a representation that
lends itself to generalization processing. INSTANCIE and A-KIND-OF links correspond
to specialization and generalization, respectively. Many representation/generalization
schemes use this basic formalism in constructing complex network descriptions of
physical objects. Still needed is a method for adding, deleting or modifying knowledge
encoded in the network so that it reflects the changing status of information presented to

the program.

5. OPUS - Physical Object Representation Schemes
SHRDLU addressed the problem of representing small numbers of block-like objects.

An obvious extension of this is to intelligently encode information about large numbers
of arbitrarily complex real-world objects. This section describes several methodologies

for doing this.

Physical object representation schemes for NLP seem to fall into three major groups.
The first group consists of those schemes that are mainly concerned with representing

the way in which objects are used. That is, the functionality of a physical object or the
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way humans think of an object while performing a fask involving it {Grosz 77]. The
second group is formed by those schemes that strive to encode some fundamental
properties. (e.g. melting point or density) of physical objects. The remaining group
includes those systems that seek to represent physical objects from a visual perspective.
and are therefore useful for describing an object's structure. These groups are not
necessarily distinct, in that some representation schemes can be members of more than
one group. To get a better idea of what these groups are, one example system from each

group will be examined.

Object Primitives {Lehnert 78] are an excellent example of a physical object
representation scheme that is a member of the first group. This representation scheme
was designed to be an extension of CD. Each of the seven primitives stands for a basic
attribute of an object. By combining several of these attributes together, any object can
be described. For example, an ice cube tray might have the Object Primitive

representation (taken from [Lehnert 78])):

[Ice Cube 'l’raa_R
(a SOURCE with
<output = Ice Cubes>)
(a CONSUMER with
<input = Water>)]

Here the SOURCE and the CONSUMER are two of the seven possible Object
Primitives. Notice that no attempt is made to encode the physical form of an ice cube
tray. However, the functional features of an ice cube tray are represented by this

scheme in a manner which is consistent with other CD-forms.

The primary purpose of OPUS [Lehnert and Burstein 79] was to read sentences about
physical objects and convert them into Object Primitive representations. OPUS can be
classified as an expectation-based parser that uses its knowledge about physical objects

to aid in understanding input text.

The program “‘understands’ physical objects in an everyday type environment. The
representation scheme concentrates on how objects are to be used and allows utilitarian

inferences to be made. For example, the sentence:
John opened the bottle and poured the wine.

would be represented by a structure that includes such inferenced facts as:



- a cap was removed from the bottle
- wine was in the bottle

- wine was emptied from the bottle

This idea fits in well with the original concept in CD that ACT representation is
central to understanding and that various connectives allow for merging ACTs into
complex events. The work that Lehnert did to extend CD was to define seven Object
Primitives that function. in object representation, much like Schank's ACTs, which deal

with human oriented events.

An example of a scheme from the second class of physical ohject representation
schemes is the work Novak [Novak 77] did to develop a canonical physical object
representation system for use in a program called [SAAC. This program reads and
solves elementary physics problems stated in English.  Although this is a NLP
application program, the representation for the objects being described in the problems is
fundamental in the sense that only the physical properties of the object are encoded.
Thus, for example, a dog standing on an inclined plane might be represented by a point

mass; the fact that the animal is a dog has no significance in this context.

This scheme is canonical because many different objects are reduced to the same
representation that contains all the information to uniquely classify these objects.
Canonical representation is typical of physical object representation schemes that fall
into this second class. Schemes in this class are generally very useful in specific domains,
but are not too applicable to everyday type situations. The Object Primitives scheme is
canonical in the sense that an ice cube tray has only one purpose {and therefore only one
representation). However, it is qualitatively different from ISAAC’s representation
scheme because Object Primitives does not try to capture fundamental physical

properties of an object.

Representations that relate to visual processes constitute the third class of object
encoding systems. A program written by Kosslyn and Shwartz [Kosslyn and Shwartz 77]
attempts to simulate how people-use visual data. Their program models only a few
aspects of visual processing. It is able to search an input image for various sub-parts and

identify their position relative to other parts, regardless of the scale or, to some extent,
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the angle of view. Running in reverse, the program is also able to construct well
p=1 I~ o
proportioned images by using its knowledge of how parts can interconnect. This type of

ability may be useful in NLP systems that need a structural description of an object.

There has been a rather large amount of research relating to physical object perception
in recent years. Both experimental psychology and robotic vision processing are
concerned with how humans recognize real-world objects. Much of this work is based on
the idea that scenes are decomposed into sets of primitive elements with relational
elements holding an image together. Some strong evidence that this kind of processing
takes place in children has been uncovered [Hayes 78]. Vision research spans a wide
range of image representation levels (see [Cohen and Feigenbaum 82| for an overview).
At the lowest level, scenes are usually encoded on a point-by-point basis, while the
higher levels may approach abstractions characteristic of schemes used for natural
language processing. Kosslyn and Shwartz's model of vision processing fits somewhere in

the lower to middle range of these schemes.

5.1. Summary
OPUS is primarily concerned with the way objects are used in everyday-type settings.
[t is a fairly simple system designed to test a physical object representation scheme that

serves as an extension to CD.

Most physical object representation schemes for NLP have one pafticular specialty.
OPUS offers a system, Object Primitives, that mates with CD but lacks the ability to
capture detail of the structure of objects. Other systems, like Kosslyn and Shwartz's.
allow for great detail but miss out on the higher level abstractions, such as how physical
objects are used. Encoding an object’s purpose for use in a task-oriented environment is
also a shortcoming of most current systems (OPUS and Grosz's task domain are notable

exceptions).

Having an appropriate, robust scheme for representing complex physical objects is of
central importance in our work. There seems to be a need for processing techniques
from each of the three classes: visual, utilitarian, and fundamental physical property. A
shortcoming of all of the schemes mentioned, in this section, is their inability to deal
with time-varying physical structures. Furthermore, none of them deal with a domain

where there are many complex physical objects that need to be organized into a unified



memory structure representation. such as patents.

6. IPP - Generalization and Memory

Assuming that the representation problems for a single complex physical object have
been solved, we are now faced with the problem of organizing many such descriptions in
an intelligent manner. IPP [Lebowitz 80, Lebowitz 83a), and similar programs.

demonstrate how generalization can be used to achieve this.

One common feature that most of the preceding programs (including MARGIE, GUS

3 as knowledge structures. IPP is no exception.

and OPUS) have. is their use of frames
The frame structures used in IPP are forms of MOPs (Memory Organizational Packets)
[Schank 80, Schank 82|. MOPs are very high level representational structures that
organize scenes, scripts and supplemental data into a coherent picture of an event. In
this sense, MOPs work much like plans, but are more powerful and allow for dynamic
script building. That is, the scripts that a MOP employs need not be a permanent part
of the NJOP. They can be modified, deleted or re-positioned within the MOP in order to
reflect a better understanding of what the MOP is encoding. The dynamic nature of
MOPs is an important element in a understanding system that uses them. This ability
to dynamically restructure memory is the principle difference between MOPs and simple
frames or partitioned semantic nets. "By allowing for a representation scheme that can
reorganize its own data, MOPs go far bevond the capabilities of static frame-based

processing techniques.

IPP uses MOPs as long term memory representations of stories it reads about
terrorism. Its approach is to scan stories from wire services and newspapers and
understand them in terms of what information it has gathered from previous stories.
The use of MOPs residing in memory in understanding the current input text is one of
the important features of this program. IPP recognizes similarities and differences
between events stored with MOPs it has in memory and then uses this observational
data to build other MOPs that can be used as stereotypical knowledge. This process is a

form of generalization.

3The term frames is used here to include any representation scheme which groups
data into logical blocks and provides for indiwduaF access to the slots within these
blocks. It should be noted that the frames used in IPP are equivalent to those used in
MARGIE or GUS in only the broadest sense.
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To exemplify this type of generalization, consider the following (taken from [Lebowitz

20}):

UPI, 4 April 1980, Northern Ireland

“Terrorists believed to be from the Irish Republican Army
murdered a part-time policeman ........"

UPI. 7 June 1980, Northern Ireland

““The outlawed Irish Republican Army shot dead a part-time
soldier in front of his 11-year-old son in a village store Sunday.”

From these stories, [PP would made the generalization:

“Terrorist killings in Northern Ireland are carried out by
members of the Irish Republican Army."”

This generalization is made possible by a comparison of MOP slot fillers. The
stereotypical MOP for a terrorist-killing event has slots for place and actor, among
others such as victim, method, ete.. The program assumes that all facts it knows about
are relevant to compare. After forming this generalization, [PP will use it to make
inferences while reading other stories. Thus, if a new story about a terrorist act in
Northern Ireland came across the UPI wire, and no mention of who committed the act
was made, then [PP would assume that the Irish Republican Army was responsible.
This sort of assumption is an example of default processing mentioned in the context of

GUS, but carried out at a higher level of representation, and, dynamically.

To get a better idea of what MOPs can represent, consider the following MOP skeleton
(partially taken from [Schank 82]):

level of representation content of representation

¥OP {M~AIRPLANE

scene . (PLAN TRIP)

scene (GET MONEY)

scene (CALL AIRLINE)

scene (GET TICKETS)

scene (DRIVE TO AIRPORT)
seript {FIND KEYS}
script {PLAN ROUTE}
script {LOAD LUGGAGE}

script etc.

Here we see that the M-AIRPLANE MOP is composed of several scenes, which in turn
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contain seripts, which are complex CD descriptions of a simple activity. That is, scenes
are at a higher level of representation than are scripts, and MOPs are at a still higher
level. This diagram shows only what the DRIVE-TO-AIRPORT scene expands to. All
of the other scenes have some script representation as well. Although MOPs are a form
of frame, they are far removed from something as simple as the date {rame exemplified

in the GUS description.

IPP correctly reads and undérStands hundreds of separate stories. The strong
performance of this program is partially due to the fact that it reads only a limited
domain of stories. By using a small number of stereotypical MOPs that are initially
input by the programmer, the generalization process is made somewhat easier. Only a

relatively small number of similarities and/or differences among MOPs need be analyzed.

Lebowitz’s work is not the only recent research into using generalization processes in
conjunction with natural language understanding systems. CYRUS [Kolodner 80], a
program developed concurrently with IPP, uses a similar generalization process in order
to understand events concerning the activities of individuals (Cyrus Vance was the
prototype). They differ in the way that they make use of knowledge gained through
generalization. [PP uses its inferred knowledge in order to help itself in understanding
further input text, while CYRUS answers user questions by employing this knowledge to
help it reconstruct episodes in memory. These reconstructed episodes can be thought of
as a re-creation of the mental state that the understanding system had while reading the

original text.

Recent work by McCoy, on a program called ENHANCE [McCoy 82] uses
generalization as a way to restructure an existing database. It sub-divides entity classes
in a database according to a set of world knowledge axioms. These sub-classes form a
structured hierarchy that is tailored to a particular use by the information contained
within the axioms. The enhanced database is then used by a text generation program to
provide intelligent responses to user queries. Thus, the work done by the generation

program is simplified because most of the inferencing it needs to perform has already
been pre-computed by ENHANCE.

There has been much work done in psychology in human cognitive modeling (see

[Kintsch 77] for an overview). As a consequence of this work, and other's, many
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different ways of thinking about geﬁe_ralization have emerged. Some researchers prefer
to think that all learning is in some way generalization. while others reserve the term
“generalization” for a specific cognitive process, such as, building stereotypes from a
limited number of examples. Concept building and rule learning [Stolfo 80] are phrases
that are often used to describe generalization processes ( [Mitchell 82] and [Michalski 83],

provide useful classifications of learning research).

Rule learning is the term that Mitchell applies to his notion of version spaces [Mitchell
77]. Version spaces refers to a representation/generalization method for finding the set
of all possible rules that can account for the outcome of some particular action given the
results of this action. They are used in a program called Meta-DENDRAL [Buchanan
and Mitchell 78] which learns rules for use in the production system that DENDRAL
[Lindsay et al. 80] uses. Although this program does not do natural language processing,
it uses a dual form of generalization based on the version space method. It can produce
production rules that are as general as possible, but still fully account for the observed
data, or it can produce very specific rules, or both. This type of multi-level
generalization ability seems potentially quite useful in NLP applications, but has yet to

be implemented.

Generalizations based on high-level representations, such as those that MOPs encode,
differ from learning driven by simple semantic nets. Winston's ARCH program could
learn the concept of an arch by analyzing several correct and erroneous examples. It did
this by studying the form of the semantic net that represented each example. IPP
makes its generalizations by using ,the content of MOPs. This form verses content
distinction is not clear-cut. Both semantic nets and MOPs use links to encode
knowledge, and both use nodes (frames) to hold data. The difference lies in the
realization that MOPs encode their low-level knowledge in frame slots and their high-

level knowledge as links, while semantic nets store all their data as links.

Knowledge gained through generalization is certainly of this high-level type. IPP uses
this knowledge as a way of structuring its memory. That is, the act of forming
generalizations actually results in a different overall memory structure (only if a new
concept is created). Furthermore, the system can use its newly acquired knowledge to
help it understand additional input during the parsing process. This type of

representation/generalization integration is extremely powerful as the basis for a NLP
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program that needs to deal with varied levels of representation.

6.1. Summary

IPP, CYRUS and ENHANCE represent recent developments in using generalization as
an active organizational mechanism for knowledge. [PP can read hundreds of stories
about terrorism and understand them in terms of the previous knowledge it has acquired.
The use of .\IQPS, along with the ability to dynamically structure them, is the key to

this learning process.

The MOP form of knowledge representation is very versatile. Many levels of
description can be encoded within a hierarchy of conceptual frames. This ability seems
to be a necessity for a physical object understanding system that hopes to handle
complex objects. Complex physical objects are often described by a series of part, sub-
part relations. Thus, a representation scheme would need to encode the whole object, its

major components, the parts of the major components, ete.

The problems that arise in static frame-based representation schemes. having to do
with their inability to easily reorganize the data that they encode, have largely been
solved by dynamic MOP-based systems. IPP and CYRUS have demonstrated the
usefulness of integrating generalization with representation to form adaptable
understanding programs. This integration is a consequence of the use of generalization

processes as a way of structuring data.

- MOPs and generalization seem to offer a viable approéch for building
representation/generalization systems that seek to understand knowledge in a complex

domain.

7. Conclusion

The five programs presented above by no means completely span all of the NLP
programs that have contributed to the progress made in knowledge representation and
generalization.  They do, however, form a representative set of programs that
demonstrate the kind of research into physical object understanding and generalization

systems that has taken place in the past ten years, or so.

The large number of programs that are intended to investigate the benefits of some



particular knowledge structure are not unexpected. Obviously, one of the first
considerations in any Al system is how to represent necessary information. Thus, many
researchers concentrate on developing a good representation system, often with the

intent of using it in a full natural language comprehension program at some later time.

This argument goes a long way in explaining the dearth of programs that make use of
some generalization process. Ounly a few systems, such as IPP, CYRUS and ENHANCE,
focus much attention on the use of generalization as an understanding mechanism. It
seems that using generalization as the basis (instead of as an add-on) of a NLP program

would be a good way to proceed, as [PP suggests.

Our current work on physical object understanding with RESEARCHER [Lebowitz
83b, Lebowitz 83c|, a program to read and make generalizations from patent abstracts,
uses this generalization-type approa¢h. In addition, we use a MOP-like representation
system that has the power to encode complex physical objects in a semi-canonical form.
Relations between parts of an object are understood in terms of semantic primitives
[Wasserman and Lebowitz 82]. This semantic primitive scheme differs from Object
Primitives in that it seeks to capture the way that a group of objects may be positioned
relative to one another (i.e., its physical structure), as opposed to the way objects are

used.

The object representation scheme developed for RESEARCHER embodies
characteristics from all three classes of systems discussed under OPUS. [ts primary mode
is to serve in a NLP program as the backbone of an object underst.anding system. To
this end, it encapsulates data about the purposes of physical objects along with simple
attributes, such as an object’s color. Because RESEARCHER deals with the domain of
patents, it needs the ability to store detailed information about how objects are
constructed. Using its relation scheme, it can process knowledge about the relative
position of parts. Furthermore, unitary, one-piece, parts are encoded by a visual-type

representation that is intended to function much like the Kosslyn-Shwartz model.

The brief history of NLP programs presented here has demonstrated that in a fairly
short time span great progress has been made. The next ten years should see even more
rapid growth, particularly in the area of applying generalization principles to natural

language processing programs.




8. Bibliographic Notes

Several of the references listed are surveys of work done in NLP and related areas.

- A good overview of NLP is [Tennant 81]. This book covers the history and
recent developments in all NLP sub-fields. Many examples are provided by
means of case studies of individual programs. Further descriptions of several
of the systems mentioned in this paper can be found.

- The Handbook of Artificial Intelligence Volume 1 [Barr and Feigenbaum 81]
is largely devoted to NLP and knowledge representation. It also provides
case studies of various progfams. Although not quite as readable as
Tennant's book, it does offer excellent references.

- Chapter 6 of [IKintsch 77] is an interesting survey of psychological research in
language comprehension.

- Much of the work mentioned in this paper was done by the Al project at
Yale University. A good overview of the IPP, OPUS, PAM, SAM, ELI and
CYRUS programs can be found in [Schank and Burstein 82]. Also a brief
description of MOPs is given. A detailed description of the earlier programs
(PAM, SAM and ELI) can be found in [Schank and Riesbeck 81].

Certain books and conference proceedings are particularly rich in articles pertaining to

the issues raised in this paper.

- The proceedings from the Fifth International Joint Conference on Artificial
Intelligence contain many papers on representation and generalization. These
include: KRL [Bobrow and Winograd 77b], ISAAC [Novak 77] and version
spaces [Mitchell 77]. Other papers not referred to here, but of interest, can
also be found.

- “Representation and Understanding: Studies in Cognitive Science [Bobrow
and Collins 75], is the name of the book containing [Kuipers 75, Winograd
75, Woods 75]. These papers and other’s give an excellent in-depth discussion
of knowledge representation. In particular the semantic network and frame
formalisms are explored.

Several well written papers about representational issues can be found in
“Associative Networks’' [Findler 79]. Most of the works contained here are
concerned with semantic networks, but not exclusively. Many of the authors
referenced in this paper have contributed sections of ‘Associative Networks",
including [Hendrix 79].
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