Classifying Numeric Information

for Generalization

Michael Lebowitz
May, 1933

CUCS-53-83




Classifying Numeric Information

for Generalization!

Michael Lebowitz
Department of Computer Science -- Columbia University
New York, NY 10027

Abstract

Learning programs that try to generalize from real-world examples may have to deal
with many different kinds of data. Continuous numeric data may cause problems for
algorithms that search for identical aspects of examples. This problem can be
surmounted by categorizing the numeric data. However, this process has problems of its
own. In this paper we look at the need for categorizing numeric data, and several
methods for doing so. We concentrate on the use of a heuristic, looking for gaps, that
has been implemented in the UNIMEM computer system. An example is presented of

this algorithm categorizing data about states of the United States.

1 Introduction

Programs that learn by generalization from examples must be able to deal with many
different kinds of data. Continuous numeric data, which is prevalent in many domains,
can cause serious problems for such systems. This is simply because generalization may
depend upon noticing identical components of data items, and numbers are rarely
exactly the same from example to example. Numeric data necessitates the creation of
discrete categories to allow generalization to take place. This categorization process
creates interesting problems of its own, which we will look at in this paper. The
categorization process described here is being used as part of a computer system,
UNIMEM. designed to accept facts about a domain, store the information in long-term

memory, and, most relevant to our purposes here, generalize from similar examples.

To illustrate the categorization problem, we will look at data from one domain UNIMEM

IThis research was stgggorted in part by the Defense Advanced Research Projects
Agency under contract N00039-82-C-0127.



[ &)

has been tested on. information about states of the United States. In particular, consider

the state population and area data in Figure 1.

. - 2

STATE POPULATION AREA (sTlaremiles)
Alabama 3,800,000 61,000
Alaska 300,000 569,000
Arizona 2,700,000 113,000
Arkansas 2,200,000 63,000
California 23,800,000 168,000
Colorado 2,800,000 104,000
Connecticut 3,100,000 5,000
Delaware 600,000 2,000
Florida 9,700,000 58,000
Georgia 5,400,000 58,000
Hawali 900,000 6,000

Figure 1: State population and area data

A typical generalization that we might wish UNIMEM to make from this data is that
states with small areas usually have small populations (we are dealing here with
pragmatic generalizations that describe situations that are usually, but not necessarily
always, true). Clearly this cannot be done by looking for states with identical population
or area values. One logical approach is to categorize numeric data, the population and
area in this case, and then try to generalize. If we categorize the populations of Alaska,
Delaware and Hawaii as “small”’ and do the same for the areas of Connecticut, Delaware
and Hawaii, then we could hope to conclude that states with small areas often have small

populations.

Most of the research done in learning from examples has not been concerned with
categorizing numeric data. Such programs have either started out with discrete data -
( [Winston 72; Mitchell 82], among others), have had their processing of numbers built-in
(for example, Meta-DENDRAL [Buchanan and Mitchell 78] apparently did not try and
learn what values in a spectrogram constituted a peak), or have used clustering
techniques (e.g., [Michalski 80]).

One program that is concerned with numeric data is Langley's BACON [Langley 81],
which processes scientific data and develops hypotheses about mathematical relations
among the values. BACON was able to derive several laws of nature, such as Ohm’s law

and Kepler's third law from appropriately selected input data.




Crucially from our point of view, BACON only derived continuous functions of the data
fields. It did not deal with cases where generalizations about the data were dependent
on categorization. Thus, while BACON might be able to deal a case where states’
populations were directly proportional to their populations, it could not deal with the
more likely possibility that large states have large populations, and small states small
populations, but the relation is no more precise than this. In addition, it cannot deal
with partial relations, where, for example. very small states might have small
populations, but nothing can be said about larger states (some have small populations,
some large). Each of these problems requires categorization of the data.

~

The goal of the categorization process is to derive categories that “make a difference” in
generalization. We would like the categories to be such that different classes distinguish
items for generalization. Simple methods, like categorizing by number of standard
deviations from the mean often fail in this regard as they allow, for example, items with

almost identical values to fall into different classes.

There are at least three different, and probably mutually applicable ways to categorize
numeric data. These are: 1) number heuristics, rules we know ahout numbers, for
example, “look for gaps™; 2) domain information, logical reasons, such as governmental
laws, to expect items to have different behavior across given break points: 3) consistency
in generalizalions. ranges of numbers that are consistent across generalizations created

from other data.

In this paper, we will concentrate on the use of number heuristics. after touching on the
other methods briefly. First, we will present a brief description of the generalization

framework within which we are operating.

2 Background -- Generalization-Based Memory

We will describe briefly here the generalization method used by UNIMEM. These
methods are based on those used in IPP [Lebowitz 83] and RESEARCHER [Lebowitz

®2a] and are further described in [Lebowitz 82b).

The generalization process used in UNIMEM begins by making tentative generalizations

about a situation based on only a small amount of input data. Each input item is



referred to as an instance. UNIMEM then records specific items in memory in terms of
the generalizations made, under GEN-NODES. It is also possible to make more specific

generalizations and to record these, as well, under the more general cases.

The storage of instances and sub-GEN-NODEs under a GEN-NODE is done with
discrimination networks (D-NETs) [Charniak, et al. 80]. D-NETs provide an efficient
way to retrieve objects stored with a given set of indices. In the UNIMEM memory
model, every feature of an instance or sub-GEN-NODE is initially used as an index,
resulting in shallow, bushy D-NETs that allow retrieval of an object given any of its

features.

The UNIMEM generalization process itself is relatively simple. Given an input event, as
a set of features, UNIMEM searches through memory, using the hierarchy of D-NETs to
search efficiently, to find the GEN-NODE that best describes the new information.
Then it checks to see if any of the instances stored under that GEN-NODE have
additional similarities to the new instance. If so, a new GEN-NODE is made, in effect

creating a new concept.

-_

3 Methods of Categorization

3.1 Domain Information

As in most areas ol Artificial Intelligence, domain-specific knowledge can be applied to
the problem of categorizing numeric data. In particular, we may know factors of a
domain likely to cause values across a breakpoint to generalize differently. For example,
if a particular Federal law takes effect only for states with populations above 5,000,000,
then we would expect that to be a logical point to break categories apart. Normally,
information of this sort will be used to initially categorize data. However, in many cases,

we will not have such relevant facts, and have to look for other methods.

3.2 Consistency in Generalizations

As mentioned earlier, the goal in categorizing numeric data is to allow the making of
generalizations based on the categories created. It seems logical, then, that if we have
made generalizations based on other information, either non-numeric or previously

categorized data, then examining the values of a new field in these generalizations will




help in categorization. If a field takes on one range of values in all (or most) instances
stored with a generalization, and another range under another generalization, then these
ranges make logical categories, as the new field would then participate in the

generalizations. and hopefully others.

As an example of the process we have in mind, if, using our state data, we had made one
generalization about Alabama, Florida and Georgia, and another about Arkansas,
Arizona and Colorado, then we might break population categories between 2,800,000 and

3,800,000 so that population would be constant across these generalizations.

While we expect this method of categorization to be very useful in the future
development of UNIMEM, it is not adequate by itself. It cannot handle cases where all
the data is numeric (at least uqtil an initial start-up period of generalization has
occurred), or even cases where numeric data only generalizes with other numeric data.
Since domains of this sort seem common, we must look for another categorization

method to allow an initial set of generalizations to be made.

3.3 Number Heuristices -- Looking for Gaps

Despite the virtues of the methods of categorization mentioned so far, often these
methods will not be applicable, and we will simply have a group of numbers that must
be categorized. It is possible to do this using general heuristics that we have available
about numeric data. In particular, the heuristic we will concentrate on in thl:. section is
one familiar to anyone who has ever “curved” an exam. We will refer to it as looking
for gaps. We will also mention a secondary heuristic involving the number of categories

. ]
that is ereated.”

Looking for gaps is based on the idea that values that are close together are unlikely to
be fundamentally different. If close values are not to be in different categories, then the
only place to put category boundaries is in gaps devoid of values. Thus, when UNIMEM
categorizes numeric data, it uses a method similar to that used by an instructor looking
for the breakpoints between grades on an exam -- it sort the values of a field and lool;s

for the largest possible gaps.

°In a rather different context, [Riesbeck 81] suggests another form of number heuristic,
“check scale” that has a similar flavor to those mentioned here.



In order to employ a gap-finding method, we must employ another heuristic, that the
number of categories we derive should not be too large or too small. From: experience
with generalization, we know that if we create too many categories, not enough instances
will involve each, and that if we create too few, then the instances in each category will
not be similar enough to warrant generalization. A rule of thumb seems to be that about
5 to 10 categories per field are useful. It would be possible to formulate a similar rule
that looked at the number of elen_l_c;nt's in each class. The reason for our decision to look
at the number of classes is related to the advisability of looking at only a sample of a

field's values, which we will discuss shortly.

One additional relevant fact about numbers (too basic to even be called a heuristic) is
that the absolute magnitude of a piece of numeric data is virtually meaningless. A gap
of 100,000 might be large when looking at state area in square miles, but insignificant
when dealing with state population. We adopt the natural solution of looking for large
gaps relative to the sizes of the data items that bound each gap, rather than for any

absolute size gaps. (A normalization of data strategy would have much the same effect.)

These various heuristics lead to the UNIMEM categorization algorithm illustrated in
Figure 2. The basic idea is that we begin with an optimistic view towards the size gaps
we might find (25% was the initial gap size used in analyzing state data), and see how
many gaps that large can be found. If the number found is over a threshold (5 was
used), then we stop. Otherwise, the gap size is gradually decreased (2% at a time) until
enough gaps are found, or the gap size becomes too small (under 5%). (The latter
condition would imply the data is too nearly continuous to be analyzed in this fashion).
All the parameters in this algorithm can be easily modified and are open to

experimentation.

Figure 3 illustrates the results of applying this algorithm to the populations of the fifty
states. The resulting six categories seem to reflect a division that works quite adequately

in making generalizations.

There are several problems with the “‘gap finding” algorithm as presented so far. The

most obvious is that it cannot be directly applied to any domain with an unbounded




-

. sortlvalues

v
initialiTe gap-sizs
v
----------- > identify ga%s > gap-size
{ le.g. (v, -7v,_, I/ v, > gap-size]
| v
gap-size <- decrement <-- number of gaps > threshold
too gap-size no T yes
small
lyes v
v stop, using gaps identified

fail
Figure 2: Gap-finding categorization algorithm

pop < 1,650,000

ALASKA DELAWARE HAWAI IDAHO

MAINE MONTANA NEBRASKA NEVADA

NEW HAMP NEW MEX NORTH DAK RHODE ISLAND
SOUTH DAK UTAH VERMONT WYOMING

1,650,000 < pop < 2,250,000
ARKANSAS " PWEST VIRGINIA

2,250,000 < pop < 3,800,000

ARIZONA COLORADO CONN IOWA
KANSAS KENTUCKY MISSISSIPPI OKLAHOMA
OREGON SOUTH CAROLINA

3,600,000 < pop < 6,550,000

ALABAMA GEORGIA INDIANA LOUISIANA
MARYLAND MASS MINNESOTA MISSOURI

N CAROLINA TENNESSEE VIRGINIA WASHINGTON
WISCONSIN

6,550,000 < pop < 8,250,000
NEW gL e

EW JERS
8,250,000 < pop )

CALIFORNIA T FLORIDA ILLINOIS MICHIGAN
NEW YORK OHIO PENN TEXAS

Figure 3: Categorized state population data

number of instances, or even a finite, but very large number of instances (which are
exactly the kinds of domains generalization-based memory is best suited for). In neither
case could all the values of a field be accumulated, much less sorted. In addition. as

more and more values are examined over a limited range, it becomes quite unlikely that



there will be any perfect gaps. Instead, there will simply be “high density’™ and “low

density” ranges.

Fortunately, these problems can be solved with one modification of our algorithm.
Instead of looking at all the values for a field, we simply pick randomly a sample of the
values. Then we apply the gap finding algorithm. Statistical reasoning indicates that a
modest sample will be adequate to capture the main properties of the field. We expect,
by and large. the “‘low density’ ranges of values for a field not to contribute values to
the sample, and hence leave gaps where categories can be delimited. The state
population example in Figure 3 was actually accomplished by processing a sample of 25
of the 50 states. Note that for statistical reasons, the sample size needed is effectively

constant, and does not grow proportionally to the number of instances in the domain.

4 Conclusion

We have presented here the problem of dealing with numeric data in in the context of
generalizing from examples. We have also shown one method for categorizing data,
based on finding gaps in the data, that has been implemented in the UNDIMEM computer
system. Several other potential solutions were also suggested. The problems concerning
numeric data that we have begun to attack are ones that must be dealt with in programs

that hope to learn from complex, real-world data.

REFERENCES

[Buchanan and Mitchell 78] Buchanan, B. G. and Mitchell, T. M. Model-directed
learning of production rules. In D. A. Waterman and F. Hayes-Roth, Ed., Pattern-
Directed In ference. Academic Press, New York, 1978, pp. 297 - 312.

[Charniak, et al. 80] Charniak E., Riesbeck, C. K., and McDermott, D. V.
Artificial Intelligence Programming. Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1980.



[Langley 81] Langley, P. “‘Data-driven discovery of natural laws.” Cognitive Science
I, 1 (1981), 31 - 54.

[Lebowitz 82a] Lebowitz, M. Intelligent information systems. Columbia University
Department of Computer Science, 1932,

[Lebowitz 82b] Lebowitz, M. ~Correcting erroneous generalizations.” Cognition and
Brain Theory 5, 4 (1982), 367 - 381.

[Lebowitz 83] Lebowitz, M. " Generalization from natural language text.” Cognitive
Science 7. 1 (1983), 1 - 40.

[Michalski 80] Michalski, R. S. “Pattern recognition as rule-guided inductive
inference.”” IEEE Transactions on Pattern Analysis and Machine Intelligence (1980).

[Mitchell 82] Mitchell, T. M. *Generalization as search.” Artificial Intelligence 18
(1982), 203 - 226.

[Riesbeck 81] Riesbeck, C. K. Failure-driven reminding for incremental learning.
Proceedings of the Seventh International Joint Conference on Artificial Intelligence,
International Joint Conference on Artificial Intelligence, Vancouver, Canada, 1981.

[Winston 72] Winston, P. H. Learning structural descriptions from examples. In
P. H. Winston, Ed., The Psychology of Computer Vision, McGraw-Hill, New York,
1972,



