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Abstract.

The unique optimal information and the unique optimal
linear algorithm are obtained for the integration of functions

of bounded variation.




1. Introduction

For a class of real valued functions, we seek an approxi-
mation to the integral of any function in the class, provided
that the function values are given at n points., A summary
of what is currently known about this problem may be found
in [1, Section 6.4].

In this paper, we study the class F of real valued
functions of uniformly bounded variation on the unit interval.
Concepts used in this paper are defined for very general
settings in [l] and [2]. To aid the reader, they are de-
fined in this paper for the special case of integration. We
summarize the results of this paper.

(i) If n function evaluation are used, then the

. s s . . . . 1
intrinsic uncertainty in the integral is at least o’

rl - . . . .
and ,5— function evaluations guarantee an c~aporoximation.
g

(ii) The optimal function evaluation points are

2§il, i=1,2,...,n, and this optimal information is
unigque.
(iii) The optimal algorithm using the optimal information
, 1 _,2i-1 .
is the averaging algorithm: a 22=1 r(—é;rd, and this

is the unigue optimal linear algorithm.
(iv) The averaging algorithm is within at mcst one unit

of being an optimal complexity algorithm.




(v) The averaging algorithm is only a constant factor
better than the composite trapezoidal and Simpson

algorithms.




2. Basic Concepts.

A function f defined on the unit interval is of bounded
variation if there exists M > 0 such that for any partition
n
m. 0K Xq < X, <...& X < X 41 <1, 2i=0|f(xi+l)—f(xi)| < M.

The total variation of f 1is defined as

n

Vf = s:p zi=0 |f(xi+l)—f(xi)|. We say a class F of
]

functions is of uniformly bounded variation if

F = {f:£:[0,1] > R and Ve < B}, where B > 0. Without loss of
generality, we take the bound B to be unity.

L f(x)dx, V£ ¢ P, given

We seek an approximation to §0

function values at an n-partition, that is, at points

0 < x; < % <.00.< X < 1., That is, the information N 1is

2

defined as N:F -~ Rn, and
(2.1) N(f) = [f(xl),f(xz),...,f(xn)], v £ € F.

We denote x_. = O,

= = - . fo 1 = 0.1,... n,
0 1., A X xl r i , s

X . . .
n+l ' i 1i+1

and A = max[zAO’zAn’Al’AE"'"An—l]' We have
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Lemma 2.1: (i) a > =: (ii) A =

I3

A, = i for 1 = 1,2,...,n-1.

The proof is trivial, and is omitted.




Given information N and f € F, the set of indistin-

guishable elements from £ in F is
(2.2) V(N,£) = (e FiE(x,) = (%, )y &= Ly o B

The following lemma measures the uncertainty in the integral

caused by indistinguishable elements.

Lemma 2.2: Let N be information corresponding to an n-

partition and let £ £ F. Then

1
F ~ ~
(2.3) L < ; f(x)dx < U, for all £ e V(N,f),
0
where
n-1
(2.4) U = f(leaO P f(xn)an + 2 max{f(xi),f(xi+l)}gi
+ 4(1-V.)/2, ana
L = £(x.)A. + £(x)a_ + 2L min(f(x,),£(x. . ))A,
150 n n i=1 34 i+l 5
= ﬂ(l_vf)/z-
- n-1 fad
where Vf = Zi=l |f(xi+l)_f(xi)|. Furthermore, there exis
~ 1 ~ 5 ™
z [ = [T f _(x)dx = u. —
fl’fU e V(N,£) such that [ fL(x)dx L and . U( )

—

Proof: We first show that for f € F,

(2.5) [ swp E-Expl+ [ sup EGO-E)D ¢
Xogxgxl xr]_sxsxn+1




+ 2 Z ( sup f(x)-max{f(x.),f(x.
‘ X, <x<X * i+l
i i+l

)}}

<1 - Vg.

For an arbitra 0, th i g, .
r an rary § > ere exist 2, € [xl,xi+l]
such that sup ?(x) < %(gi) + &, 1 =0,1,...,n. Therefore
Xisx-sxi+l

[ sup ?(x)—?(xl)] + [ sup ?(x)-?(x )]
xogxgx xngxgx n

+2 7 L { sup (x) max{f(x ), f(x }} + 2 |f(x )E(xi)|

i=1
Xisxgxi+

< TE(g)-Fix)] + [E(g)-F(x )] + z?;i(z[g(g )-max (% (x,), £ (x, )}

i+l
+ | Ex )-F(x) |} + 2ns < |E £y)- “E(x)) | o+ |E(e)-E(x )|

Z?’l [|§(gi)-¥(xi)| + |E(xi+l)-z(§j)|] + 2ng < v% + 2ns

+

i=1
< 1l + 2ng. Since s 1is arbitrary, [ sup E(x)—g(x )]
xX<x 1
- XpSXSXy
+ [ sup  E(x)-f(x )]
xS

n-1 ~ ~
+ 2 Zizl{x iui f(x)—max[f(xi),?(xi+l
G S}

n-1,~ ~
+ Zi=l|f(xi+l)—f(xi)| < 1, and (2.5) follows.

)1}

~

~ l~
Let £ ¢ V(N,£f), thenfO f(x)dx < 2?=l[ sup f(xi)]Ai
xigxgxi

1
)]Ai

o~ ~ n— ~ P~
= f(xl)A0 + f(xn)An + 21:1 max[f(xi),f(xi+l

+ [ sup %(x)-%(gl)]ao + [ sup ’f(x)—'f(xn)]An
xogxgxl xngxgx
+ 2?;1{ sup F(x)- max[f(x ), E( )}]A < f(x )A + va(Xn)An
xigxgxi




n-1
+
Lio1

1 sup E0)-T(x )] o+ 22?;

xnsxsxn+l

< f(xl)a + f(xn)an + Z,

0

max(?(xi),?(xi+l)}ai +

{[ sup T(x)-T(x))]

xogxgxl
{ sup F(x)-max{T(x,).T(x. .)}1}
XiSXSXi i i+1

Lol o NS T =3

+1

max{f(xi),f(x )}Ai + A(l-VE)/2-

i+l

The last step follows from (2.5). Therefore

fé f (x)dx < F(x,)a

+ A(l-9¥)/2 = £(x)agtE(x )a_+ T

+ A(l-Vf)/Z, i.e., 44

ag f(xn}A + T

-]

¥ F )
n maX{f(xi),f(x.ﬁl).‘ai

[l
el i el e

max[f(xi),f(xi+l)]Ai

~

1 ~ 1
f(x)dx < U. similarly, L < 4 f(x)dx,

Let
[O’Xl] if 2AO = A,
=/ i i = min{j:a.= a
I s (Xi’xi+l) if 2AO<A and i = min{j Ay A an
) 1 <3< n-l),
i
; :  cn- a
\ (x,-1] Lf 2a,<8, Aj<Ai for 1<j<n-1 an
2An=A.
bet f(Xl) if 0 x <L X,
COE(x)) if x < x< 1,
£ (x) =+ ' )
max £(x,) if x=x,, i=2.3,....n-1.
i i
k\ max(f(xi).f(xi+l)} if Xi<x<xi+l’
i=1,2,....n"1
Finally, let
T f (x) + (1-V.)/2 if x e I,
- max
fU(X) = ¥
} otherwise.

£
g max




It can be verified that vy = L, ?U € V(N,f), and
U
.l~

0 fU(x)dx = U. An analogous conclusion holds for ’EL'



3. oOptimal Information.

From Lemma 2.2 we know that for all f e V(N,£), the

integral of E, Ié f(x)dx, is confined to the interval [L,U].
We call

u-
(3.1) (N E) =,

the local radius of information N at £. From (2.4) we have

1l _n-1 5
(3.2) r(N,£) = Sz, _J[£0x ()-E(x)]a, + A(l—vf)}.
We define
(3.3) r(N) = sup r(N,If)
feF

as the global radius of information. The quantity r(N,f)

measures the intrinsic uncertainty of the integral of £,
caused by indistinguishable elements in V(N,f), and r(N)
measures that of the worst f in F. We estimate the local

and global radii of information in

Lemma 3.1: Let N be information corresponding to the n-

partion O = Xg < x, <%, <X <X = 1. Then

n+1l

(3.4) r(N,f) < a/2, for all £ ¢ F,

and



Proof: Since Ay <A fori=1,2,...,n-1, by (3.2),
1l _n-1 -
r(N, £) = JIZ,_J(E(x; ) - £(x)[a; + a(1-Vv.)]

A.n-1 = _ .
SSIE e -Elx) | + (1-V] = 2/2, i.e.,

r(N,f) < A/2, proving (3.4). Let £

11
o

Then by (3.2),

r(N,0) = ao/2, i.e., r(N) = sup r(N,f) = r(N,0) = /2,
feF

11

proving (3.5).

Information is of cardinality n if it corresponds to

an n~partition. Let ¥ (n) be the class of all information of

cardinality n, and let r(n) = inf r(N). Then information
Nevy (n)

N € v(n) is called n-th optimal if r(N) = r{(n). An n-th

optimal information N has the minimum radius of information,
among all information in ¥(n).

Let N* be information corresponding to the partition

2i-1
2n '

points X, = where 1 = 1,2,....n, and n > 2. We have

Thecorem 3.1: N* is the unique n-th optimal information with

r(N*) = r(n) =2—1n. -
Procof: For the informaticn N*, A = i. By (3.5), r(N¥) =‘§;.
On the other hand, for an arbitrary N ¢ v(n), r(N) = a/2

L = r(N*), and the equality holds iff N = N*. —

2n

Remark 3.1:

(i) If the class of integrands Fl consists of functions
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with a uniformly bounded first derivative, then (see
[1, Section 6.4]) N* is an n-th optimal information with
1
*) = —,
£ (N) 4an
(ii) To define information in (2.1). the partition

points X, are independent of function values at the

previously chosen partition points. This is ncnadaptive

information. If partition points are chosen sequentially,

depending on the function values at the previously chosen

partition points. we have adaptive information. For

many cases adaptive information is more powerful than
nonadaptive information of the same cardinality. For
the problem of integration, one gains nothing by using
adaptive information. For the proof, see [1, section

2.7] or [2., section 4.3]. b
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4. Optimal Algorithm.

Usually, one can not compute the integral of a function

exactly, and instead seek an approximation to the integral

using an algorithm ¢

(4.1) ©:N(F) - R.

We define the local algorithm error of £ as

1
(4.2) e(y,N,f) = _ sup | £(x)dx - o (N(£))],
fev(N,£) O

and the global algorithm error as

(4.3) elp,N) = sup e(yp,N, ).
feF

For a jiven f € F, the integrals of indistinguishable

elements T ¢ V(N.f) are in the interval [L,U], where the

sharp bounds L and U are given in (2.4). Therefore, for
an arbitrary algorithm ¢, e(yp,N,£) > HEL, which by (3.1)
is the local radius of information r(N,f). Thus we have

(4-4) e(COyN_-f) 2 r(N;f)’
and
(4.5) e(p,N) > r(N) for all ¢.

Therefore, r(N,f) and r(N) are the lower bounds of local

and global algorithm errors, respectively.
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We present an algorithm, called the central algorithm,

by choosing the center of [L,U] as wc(N(f)):

U+L

(4.6) o (N(£)) = —.

= r(N,£), and e(y ,N) = r(N). Since

Then e (x°,N, f) = 959

@c has the minimal e(@c,N) among all algorithms, it is called

an optimal error algorithm.

From (2.4) we have

(4.7) e N6 = ST 10, )£ ) ]a, + A(1-V)],
(4.8) e(mc,N) = a/2,
(4.9) o (N(E) = £(x)ag * £(x )a_ + I f(xi)ff(xi+l)ai,
or
(4.10) o (N(£)) = £(x)) (a,+8,/2) + 2?;; f(xi)Ai';+Ai

+ E(x_)(a + Ai;l).

An algorithm is linear if it is of the form

n
(4.11) o (N(£)) = £, _, £(x;)H,.

Therefore the central algorithm is linear. We summarize the

above in

) C
Thecrem 4.1: Given information N, the central algorithm ¢
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is a linear optimal error algorithm, with local and global
algorithm error equal to the local and global radius of

information, respectively.

Remark 4.1l: It is true in general (see [2, Section 1.3 and
1.4]) that the central algorithm is optimal and that the local
and global algorithm error of the central algorithm are

equal to the lcoccal and global radius of information, res-

pectively.

Given the unigue n-th optimal information N*, we compare
the algorithm error of the central algorithm with those of

other linear algorithms in

Theorem 4.2: The central algorithm wc using the unique n-th

optimal information N* is

c 1
(4.12) v (N*(£f)) = I, £¢(
Furthermore, the linear optimal error algorithm is unique.

Proof: Let ¢ be an arbitrary noncentral linear algorithm,

with o (N*(£f)) = Z?—l f(xi)Hi, and let p be the largest

subscript of H such that Hp # %. Let
0 if x < =

,
{

£ (x) = { P, Then we have e(p,N*,f ) =
il 1f x> xp p



n 1 1 1
=T ) (H, - = oo = - = =
|“i=1 fp(xl)(Hl n)' ¥ 2n |fp(xp)(Hp n)| ¥ 2n
1 1 1
= |H_ - | +35= >3- = elp ,N*). Therefore

o] n 2n 2n

C
ey, N*) > e(m,N*,fp) > e(p ,N*), and ¢ is not optimal.

14
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5. Complexity.

Given information N, we seek an algorithm ¢ to compute

an g-approximation to the integral of any functions in F,

with algorithm error e(yp,N) £ e, where ¢ > 0. We use

. . . . c
the n-th optimal information N* and the central algorithm ¢
to cbtain an ¢-approximation. Then from Theorem 3.1 and

Theorem 4.1, we have e(wC,N*) = r(N*) = r(n) = é% < e

— - .

. . 1, ..
Therefore, n = It is obvious that — ' is the minimal

2¢ ) 2¢
number of function evaluations for whicn we can have an e¢-
approximation to the integral of any functions in F.

Assume that the cost of each arithmetic operation is 1

and that of each function evaluation is c¢. We first compute

N(f) =y = (yl,...,yn) with information complexity cn, where
n 1is the cardinality of N. We then compute »(y) with

combinatory complexity comp(ym(y)). The complexity of algorithm

o 1is thus comp(p,N) = cen + sup comp(p(y)). By (4.12) we have
feF

“ 1
(5.1) comp (", N*) = (c+1) 3.

We define the problem complexity of an ¢-approximation as

(5.2) comp(e) = inf{comp(y,N):e(y,N) < ¢},
o, N

and an optimal complexity algorithm ¢* as
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(5.3) comp (p*,N) = comp(e), and e(p*,N) £ ¢ for some N.
As noted at the beginning of this section, n =i;" is the
€ .

minimal number of function evaluations to guarantee an ¢-approx-

imation. Thus the information complexity is no less than

c(é;}, and the combinatory complexity is no less than -gL - 1.
- €
Therefore comp(g) > (c+l) ;L - 1, Comparing this with

€ -

c
(5.1), we notice that the difference between comp(s ,N*) and

comp(e) is at most 1. We propose the following

Conjecture: The central algorithm using the optimal information

is the optimal complexity algorithm, that is

(5.4) comp(mc,N*) = comp(e).

]
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6. Comparison with Other Algorithms.

We estimate the global algorithm error and algorithm
complexity of some linear algorithms; the proofs are routine
and are omitted.

(1) Another Riemann Sum.

Let the partition points be x, = (i-1)/n, i =1,2,...,n,
and A = 2.
n
1 _n i-1
(6.1) o (N(£)) = ., £C).
1
(6.2) e(yp,N) = n ;

The algorithm complexity for an g-approximation is

-

(6.3) comp (p,N) = (c+l1) “é

(ii) Composite Trapezoidal Rule.

Let the partition points be X, = (i-1)/(n-1), 1 = 1,2,....n
2
and A = N1
1 1 n-1 i-1
(6.4) o (N(£)) = Siogy [£(O+E()] + 57 7y, £ _1)-
(6.5) (N.g) = ==
. e Y] = n_l.

The algorithm complexity for an ¢-approximation is

“

ri"
(6.6) comp (p,N) = (c+l) ';‘ + c + 2.

(iii) Composite Simpson's Rule

Assume that n = 2m+l. Let the partition points be
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(i-1)/2m, j = 1,2,...,2m+l, and A = "

X, =
1
1 i~ 2 -
2
(6.8) elp,N) = 1)

The algorithm complexity for an c-approximation is

(6.9) comp (g, N) = (c+1) F§L7 +oc o+ 3.

Observe that the costs of the linear algorithms (i)-(iii)

are within a constant factor of comp (¢).
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