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Abstract

In this paper we study the following problem. Given an
operator S and a subset FO of some linear space, approximate
S(f) for any f ¢ FO possessing only partial information
on f. Although all operators S considered here are
nonlinear (e.g. minf(x), min|f(x)|,% or ||£ll), we prove
that these problems are "equivalent" to the problem of

approximating S(f) = £, i.e., S = I. This equivalence pro-

vides optimal (or nearly optimal) information and algorithms.
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l. Introduction

There are many papers dealing with the following
oroblem: approximate an element £ which belongs to a
subclass ?O of a linear normed space possessing onlv cartial
information on £. For many subclasses FO we know optimal
information, »ptimal algorithms and we krow that adaotive
information is not more oowerful than nonadantive information.
(see e.g. {17, [41). This is an example of a linear problem:
that is one wants to approximate S(f) for a linear overator S.

The situation is quite different for nonlinear problems;

that is one wants to approximate S(f) where 3 1is a nonlinear

overator. Nonlinearity of S wusuallv makes the problem of
finding ortimal information and optimal algorithms more dif-
ficult.

In this paper we give sufficient conditions for a non-
linear oroblem to be equivalent to the problem of approximating
S(f) = £f. This equivalence leads to optimal (or nearly ovctimal)

information and algorithms for this nonlinear problem. We will
present some nonlinear prcblems for which these sufficient

conditions hold.

We summarize the contents of this paver. 1In Section 2
we present the basic definitions and results which will be

needed in this paper. We define what we mean by a problem,




information and an algorithm. We recall the concept cf the
error cf an algorithm and of the radius of information. Wwe
show how these concepts become simpler for the problem with
S =1 i.e., S(f) = £. 1In Section 3 we Prove two simple

lemmas which give sufficient conditions for a nonlinear pro-

blem to be equivalent to the preblem with S = I. We illustrate

these lemmas by such problems as approximation of S(f) = %
or S(f) = /f where f 1is a function. In Section 4 we
consider the problem of estimating S(f) = NEll. In the last

section we study three problems which are related to the
problem cf finding the minimum of a given function £,

For all these problems we exhibit nearly optimal infor-
mation and nearly optimal algorithms. Wwe also prove that

adaption does not help.




2. Basic concepts.

In this section we present the basic definitions and
results which will be needed in this paper. A more detailed
discussion can be found in [3] and [4].

Let F., F_, be linear spaces and let F_. be a subset of

1 2 0
Fl. Let S be an operator

- F2
(2.1) S : FO X R+-> 2

such that for every £ € F, and § > O

0

(2.2) S(£,8) # 8
S(f,5l) c S(f,ez) whenever 51 [< 5y

By the (§,FO)-groblem we mean the problem of constructing an

element g = g(f) € F2 such that

(2.3) g(f) € S(f,s), Vfe Fo»

for a possibly small number s,

To solve this problem we use an adaptive linear infor-

mation operator N (briefly information operator or infor-

mation) which is defined by
(2.4) N(E) = [Ly(£),L,(Eiyy), ... L (Ery ¥y, eeesy )]

where y, = yl(f) = Ll(f), Y, = yi(f) = Li(f7yl""’yi—l) and




(2.5) Li,f(') Ll( Yy Yy l) : Fl > R
is a linear functional.,i = 1,2,...,n. 1If Li P does not
depend on £, i.e., Li £ = Li’ for i = 1,2,...,n, then N

is called ncnadaptive. By the cardinality of N we mean

the total number n of functional evaluations, card(N) = n.
Knowing N(f) we construct g(f) by an algorithm 4,

i.e., g(£f) = »(N(f)). Here by an algorithm ¢ using N

we mean any mapping

(2.6) st N(Py) > F,.

The error of =» 1is defined as
(2.7) e(@,N7§,FO) = inf(g > 0 : V£ € Foo0 (N(£)) € S(£,8)}.

Let 3(N) be the class of all algorithms using N,

3(N) = {p : N(Fy) > F }.

2

By the radius of N we mean

(2.8) r(N;S,Fy) = inf elp,N;S,Fj).
Q)GQ(N)

Thus the radius r(N:§,FO) is the sharp lower bound on errors

of algorithms using N. An algorithm gp*, ¢* € $(N), is

optimal iff




(2.9) elp*,N;S,Fy) = r(N:S,Fg).

Let yi be the class of all adaptive linear informaticn
. . non
operators of cardinality not greater than n and let Yn
a . L . .
be the subclass of ¥ consisting of all nonadaptive linear

information operators. The nth adaptive radius for the

(S,FO) - problem is defined as
(2.10) ra(n:é,Fo) = inf r(N7§,FO)
a
N:‘i’n

and the nth nonadaptive radius for the (§,F0); oroblem as

(2.11) rnon(nrg,Fo) = inf r(N;g,FO).

non
New
n

- a -
Of course, rnon(n:S,FO) >r (n:S,FO).

We shall say that N* is an nth adaptive (or nonadaptive)

optimal information operator for the (§,PO)- problem i<

a non
£ *
N* € vy (or N* € v

)

- a - non -
r(N*;S,FO) =r (n;S,FO) (or = ¢ (n;S,F

Roughly speaking, the error of any algorithm using an
arbitrary information operator of cardinality at most n is
not smaller than the nth radius. The error of an optimal

algorithm using optimal information is equal to r(n:S,FO).



That is why we want to find optimal algorithms and optimal

information operators.

Suppose now that the space F2 is equipped with the norm

”.”F and that there exists an operator S (in general
2
nonlinear),
(2.12) S : Fy =~ Fy,
such that
(2.13)  S(£,8) = (g e F, = [S(E)-gl; < &},
2

In the (§,FO)—problem we approximate S(f),
where the error is measured by iIS(fl‘—g||P2~
Such a problem is called a nonlinear problem. To stress
the special form of this problem we drop the bar over S
and denote it by the (S,FO)—problem. For every algorithm
© Wwe have

(2.14) e(p,N;S,Fg) = SUPHS(f)-cp(N(f))HF .

feFO 2

For a nonlinear problem we can estimate the radius of

information as follows. Let N € Y: and

(2.15) d(N:5,Fy) = sup sup {[IS(£)-s(®)||, , N(F) = N(£), [ES N
feFO 2



be the diameter of N. Then

1
(2.16) 2d(N,S,FO) < r(N;S,FO) < d(N;S,FO).
In many cases we have the left equality in (2.16). This
holds for instance, if S 1is a functional, i.e., F2 = R
and Hoﬂp = |-|. Note that d(N:S,F;) has a relatively simple
2

form and provides a rather sharp estimate of r(N;S,FO).
We also know that any interpolatory algorithm is nearly op-

timal. By an interpolatory algorithm we mean any algorithm

T

o € 3(N) such that

wI(N(f)) = S () for some T € FO and

N(E) = N(£).
Then

I
r(N;S,FO) < efp ,N;S,FO) < d(N;S,FO) < 2r(N7$,FO).

Hence the error of ml differs at most by a factor of two
from the error of an optimal algorithm.
We now consider a very special problem defined as follows.

Let F, be equipped with the norm ”'”F , let S = I be the
1
identity operator and let Fo be balanced and convex (i.e,,

f e FO implies -f ¢ FO’ fl,f2 € Fo implies tfl + (1—t)f2 € FO,
Yte [0,1]). Then the (I,Fy)-problem is called the approxi-
mation (I,FO)—Eroblem or briefly the approximation problem.

. For the approximation problem it is easy to find the diameter




non . , .
of N. 1Indeed, let N © be an nonadaptive infcrmation

operator. Then

. = !
(2.17) d(N""ILFg) =2 sup JhHF .

heFonker N 1

. a
For an adaptive information operator N of the form (2.4)

we have
(2.18) d(N :I,F.) < d(N5I,F.) < sup A(N.:I,F.)
0 0 0 £ 0
feF
0
where, as in (2.5), Nf = [Ll £ .,Ln f] is a nonadaptive

information operator.

From (2.16) and (2.18) it follows that

on(

a n 1l a
(2.19) r (n;I,FO) Lr n;I,FO) < 5t (n,I,FO).

Thus adaption does not essentially help for the appreoximation

problem.




3. Two Lemmas.

In this section we prove two lemmas which will be used
in the next sections. These lemmas provide lower and upper
bounds on the diameter of information for a nonlinear (S,FO)—
problem, We estimate the diameter of N for (S,FO)—problem
by the diameter of N for the approximation (I.?o)—problem

for some EO which depends on FO.

Lemma 3.,1l: Suppose there exist

(i) an element f£* ¢ FO’

{(ii) a balanced and ccnvex subset ?0 - Fl,

(iii) a positive constant m such that

f* + h ¢ F Yh ¢ ?O

O)
and

max(||S (£*)-S(£*-h) )l ,lIS(£*)-S(£*+h)!|_ ,
F2 F2

Is (£*-n)-s (Ex+h) ||} > mlh|l, , h e F,.
2

1
a

Then for every information operator N, N ¢ Yn’
(3.1) d(N:S,F.) 2 da(N_,;I,F))

' "S)Fg) 25 Mg, 7L E,
and

a 1 non

(3.2) r (n;S,FO) >, mr (n;I,?O). .

Proof: Let h € ?0 N ker N Then £* + h ¢ F. and

£*- 0
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N(f*) = N(f* + h)., Due to (2.15) and (2.17),

d(N:S,Fy) > _sup max([[S(£*)-s(£*-n)!_,

heFOnker Nf* 2

IS (£%)=s (£x+h) ||, . IS (£*-h)-5 (£x+h) || ]

2 2
>m sup HhHF = % md(Nf*;I,?O).
he?onker N, 1
This proves (3.1l). Since Nf* is nonadaptive,
non ~ .
d(Nf*;I,?O >r (n;I,Fo) and (2.16) yields (3.2). .

We need the following definition. Let conv(A) dencte
the convex hull of a set A, A cC Fl. For a given subset FO’

F. -~ F let BC(FO) be the balanced convex hull of F. defined

0 1’ 0

by
(3.3) BC(F.) = 1 conv(F . +(-F.)) (= conv[i(f ~£ )
’ 0 2 0 0 271 277
fl,f2 € FO]).

Of course, BC(FO) is balanced and convex. Furthermore

BC(FO) = FO iff FO is balanced and convex.

Lemma 3.2: Suppose there exists a constant M such that

(3.4) HS(fl)—S(fz)H < Mnfl-fzﬂF , VE . f ¢ Fy

F2 1 1 2

. . a
Then for every information operator N, N € Yn,
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(3.5) d(N;S,F.) < Msup d(N_:I,BC(F.))
0 £ 0
f£=F
0
and
a a
(3.6) r (niS,Fy) < 2M r (n:I,BC(F,)). 0
Proof: Let £,% ¢ Py N(f) = N(f). Define h* = %(f—?).
Then h* ¢ BC(FO) N ker Nf. Therefore
M Jy
Isce)-s® I, <3l <5 sup h
2 1 heBC(FO)nker Nf 1

= MA(N_;I,BC(Fy))..

Since d(N;S,F.) = sup sup(lls(£)-S(E)||F, : £ ¢ F., N(E) = N(£)]}
0 f€FO 2 0
then
d(N;S,F.) < M sup A(N_;I,BC(F.)).
0 feFO £ 0

This proves (3.5). Since (3.6) easily follows from (3.5)

and (2.16) the proof is completed. =

We illustrate Lemmas 3.1 and 3.2 by the following problem.

Let Fl = C[0,1] be the space of continuous functions with the
sup norm
IEl, = IEl = sup  [£(x)].
1 xe[0,1]

Let FO = (f € Fl : E(x) € [l,3],|f'(x)| < l, Vx e [0,1] a.e.)

and let g be a function,




(3.7) g : [1,3] - R
such that g'(x) € [ml’Ml]' Define S : Fy ~ F, = F, as
(3.8) S(£)(x) = g(£(x)).

We now apply Lemma 3.1. Take £* (x) 2 and

“F’o =ther, Ml <1, IhW(x)|] <1, 7x e [0,1] a.e.}.

1

Then £* + h ¢ F, for every h ¢ ?O. Furthermore for every

0

h € ?0 we have

s (£*)-s(£*+h)|| = sup |g(£*(x))-g(£*(x)+h(x)) |
xe[0,1]

and due to the Taylor expansion of g we get

s (£*)-s(£*+h)|| > m. sup |h(x)]| = mlnhH.

L xer0,1]

Hence Lemma 3.1 holds with m = ml and

1 ~
(3.9) d(N;S,FO) > > mld(Nf*,I,FO).

We now apply Lemma 3.2. Using once more the Taylor
expansion of g we easily conclude that ”s(fl)—s(fz)” <

Ml”fl'fzny Vfl,fz € F,. Hence,

(3.10) d(N:S,Fy) < M, sup d(N

;I,BC(FO))
feFo :

1 £

where BC(FO) = (f ¢ Fi o el < 1,[f%x)| <1, %x ¢ [0,1)a.e. ],

-

It can be proven that for every information N

12
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d(N;S,FO) = 2r(N;S,F.), d(N:I,?O) = 2r(N:I,F.) and

0
d(N:I,BC(FO)) = 2r(N;I,BC(FO)). Hence,

1 ~
(3.11) 5 mlr(N;I,FO) < r(N;S,FO) <M :;? r(Nf,I,BC(Fo)).
¢

1

It is easy to prove that

_ _2i-1
(3.12) N;(f) - [f(xl)’f(XZ)""’f(xn)]’ xi - 21'1

’

is an nth optimal information for both (I,?O) and (I,BC(FO))

problems and

r(N;;I,BC(FO)) r(N;:I,?O) = r(n;I,BC(FO))

[}

3 =

r(n;I,?o) =

This means that N; is an almost nth optimal information for

the (S,F.)-problem and

0

L a, . . 1
m, Lr (n,S,FO) < r(Nn,S,FO) < o M

2n 1°

pt _ 1
f) then m, = 5 and

1
I 1
JE) then m. =

1 5.

)
For example, if g(x) = ; (i.e., S(f)

M. =1, and if g(x) = /% (i.e., S(f)

1

w

and Ml = E'




4, optimal estimation of ”f”F .
1

In this secticn, we solve the following simple problem.

Let FO be balanced and convex. Let F2 = R with H'”F = |.|
2
and let
(4.1) s(e) = gl -
1

Thus our problem is to approximate the value ”f”F for every
1

£ =z FO.

, . a
Theorem 4.1: For every information operator N, N ¢ Yn’

1
(4.2) 4 r(NO,T,FO) < r(N,s,FO) < sup r(Nf.I,FO)
feF
0
and
1l non a, . non —

(4.3) 2 T (n,I,FO) Lr (n,S,FO) <r (n,I,FO). =
Proof: Let f* = 0 and h ¢ FO. Then f* + h € FO and
IN€*-h]l. - f=<Y. | = |[[hl], . This means that Lemma 3.1

1 Py Fy
holds with f* = 0, ?0 = F, and m = 1. Hence,
LA i1,F) < d(§:s,F,) IN € vo
2 ofT:Fol £ S, Fq)s iN € Y-

b = | = £ 3 .
Observe that IHleFl L52”F1| < Hfl f2”Fl’ 7£,,f, € Fy
Thus Lemma 3.2 holds with BC(FO) = FO and M = 1, Hence

d(N:S,F.) < sup d(N_;I,F.), VYN e y°.
0 f 0
feF n

0]




b=
Ut

Thus,

1

2 d(Norl,Fo).g d(N:S,FO)_g sup d(Nf:I,FO),
feF
0
\ .a
YN € t
Since 2r(N;S,Fy) = d(N:S,Fj), 7N, then
(4.4) e r1,E) < rawss,FL) 'I,F.)
. 4 o’ Fy < iS,F, <& sup r(Nf,, 0
feF
0
which proves (4.2). Since Nf is nonadaptive then (4.3)
easily follows from (4.2). This completes the proof. =
This theorem states that the problem of estimating the
value of S(f) = ”f”F is equivalent to the approximation

1
(I,FO)—problem. Hence every nth optimal information operator

N* for (I,FO)—problem is also nearly optimal for the (S.FO)—
problem. Since this problem is an example of the nonlinear
problem we know that every interpolatory algorithm wl using
N 1is almost optimal. We illustrate this by the following

example.

Example 4.1: Let F. be a separable Hilbert space and

1
Fy = (f € Flo: ”Tf]lFl < 1) where T : F, > F, is a one-to-one
- i -1
linear operator. Let K, = (T l)A(T‘ ). We assume that K

1 1

is compact. Then there exists an orthonormal basis




51,52,..., such that Kl:i = ki;i and xl > Ay a2 0.
Define
(4.5) N* (£) = [(f,gl),(r,c?_),--.,(f,;n)].

From [4] we know that N* is an nth optimal information

operator for the (I,Fo)—problem and

(4.6) r(N*:I,F) = o (n:L,Fy) = /a1

n

Due to Theorem 4.1 we get that N* is nearly optimal for the

(S,FO)—problem and

a
= c.r (n,S,FO)

(4.7) r(N*:S,FO) = cljxn+l 2

€ [1/4,1]. Let o' ¢ s (N*) be defined as

m

where cl,c2

(4.8) ST (e)) = lI=h ) (Eepell, = (=) (Fg)
1

2,1/2
} .
. I . . I, .

Since ¢ 1is interpolatory then g5~ is nearly optimal and

e (ol ,N%:8,F ) = cr(N*;:S,F,)

where ¢ € [1,2].




'—J
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5, Minimum function problems.

In this section, we solve some (S,F.)-problems which

0

are related to the estimation of the minimum of functions

from a given set F We prove the equivalence between these

0"

problems and the approximation (I,F.)-problem. Since for

0
many subclasses FO we know an nth optimal information N* for
(I,Fo)—problem, this provides a nearly optimal informaticn
for the (S,FO)—problems.

Let Fl = C[0,1] be the space of continuous functions

with the sup norm, i.e.,

Nely = £l = sup  [£(x)].
1 xe(0,1]
Let FO be a balanced and convex subset of Fl' We consider

three problems in the successive subsections.

(i) Minimum-value problem

Let

(5.1) Sl(f) = min f(x), S, : F.» R =PF
xe[0,1]

Consider the (Sl,F )-problem, i.e., we want to approximate

0
the minimal value of £ for every f ¢ FO.

a2 nonlinear problem.

Of course, this is



|1—
(¢9)

. . a
Theorem 5.1: For every information operatcr N, N £ vy

n
1
(5.2) 5 r(NO,I,FO) < r(N,Sl,FO) £ sup r(Nf,I,Fo)
fer
0
and
1l non a non
(5.3) 5 T (niI,F)) < 1 (niS ,F) < r (niIFQ). -

0. For h € F. define

Procof: Take f* 0

h_(x) = min(h(x),0) and h+(x) = max (h(x),0).
Then
|Sl(f*) - Sl(f*+h)| = |Sl(h)| = | min h(x)| = lh_/!
xe[0,1]
|Sl(f*) - Sl(f*—h)| = |Sl(—h)| = | max h(x)| = ”h+”.
xe{0,1]
Since max[”h_”,”h+”} = ||h|| then Lemma 3.1 holds with ?O = Fj,
and m = 1,
1 .
Hence 5 d(NO,I,FO) < d(N:I,FO). It is known that
2r(N;I,FO) = d(N;I,FO). Since Sl is a functional then

2r(N;Sl,FO) = d(N:S FO), VN. This proves the left hand

1)
side of (5.2).

To prove the right hand side we apply Lemma 3.2. Since

FO is balanced and convex then BC(FO) = Fo. Then there exist

a_, ¢ [0,1] such that Sl(fi) = f(ai), i =1,2. Without

0%

loss of generality we can assume that fl(al) > fz(az). Then
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[S)(£)) = S (B ] = £103)) - £,(3) < £(a,) - £, (a,)

= Ifl(az) - fz(az)’ < ”fl - f2”.

Thus Lemma 3,2 holds with M 1. Hence

d(N;S )

2r(Nrsl,FO) < sup d(N

feFO

ILFL)

1’ Fo gL Fy

2 sup r(N

feFo

f:I,FO).

This proves (5.2). Since (5.3) follows immediately from

(5.2), the proof is completed. -
We specify Theorem 5.1 by taking
(5.4) FO = (f € Fl : f(r_l) abs. continuous, [[f(r)!!°° < 1},

From [2] we know that the information operator

2i-1
2n

(5.5) N* (f) = [f(xl),f(xz),.--,f(xn)], x, =
is nearly optimal for (I,FO)-problem and
r(N*;I,F.) = 9(n ") = ro(n:I,F.)
H ¢ i o M

Due to Theorem 5.1 we get that N* is nearly optimal for

(Sl,FO)-problem and

-r a
(506) r(N*;Sl,FO) = @(n ) = r (nlsl:FO)o

From Section 2 we also know that every interpolatory algorithm
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@I e & (N*) has the error

(5.7) e(ol,N'18,F) = o(n ).

0

(ii) Modulus minimum-value problem

Let

(5.8) S5, (f) = min | £(x)| =sl(lf|)),
xe[0,1]

and consider the (Sz,Fo)-problem. Thus, we now approximate
the minimum of the absolute values of £(x). It is easy to

observe that Lemma 3.2 is satisfied with M = 1. Indeed, for

fl,f2 € Fys |52(f1)—82(f2)| = ||f1(51)|-|f2(52)|| <
! - =
hfl f2H where Sz(fi) |fi(6i) . Hence
N:S.,F.) (N_:I,F.), YN 2
r(N; 5+ Fg < sup r eI Fg)s € Yn'

feFo

Assume that there exists a positive constant ¢ such that

c € F..

(5.9) fc(x)
Define Fo(c) as follows:

(5.10) Fo(c) = (h e P : £ +heF, and [n]< el

1 0

Of course, Fo(c) is balanced and convex. Furthermecre for

every h ¢ F,(c) we have £+ h € F, |Sz(fc)—82(fc+h)| > lIh |
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- ! .
and |82(fc)—52(fC h)| > Hh+J. Hence Lemma 3.1 holds with

_ - . = . . .
?O = Fo(c), m 1 and f fc. Since 82 is a functional

then

2r(NfC7I,FO(C’) £ r(N:S

2’FO)-

We summarize this in the following theorem.

Theorem 5.2: For every information operator N, N ¢ Yi,

1
(5.11) 5 r(Nf 7I,F0(c))_§ r(N;Sz,FO) < sup r(Nf;I,FO)
c fer
o]
and
1 _non a non
(5.12) > T (niI,Fg(e)) < r (n;s,,F)) <« (n:I,Fg). a

We specify Theorem 5.2 by taking FO defined by (5.4) with

r > 1. Then for every positive c, fc € FO and

Fole) = h € Fy ih]] < ¢}. Hence

n

on 1
r (n;I,FO) <=

2

N [

sup r(Nf PI,Fy(c)) £ r(N:S

,EB ).
>0 c 0

2

This means that for the (SZ,FO)—problem we have

(5.13) ).

0 |

non a non
r (n;I,Fy) < ¢ (n;sz,FO) <r (n7I.Fg

Let N* be defined by (5.5). Then N* is nearly optimal also

for this problem and

- a
* o = Q = H
(5.14) r(N ’52’F0) a(n ) r (“'Sz’Fo)'

Every interpolatory algorithm mI € 3(N*) is also nearly optimal.
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(1ii) Minimum point problems

We considered in (i) and (ii) the problems of approxi-
mating the minimal value of f and |f| respectively without
constructing points at which these values are attained. We
now consider the problem of approximating a point 2 = x(f)
such that f£(a) = S, (£) (= min{£(x) : x ¢ [0,1]]). (We do not
consider the problem of approximating 8 = 8(f) where
£(B) = Sz(f) since they are similar.)

For £ € FO let

(5.15) P(f) = (a ¢ [0,1] : f£(a) = Sl(f)].
Thus, P(f) is the set of all point a for which f(a) is

minimal. Our problem is to construct x = x(f) which approxi-

mates P(f) in some sense,

Absolute error criterion. Let dist(P(f),x) = inf(l|x-al:2eP(£)]}.

Suppose we want to construct x = x(f) such that

(5.16) dist(P(f),x) 1is small for every f ¢ Fo.

In our terminology this is an (53,F0)—problem with §3 defined
by

(5.17) §3(f,5) = (x e R : dist(P(£),x) < &}.

Note that this is not a nonlinear problem.
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Theorem 5.3: Suppose that cm]O,l] < lin(FO). Then for every

. , a
information operator N, N ¢ Yn’

= a = 1
(5.18)  r(N:5;,F)) = r (n:§,,F)) = 3. a
Procf: Take gp* € 3(N), *(N(f)) = 1/2. Since for every

f e FO’ dist (P(f),1/2) < 1/2 then

- = 1
r(N;S3,FO) < e(m*,N7S3,FO) < 5-

We now prove that r(Nr§3:FO) > 1/2., Take an arbitrary
algorithm o € 3(N) and § > 0. Since Cw[O,l] c lin(FO) then
there exist hl,h2 € FO N ker NO such that sl(hi) < 0,

supp hl = [0,8] and supp h2 < [1-3,1])]. Let

X = 4 (N(0)) = @(N(hi)). Then

e(w,N7§3,Fo) > max(dist(P(h;),x),dist(P(h,),x) ]

- 5.

N

2

Since 4 and s are arbitrary then

= 1

r(N.s3,Fo) 25
This means that r(N;§3,FO) = 1/2. Since N 1is arbitrary
this completes the proof. -

This theorem states that we cannot approximate any
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point 2 at which £ is minimal with absolute error

less than 1/2.

We now change the error criterion.

Residual error criterion. Suppose we want to construct

X = x(f) such that

(5.19) f{x) - Sl(f) is small for every £ € FO'

In our terminology this is an (§4,F0)-problem with 54
defined by

(5.20) 54(5,5) =[x € [0,1] : £(x) - 5,(f) 5).

This is not a nonlinear problem and we can not apply Lemmas
3,1 or 3.2. However we can give upper and lower bounds

on r(N;§4F ) using Theorem 5.1. For this purpose we need the

0

following definition.

Let N = [L.,L L] € wz, 5> 0 and s € :(N) be

1y ey

a g-optimal algorithm, i.e.,

e(@é,Nrs4,F0) < 8 + r(N:s ,FO).

4

- a
Let N6 € Yn+l’

(5.21) Né(f) = [N(f):;£(2)] (= [Ll(f),...,Ln(fryl,---,y

£(z)1])




[R%]
n

where z = z(f,s) = mb(N(f})'

; ; a
Theorem 5.4: For every information operator N, N € yq, and

5§ >0
(5,22) r(Né:Sl,FO) =8 £ r(N:S4,FO) < 2r(N:I,FO)
and
1l _non . = - non, . 0
(5.23) > r (n+l,I,FO) £r (n,S4,FO) £ 2r (n,I,FO).
Proof: Let ;5(§5(f)) £ f£(z). Of course, 55 € @(ﬁa) and
r(Né:Sl,FO) < e(ma,NérSl,Fo) = e(wﬁ,N?S4,FO)

< r(N:S4,FO) + 3

which proves the left-hand side of (5.22). We now prove the
right-hand side. Without loss of generality we can assume

that r{N;I,FO) £ o, For £ ¢ FO let

V(N,f) = [T e B,y 2 N(T) = N(£f)]).

For x & [0,1] let

(5.24) g(x) = inf F(x), o(x) = sup F(x).
Tev (N, £) tev (N, £)

Then g and ; depend on N(f) and

(5.25) sup sup = (g(x)-g(x)) = r(N:I,£,)
feFO xe[0,1]

i e WE 8T
= 5 d(N,I,FO) <

B



Hence g (x) and s (x) are finite for every x ¢ [0,1]. Further-

more
(5.26) o(x) < E(x) < o(x), YT ev(N,£), VYxe [0,1].
For § > O let 8 be a point such that

(5.27) aB) - 5 < inf g(x).
xe[0,1]

Since 8 depends only on N(f) and § then the algorithm
(5.28) oé(N(f)) =8

is well defined and 0, € 3(N). We now prove that

(5.29) e(wé,N7§4,FO) < 26 (N:I,F,) + 8.

Indeed, for T < V(N,f) let f(a) = sl(E). Then

l

To, (N(D)) - 5, () = () - E@) < a(B) - a@)
and due to (5.27) and (5.25)
Elo, (N(£))) - $,(E) < a(B) - a(B) + s
< 2r(N;I,Fy) + s.

Hence (5.29) is proven. Since g 1is arbitrary we get

r(N;§4,FO) < 2r(N;I,FO)
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which proves (5.22). Note that (5.23) follows easily from

Theorem 5.1 and (5.22). Hence the proof of Theorem 5.4

- =

is completed. -

Let FO be defined by (5.4). Then N* defined by (5.5)

is nearly optimal also for this problem and
r a =

F.) =a(n ") = r (n:S

*eQ
r (N ,84, 0

yEL) .

4°°0

We end this section by

Remark 5.1: 1In this section we studied some problems with

balanced and convex FO. This was done only for simplicity.

Similar results can be proven for other sets FO which are

not necessary balanced and convex.

We also assumed that FO consists of real functions
f : [0,1] > R. The similar theorems can be proven for a
more general setting. For example, let A be a compact

subset of a metric space and let F, be a linear space with

3
the norm ”.”F - Let F, be the space of continuous operators
3
(not necessarily linear) f: A - P3 with the norm
”f”F = sup Hf(a)“F . Define
1 aeA 3

S, (f) = inf ||f(a)||F .
achA 3

Then the (Sz,FO)—problem is equivalent to the approximation
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(I,FO)—problem, i.e.,

1
> r(Nf ,I,Fo(c)) < r(N,Sz,FO) < sup r(Nf,I,FO)
feFO

(compare with Theorem 5.2).
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