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ABSTRACT

This paper proposes a statistical perturbation scheme to protect a statistical database
against compramise. The proposed scheme can handle the security of mmmerical as well as nom
mmerical sensitive fields or a combimation of fields. Furthermore, kmowledge of same records
in a database does not help to compramise unknown records. We use Chebychevs inequality to
analyze the tradeoffs between the magnitude of the perturbations, the error incurred by
statistical queries and the size of the query set to which they apply. We show that if the
statistician is given absolute error goarantees, then a campramise is possible but the cost is

made exponential in the size of the database.




1. INTRODUCTION

The problem of security of a statistical data base imvolves three hypothetical individuals:
the statistician, whose interest is to obtain aggregate data (means, medians, frequency) from
the data base, the owner of the data who wishes to secure individual records, and the data
base administrator, who needs to satisfy both, The interested reader may conmsult

(8, 1,2, 5, 6, 7} for a suxzvey of the problem and for further references.

One possible approach to a solution of the statistical data base security problem is to
restrict the size and overlap between query setsl available to the statistician, However, the
major resolt of a series of papers is that '‘Campramise is straightforward and cheap”, to quote
the conclusions of [1].  Accordingly, it is suggested that 'The requirement of camplete
secrecy... is mot consistent with the requirement of producing exact statistical measures...

At least ane of these requirements must be relaxed...' .

In this paper we study alternative solutions to the problem of securing statistical data
bases, based on random perturbations of the data base, We quantify and amalyze the tradeoffs
between “security” of the database and precision of the data extracted through statistical
queries, using Chebyshev’s inequality.

Securing data through statistical perturbations has been previcusly considered; see for
exxmple [3]. The idea is quite simple, mmerical fields in the datas base are randamly
perturbed; a statistical query provides an estimator of the required quantity, If a query set
is sufficiently large, the law of large mmbers causes the error in the query to be
significantly less than the perturbatjons of individoal records, The dangers involved in a

statistical perturbation scheme are:

1, that the data base may be compromised if the statistician is allowed sufficiently
mny independent estimmtes;

2. the statistician is not guaranteed error bounds om query responses.

lA query set is a set of records whose aggregate statistics is subject to a query,



Recently, L. Beck [7] soggested a statistical perturbation scheme which parmmetrizes
the variance of the perturbations, He demonstrates there that a proper parametrizatiom
guarantees the datas base against a statistical compromise using linear queries. There are two
limitations to this method: First, protection is only proved for restricted fomms of attack
(e.g., lipear queries). Second, the statistician may only be provided with statistical error
guarantees (i.e., bomnds on the variance of the estimator used). It is possible that the
result of any specific query grossly deviates fram the actual value of the answer, These two

limitations are removed by the scheme proposed in this paper.

To introduce the proposed scheme consider, for example, a data base containing employee
data where one of the fields indicates salary. Let d=(dy,dy,...,d,) describe the salary
field of the n records in the data base, Let C<(1,2,...,n) be a query set and let |C| be

the ommmber of elements in C, A linear statistical query over C is the functionm:

qc(d) = Z dg

The values of individoal di can be compramised in spite of query set size and overlap

restrictions; see[1,2].

Let us assunc that rather than storing the actual vector d in the dats base, a vector d'
is stored, where ¢ = d' - d is a random perturbation vector, whose components are independent
randan variables whose mean is 0. Note that unlike the scheme proposed by Beck [7], which
allows the statistician to obtain unlimited ommber of sample estimates to amy given query, the
perturbed dats is fixed for the full database and the perturbation is not changed from query to

query.

The statistician may now make amy query of his choice, he mxy even acquire the vector d'.
However, by properly selecting the perturbation, knowledge of d' does mot constitute a danger
of campromising the actnal records d. On the other hand, the statistics of d' may be used to
provide a fairly accurate description of the statistics of d. Note again that since the
perturbation is fixed, it is impossible for the statistician to improve the estimate of any

given query result by repeating the query. Therefore the concept of a statistical compramise in



the sense of (7], measuring the variance of the estimator of individual records, is mot
relevant here. The only estimator available for amy given record is its perturbed value d'i .

To fix these ideas, assume that the perturbations e,

| are identically distributed with

variance g2 and consider a linear query qc- Chebyshev's inequality yields:

[o 4
Prob{|qc-(d') - qo(@) | > elcl) S-E—-;

The left band side represents the probability that the error in the query exceeds some
bound. The right hand side bounds this probability in termms of the variance of individnal
perturbations, the error bound sought and the size of the query set, The statistician would
like to keep the probability of large errors in the result of a query small, while the data
base owner would like to keep the perturbations (i.e., o) in individual records large so as to

protect individual records. The data base administrator can choose g to satisfy both,

To illustrate this solutiom, let us consider a mmmerical exmmple. Suppose the average
salary in the data base is $20,000 and the datas base owner would like the standard deviation
to be at least 20% of this average, The statistician, on the other hand, would like the
error in queries mot to exceed $1,000. The data base administrator can set o=4000 and
e=1000 and thus guoarantee the statistician that the error T]C_rlqc(g’) - qc(g)l exceeds
$1,000 with probability smaller than 16/[C|. Therefore ths data base owner can be fully
satisfied that individual records are adequately perturbed while the statistician gets his
queries answered within the required accuracy with probability which depends on the size of his

query sets. The larger the query set, the smller the probability of error.

Put another way, the error bounds agreeable to the statistician, =z, and the probability,
1 - 8, that this error bound holds, depend an the size of the query set |C| and the standard

deviation of the perturbation (as determined by the desires of the data base owner) through the
formmla: -

e3slc| S o9,



Once the data base administrator determines the right hand side, the tradeoffs between
query size, error bound and error probability are given by the left band side. This
insquality gives an uncertaimty principle among the error in queries, the probability of error,
and the size of the query set. Also mote that the magnitude of the pertarbations in
individual records, measured by o, may usnally be substantislly larger than the magnitude of
the error in the queries, The statistician takes advantage of the law of large mmbers to

increase the precision of the results of queries by applying queries to large query sets.

The above idea generalizes to an arbitrary mmmerical field d in a trivial mammer,

2. Variations on the Basic Idea

A mmber of objections might be raised to the above protection scheme., We list foor of

them and show how our basic protection scheme might be modified to meet these objecticms.

(i) A first objection might be that the error gnarantees provided to the statistician are
probabilistic, Given a perturbed data base d' , a query q-(d') may result in a large error
relative to qc(_ql) . This may bappen even when the query set C is very large. Chebyshev's
inequality provides an assurance that such an error is unlikely for a given query set and a

random perturbation. However, once d' is selected, clearly a large error is possible for some

queries.

If the statistician is not content to live with occasional large errors, there is a
variation of the scheme, to be described below, which will pemmit ths data base to be

statistically compromised bat at such a high cost that this compromise is not feasible.

The varistion is to momitor the error in the query lqp(d’) - qo(d) | and to check whether
it exceeds the error bound requested by the statistician, If the error bounds are exceeded and
if the size of the query set |[C| exceeds a certain threshold size ny, set by the data base
administrator, them a correction mechanism is invoked. The correction mechanism simply perturbs
qc(d) by adding some random variable (with O-mean and o%;-variance) until adequate error
bounds are met. That is, we add per(C) to qp(d) whers |per(C)| does mot exceed the error
bound requested by ths statistician,




While this scheme may keep the statistician happy, the data base is no longer secure (in a
statistical senmse). An attack on the data base would first idemtify query sets C, of size
greater than n,, that result in an excessive error and thus cause the correction mechanism to be
imvoked. We call such sets compramising sets. Once campromising sets are identified, a

statistical campromise of the data base is easy.

We illustrate this by an example. Suppose that the data base is perturbed such that
d' = d+ ¢ where ¢ = (°1“"’°n) with e, = 1o and + and - are selected with probability
.5. VWithout loss of generality, assume that n is even, n = 2p, and the mmmber of + and - is

p. Let every query be equiprobable. Then the average query length is

n
n
27" > kP = - .
Eo
=0
Suppose that the error agreeable to the statisticiam is

n
loc(dl) - qe(@ | S € ;

for some (presumably small) positive € . Define

Then [I| = p, IfC C I and
Icl > (mr |—I)
a4 = mx I -_—
"o 20

then C is s compromising set. Note that a ({ n for ny, € and © of practical interest,

Let

NN

Let I = {i.l,iz,...ip]. Define the query set Cj as

Ci = liFDee1r HFDarzreeer HpFDararip §5 12,0000k




Cbl;. [ill izll..,ip_l}.

Then |C;] = a+1, j

1,2,....5 |Cgyl = p-land Cjc I. Thos all the sets C ; are

campramising sets.
Since C.i is a compramising set we get
x(C;y) = ch(g) + per(C;), j=1.,2...., k1.

Knowing x(Cj) we compute

1 i
) ;(—x(cbl) + X(CJ))-

j=1

Let m = ip. It is easy to check that

k
1
= dm+' ;(_ pr(Cbl) + ZPGT(Cj)).
=1

Chebyshev’s inequality yields

1
Prob{ z |-per(Cb_1) + i x(CJ.)I > 8} ( ———————
j=1 k2 53

Since k is large, x - % is small with probability close to one. Thms x is a good approximatiom

of the individnal record % This proves a statistical compramise of the data base.

Therefore the problem of compromise boils down to that of identifying compromising sets.
Let us first pote that if the error bommd e is sufficiently small then every perturbation

scheme has campramising sets. Indeed, let C = (i: e; > 0}. Then

n n
qc(g’)—qc(d) = E e Ife-(é e; then the absolute error exceeds e~ and C is a
2 2
ieC ieC
campramising set,

We pow derive the complexity of identifying a compramising set for the exsmrle presented




above. For simplicity we set the threshold size oy = 0. Ve first mote that the mmber of

query sets for which the absolute error is s, i.e., ch(g') - qC(_@)| = IE °i| = s,
ieC

is equal to

= 2
i(ﬁ) [ (29 + (R 1 =2(R).
i=0

due to [4]. The oomber of query sets for which the correction mechanism is invoked,

en
i.e., s> —, is equal to

2
s* e
- 2p ) - 2 -
N—Zt (35 -2& “D. st-‘j—_i + 1.
i-0

o=3*

It is known, see for instance (3], that for large n, N ¢ 2™1 g(¢)® where

q(e) = ——————————————— ——

(1-e) (1+e)
and % ¢ qlg) < 1
Fram this we conclode that the probability of the query sets for which the correction

mechanign is invoked satisfies the inequality
Prob((C: lqp(d') - qo(d | > e ) £ 2q(0)™

Thuns, it decreases exponentially to zero with n. This proves that almost all queries are
answered within the acceptable error bomnd and the correction mechanism is invoked extremely

rarely.

How hard is it to find a compromising set? More precisely, what is the minimal momber of
queries to find a compramising set with probability 1 - 87 If we have k queries, k << 2%,
the probability that all of them are answered within the acceptable error bound is
approximately at least (1—2q(e)n)k. Thns 1 - (].-2q(tz)n)k is an upper bound on the

probability of finding a compramising set. Hence k satisfies the inequality



1- (1-2q(e)Mk 21 -5

which yields

-1
,  1ns L G
in (1-2q(e)) 2 qle)

|
4

This proves that cne has to have an exporential mmber ar queries to find a campramising

set. This makes compromising the data base infeasible,

(ii) A second objection that might be raised to the proposed statistical security scheme is
that the perturbed vector d' requires additiomal storage. This is easily circumvented by
perturbing the elements of d every time they are accessed, To guarantee that a given query
always receives the same answer, the perturbation of d; mey be obtained using 8 pseudo randam
generator with a fixed seed which is givem by same function of i, Therefore, one has a choice

of either storing the perturbed values or computing them every time they are peeded.

(iii) A third objection might be that the perturbatioms of individual records should not be
identically distributed. For instance, in the salaries example above, a $4,000 perturbation
may be suitable to hide information sbout salaries that do mot exceed the average salary
($20,000) too far. However, if ome of the salaries is $175,000, a perturbation of
$4,000 does mot adequately protect the respective record, The discussion above assumed that
a record is compramised only if its real valus becomes available to the statistician, This
example suggests that an altermative motion of compramisability is required. Given a constant
¢, let us define a perturbation scheme to be monr-compramisable with respect to ¢ if cdi(a(ei)
for all records, That is, if the standard deviation of each perturbation exceeds a given

fraction (c) of the magnitude of the respective item.

This problem may be solved using s multiplicative rather than an additive perturbation.
That is, the perturbed record d'-1 is generated by selecting a randam factor a; and mmltiplying
by d;. The perturbations caused by this process are given by e; = dy - d; = d;(a;-1) and

are thus proportiomal to the value of di' Let A indicate the diagomal matrizx formed fram the
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mltipliers a;. The perturbed data is related to the origimal data through d' = Ad. If the
randam variables ai—l are independent and identically distributed with zero mean and variance
o3 then the perturbation elements e; are independent, have zero mean and & variance dio?,
respectively.  Clearly the scheme is noncompromisable (in the sense defined above) with

respect to any constant that does mot exceed o. Furthermore, Chebyshev’s inequality may be

DG

[+
[Cl o3 [Cle3

applied to obtain:

Prob{lqe(d') - g(d) | > elcl) $

vhere d denotes the maximal element among the d;

The tradeoffs amalysis performed in the previous section thus trivially gemeralizes for this
mltiplicative perturbation scheme. One may generalize this last scheme to allow perturbstioms
by arbitrary mandon matrices. It has been shown by S.L. Warner [9] that this general
"regression” perturbation of data might be applied to perturb non-mmerical statistical data,
as well as cambinmations of sensitive fields in the database. A detailed discussion of
perturbation through matrix multiplication is beyond the scope of this paper; such details are
available in [9]. Again, the tradeoff amalysis easily generalizes to the case of arbitrary
random matrix perturbetion.

(iv) A fourth objection might be that the above perturbation scheme anly applies to linear
queries, This objection is valid since some queries (e.g., what is the maximal salary?)
camot benefit from the effects of the law of large mmmbers when one uses a statistical
perturbation scheme, From a security poinmt of view the perturbation schemes discussed above
offer no risk when it comes to an arbitrary query: the statistician may acquire a camplete
knowledge of the perturbed values d' without compramising the real dats. However, the
statistician may be unhappy with the answers if they deviate grossly fram the real value. A
possible solution is to gemeralize the process used to answer objection (i) above. Givea an
arbitrary query, define its query set as the set of records which are essential to the answer
(a record is essential to a query if its amission from the database will change the answer).
The modified mechanism to handle arbitrary queries is invoked only when the size of the

respective query set cxceeds some preset threshold. It proceeds by camputing both the answer to
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the query based upon the perturbed data and an answer based upon the real data, If the two
answers deviate by more than glcl, where e is the error guarantee provided and C is the
respective query set, then a new perturbation of the real answer is sampled wntil the error
bomds are met. An arbitrary query mey be represented as a function Q(d) applied to the
datsbase. If the fuction Q satisfies some awoothness conditions (e.g., 1Q(d) -
ad) | s Klzil where K is a constant), it is possible to generalize the results of (i) to
prove that compramise is exponentially hard. A general proof is beyond the scope of this

paper.
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