MEASURING UNCERTAINTY WITHOUT A NORM

рÀ

Arthur G. Werschulz

Division of Science and Mathematics Fordham University/College at Lincoln Center New York, N.Y. 10023

and

Department of Computer Science Columbia University New York, N.Y. 10027

November, 1982

Abstract

Traub, Wasilkowski, and Woźniakowski have shown how uncertainty can be defined and analyzed without a norm or metric. Thier theory is based on two natural and non-restrictive axioms. We show that these axioms induce a family of pseudometrics, and that balls of radius ϵ are (roughly) the ϵ -approximations to the solution. In addition, we show that a family of pseudometrics is necessary, even for the problem of computing x such that $|f(x)| \leq \epsilon$, where f is a real function.

1. Introduction

In two recent monographs ([3],[4]), Traub and his colleagues have studied the optimal solution of problems which are solved approximately, that is, where there is uncertainty in the answer. In [4], uncertainty was measured by a norm. For some problems, this is not an appropriate or natural assumption. Therefore, in [3] it is shown how uncertainty can be introduced via two natural and non-restrictive axioms.

In a private communication, Traub asked about the strength of these axioms. That is, do the axioms generate any interesting structures? In Section 2 of this paper, we show that these axioms induce a family of pseudometrics. Moreover, we show that the balls of radius ε generated by this family of pseudometrics are (roughly speaking) the ε -approximations to the solution.

Is a <u>family</u> of pseudometrics necessary? We give an affirmative answer in Section 3, using the problem of computing x such that $|f(x)| < \epsilon$, where f is a real function.

2. Solution Operators Are Generated by Families of Pseudometrics

We first recall the definition of a solution operator from [3]. Let F and G be sets, and let 2^G denote the power set of G, i.e., the class of all subsets of G. Let \mathbb{R}^+ denote the nonnegative real numbers. If $S: F \times \mathbb{R}^+ \to 2^G$ is an operator such that

$$(2.1) \qquad \forall f \in F, \qquad S(f,0) \neq \emptyset$$

and

$$(2.2) \quad \forall \ f \in F, \ \forall \ \epsilon_1, \epsilon_2 \in \mathbb{R}^+ \ \text{with} \ \epsilon_1 \leq \epsilon_2, \ S(f, \epsilon_1) \subseteq S(f, \epsilon_2),$$

then S is said to be a <u>solution operator</u>, and $S(f,\epsilon)$ is said to be the set of ϵ -approximations to the (exact) <u>solution</u> S(f,0).

Note that $S(f,\varepsilon)$ is a set. This formulation allows the exact solution S(f,0) to be a set, i.e., a problem may have multiple solutions. In addition, $S(f,\varepsilon)$ a set means that we are willing to accept any element of $S(f,\varepsilon)$ as an ε -approximation. These axioms are very natural: the first says that every problem has a solution, while the second says that increasing the uncertainty cannot decrease the family of ε -approximations.

In order to clarify these notions we give three examples.

Example 2.1. Let F be a set and let G be a normed linear space. Let $\overline{S}:F\to G$ be an operator. Define $S:F\times {\rm I\!R}^+\to 2^G$ by

$$S(f,\epsilon) = \{g \in G : \|\overline{S}f - g\| \leq \epsilon\}.$$

Then S is a solution operator, and g \in G is an ϵ -approximation

to $\overline{S}f$ precisely when $\|g - \overline{S}f\| \le \epsilon$. (This is the setting extensively studied in [4].)

Example 2.2. For a continuous function $f : \mathbb{R} \to \mathbb{R}$, let

$$Z(f) := \{x \in \mathbb{R} : f(x) = 0\}$$

denote the zeroset of f. Now let

 $F = \{f : \mathbb{R} \to \mathbb{R} | f \text{ is continuous and } Z(f) \neq \emptyset\},$

choose $G = \mathbb{R}$, and define $S : F \times \mathbb{R}^+ \rightarrow 2^G$ by

$$(2.3) S(f, s) := \{x \in \mathbb{R} : |f(x)| \leq \epsilon\}.$$

Then S is a solution operator, and $x \in S(f, \epsilon)$ precisely when $|f(x)| \le \epsilon$, i.e., the residual of f at x is at most ϵ .

Before introducing the last example, we recall that a pseudometric d on G is a map d: $G \times G \rightarrow \mathbb{R}^+$ satisfying

$$d(g,g) = 0 \forall g \in G,$$

$$(2.4) d(g_1,g_2) = d(g_2,g_1) \forall g_1,g_2 \in G,$$

$$d(g_1,g_3) \leq d(g_1,g_2) + d(g_2,g_3) \forall g_1,g_2,g_3 \in G.$$

(This terminology is standard in topology, see [2, pg. 198]. However, Collatz [1, pg. 21] refers to such a map as a "quasimetric," letting "pseudometric" refer to another concept entirely [1, pg. 51].) If d is a pseudometric on G, the set

$$B(g,d,\epsilon) := \{x \in G : d(x,g) \leq \epsilon\}$$

is called the d-ball of radius ϵ centered at g.

Example 2.3. Let F and G be sets. Let \emptyset be an F-indexed family of pseudometrics on G. Let $\overline{S}:F\to G$ be an operator. For $f\in F$, choose $d_f\in \emptyset$, and define

$$S(f, \varepsilon) := B(\overline{S}f, d_f, \varepsilon) \quad \forall \quad \varepsilon \geq 0.$$

Then it is easy to see that $S: F \times \mathbb{R}^+ \to 2^G$ is a solution operator.

We now show that, roughly speaking, Example 3 is the most general example of a solution operator.

Theorem 2.1. Let F,G be sets, and let $S: F \times \mathbb{R}^+ \to 2^G$ be a solution operator. Then for any $\epsilon_0 > 0$, there is an operator $\overline{S}: F \to G$ and a family $\mathfrak{D} = \{d_f: f \in F\}$ of pseudometrics on G such that

(2.5)
$$S(f,\epsilon) \subseteq B(\overline{S}f,d_f,\epsilon) \subseteq S(f,\epsilon')$$

for any $f \in F$, any $\varepsilon \in [0, \varepsilon_0]$, and any $\varepsilon' \in (\varepsilon, \varepsilon_0]$. Proof: Let $f \in F$. For $g \in G$, let

$$D_{f}(g) := \{ \varepsilon \geq 0 : g \in S(f, \varepsilon) \},$$

and now define $d_f : G \times G \rightarrow \mathbb{R}^+$ by

(2.6)
$$d_f(g_1,g_2) := \min\{\epsilon_0, |\inf D_f(g_2) - \inf D_f(g_1)|\},$$

where the inf of an empty set is defined to be ∞ , and ∞ - ∞ = 0. We first show that d_f is a pseudometric on G. Clearly, the first two properties in (2.4) hold for d_f ; we need only check the third (the triangle inequality). Let $g_1, g_2, g_3 \in G$, and let

 $\delta_i = \inf D_f(g_i)$. Then

$$|\delta_{3} - \delta_{1}| \leq |\delta_{2} - \delta_{1}| + |\delta_{3} - \delta_{2}|.$$

Arguing by cases if necessary, it is easy to see that (2.6) and (2.7) yield the triangle inequality.

We now define $\overline{S} : F \to G$ to be any map such that

$$\overline{S}f \in S(f,0)$$
 \(\text{Y} \, f \in \text{F}. \)

This is possible because $S(f,0) \neq \emptyset$.

We now must prove (2.5). Let $f \in F$ and $\epsilon \in [0,\epsilon_0)$. We first claim that

(2.8)
$$d_{f}(g,\overline{S}f) = \min\{\epsilon_{0}, \inf D_{f}(g)\}.$$

Indeed, since $\overline{S}f \in S(f,0)$, we have

inf
$$D_f(\overline{S}f) = 0$$
,

so that (2.8) follows from (2.6).

To see that $S(f,\epsilon)\subseteq B(\overline{S}f,d_f,\epsilon)$, let $g\in S(f,\epsilon)$. We then have

inf
$$D_f(g) \leq \epsilon$$
;

since ϵ $\langle \epsilon_0$, we use (2.8) to find

$$d_f(g,\overline{S}f) \leq \varepsilon$$
,

and so $g \in B(\overline{S}f,d_f,\epsilon)$.

Now let $\varepsilon' \in (\varepsilon, \varepsilon_0]$. We wish to show that $B(\overline{S}f, d_f, \varepsilon) \subseteq S(f, \varepsilon')$. Let $g \in B(\overline{S}f, d_f, \varepsilon)$. Since $\varepsilon < \varepsilon_0$, we use (2.8) to find

(2.9)
$$\inf D_{f}(g) = d_{f}(g, \overline{S}f) \leq \varepsilon.$$

The first part of (2.9) and the definition of infimum yield

$$g \in S(f,d_f(g,\overline{S}f) + \delta)$$

for all $\,\delta\,>\,0\,,$ no matter how small. Setting $\,\delta\,=\,\,\epsilon\,'\,-\,\epsilon\,>\,0\,,$ we then have

$$g \in S(f, d_f(g, \overline{S}f) + \epsilon' - \epsilon)$$

 $\subseteq S(f, \epsilon + \epsilon' - \epsilon)$
 $= S(f, \epsilon'),$

where the inclusion follows from the second part of (2.9) and the monotonicity condition (2.2).

Remark 2.1. We comment on the role played by ε_0 . It is possible to describe problems with $D_f(g)$ empty for some $f \in F$ and $g \in G$. (For example, take $\overline{S} : F \to G$ to be any operator where G is not a singleton, and define $S(f,\varepsilon) := \{\overline{S}f\} \ \forall \ f \in F$, $\varepsilon \geq 0$; then for any $f \in F$, $g \in G$ with $g \neq \overline{S}f$, and $\varepsilon \geq 0$, $g \notin S(f,\varepsilon)$, so that $D_f(g) = \emptyset$.) If we were to define

$$d_f^*(g_1,g_2) := |\inf D_f(g_2) - \inf D_f(g_1)|,$$

we would then find $d_f^*(g,\overline{S}f) = \infty$ for such f and g. Hence, d_f^* is not a pseudometric (since the value of a pseudometric must be finite).

Hence, ϵ_0 is used to force d_f to take finite values. It may be thought of as the maximal uncertainty to be tolerated, the motivation being that we want "good" approximations, i.e.,

 ϵ -approximations for small values of ϵ .

On the other hand, if for any $f \in F$ and $g \in G$, there is an $\epsilon \geq 0$ such that $g \in S(f,\epsilon)$ (i.e., the "distance" between any solution and any point in G is finite), then d_f^* is always finite. Hence d_f^* is a pseudometric, and (2.5) holds for all $\epsilon \geq 0$, with d_f^* replacing d_f .

Remark 2.2. It would be more satisfying to be able to say that

(2.10)
$$S(f,\varepsilon) = B(\overline{S}f,d_f,\varepsilon)$$

in the conclusion of Theorem 2.1. However, we cannot do this in general. To see this, let d be a pseudometric on G, where G is not a singleton, and let $S: F \to G$ be any operator. Define a solution operator $S: F \times \mathbb{R}^+ \to 2^G$ by

$$S(f,\epsilon) := \begin{cases} \{g \in G : d(g,\hat{S}f) < \epsilon\} & \text{if } \epsilon > 0 \\ \{\hat{S}f\} & \text{if } \epsilon = 0 \end{cases}.$$

Suppose there exists $\overline{S}: F \to G$ and a family $\{d_f : f \in F\}$ of pseudometrics such that (2.10) holds.

We first note that $\overline{S} = \hat{S}$. Indeed, since $d_f(\overline{S}f, \overline{S}f) = 0$, we have

$$\overline{S}f \in B(\overline{S}f,d_f,0) = S(f,0) = {\hat{S}f},$$

i.e., $\overline{S}f = \hat{S}f$.

Next, we show that for any $f \in F$ and $g \in G$,

(2.11)
$$d_{f}(g,\overline{S}f) \leq d(g,\overline{S}f).$$

Indeed, let $\delta > 0$. Since $d(g,\overline{S}f) < d(g,\overline{S}f) + \delta$ and $Sf = \overline{S}f$, we have

$$g \in S(f,d(g,\overline{S}f) + \delta) = B(\overline{S}f,d_f,d(g,\overline{S}f) + \delta),$$

so that

$$d_f(g,\overline{S}f) \leq d(g,\overline{S}f) + \delta$$
.

Since $\delta > 0$ is arbitrary, (2.11) follows.

We claim that there exist f \in F and g \in G such that

(2.12)
$$d_{f}(g, \overline{S}f) > 0.$$

Indeed, if $d_f(g,\overline{S}f)=0$ for all $f\in F$ and $g\in G$, we would have

$$g \in B(\overline{S}f, d_f, 0) = S(f, 0) = {\overline{S}f},$$

which would mean that

$$g = \overline{S}f$$
 $\forall f \in F, g \in G.$

Fixing f and letting g vary, this would imply that G is a singleton, a contradiction.

Finally, we choose f \in F and g \in G such that (2.12) holds. Then $d_f(g,\overline{S}f) \leq d_f(g,\overline{S}f)$ yields

$$g \in B(\overline{S}f,d_f,d_f(g,\overline{S}f)) = S(f,d_f(g,\overline{S}f)).$$

Since (2.12) holds, we have

$$d(g,\overline{S}f) < d_f(g,\overline{S}f)$$
,

contradicting (2.11).

3. A Family of Pseudometrics is Necessary

In this section, we reconsider Example 2.2, the solution of nonlinear equations. We show explicitly how to construct a family of pseudometrics such that (2.10) holds for all $\epsilon \geq 0$. Moreover, we show that a family of pseudometrics is necessary.

We first define $\overline{S}: F \to \mathbb{R}$ by letting $\overline{S}f$ be the zero of f that is smallest in magnitude; if there are two such zeros, choose the positive one. (Such a zero exists because f is continuous.)

Next, define $d_f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ (for $f \in F$) by

$$d_f(x,y) := |f(x) - f(y)|.$$

Then d_f is a pseudometric.

We then have

Theorem 3.1. $S(f,\epsilon) = B(\overline{S}f,d_f,\epsilon) \quad \forall \ f \in F, \ \epsilon \geq 0.$ Proof: Let $f \in F, \ \epsilon \geq 0$. Since $f(\overline{S}f) = 0$, we have

$$x \in S(f,\epsilon) \Leftrightarrow |f(x)| \leq \epsilon$$

$$\Leftrightarrow |f(x) - f(\overline{S}f)| \leq \epsilon$$

$$\Leftrightarrow d_f(x,\overline{S}f) \leq \epsilon$$

$$\Leftrightarrow x \in B(\overline{S}f,d_f,\epsilon).$$

Hence, Example 2.2 generates a family $\{d_{\mathbf{f}}: \mathbf{f} \in \mathbf{F}\}$ of pseudometrics, and the $d_{\mathbf{f}}$ -ball of radius ϵ about $\overline{S}\mathbf{f}$ is the set of ϵ -approximations to the zeroset of \mathbf{f} , for any $\mathbf{f} \in \mathbf{F}$ and $\epsilon \geq 0$.

We now show that Example 2.2 cannot be generated by a single pseudometric.

Theorem 3.2. There does not exist an operator $\overline{S}:F\to\mathbb{R}$ and a single pseudometric d on \mathbb{R} such that

$$(3.1) S(f,\varepsilon) = B(\overline{S}f,d,\varepsilon) \forall f \in F, \varepsilon > 0.$$

<u>Proof</u>: Suppose there exists \overline{S} and d such that (3.1) holds. We first note that $\overline{S}f \in Z(f)$ for all $f \in F$. To see this, let $f \in F$. Since $d(\overline{S}f,\overline{S}f) = 0$, we have $\overline{S}f \in B(\overline{S}f,d,0) = S(f,0)$. Hence $|f(\overline{S}f)| \leq 0$ by (2.3), so that $f(\overline{S}f) = 0$ and $\overline{S}f \in Z(f)$, as claimed.

We next claim that

(3.2)
$$d(x,\overline{S}f) = |f(x)| \quad \forall x \in \mathbb{R}, f \in F.$$

Indeed, let $f \in F$, and $x \in \mathbb{R}$. Using (2.3) and (3.1), we have

$$|f(x)| \le |f(x)| \Rightarrow x \in S(f,|f(x)|) = B(\overline{S}f,d,|f(x)|)$$

 $\Rightarrow d(x,\overline{S}f) < |f(x)|,$

and

$$d(x,\overline{S}f) \leq d(x,\overline{S}f) \Rightarrow x \in B(\overline{S}f,d,d(x,\overline{S}f)) = S(f,d(x,\overline{S}f))$$

$$\Rightarrow |f(x)| \leq d(x,\overline{S}f),$$

yielding (3.2).

We now let $x,y \in \mathbb{R}$ with $x \neq y$. Define $f_{\alpha} \in F$ by

(3.3)
$$f_{\alpha}(t) := \alpha(t - y) \quad \forall \alpha \in \mathbb{R}.$$

Then the first paragraph of this proof yields

$$\overline{S}f_{\alpha} \in Z(f_{\alpha}) = \{y\} \quad \forall \alpha \in \mathbb{R},$$

i.e.,

$$\overline{S}f_{\alpha} = y \quad \forall \alpha \in \mathbb{R}.$$

Hence (3.4), (3.2), and (3.3) yield

$$d(x,y) = d(x,\overline{S}f_{X})$$

$$= |f_{\alpha}(x)|$$

$$= |\alpha(x - y)|$$

$$= |\alpha||x - y|$$

Since $x \neq y$, this means that d(x,y) must be multiple-valued, a contradiction.

Note that the proof of Theorem 3.2 did not require the use of functions with multiple zeros. Hence, even if we consider Example 2.2 with F replaced by

 $F':=\{f:\mathbb{R}\to\mathbb{R}\,|\, f \text{ is continuous and has exactly one zero}\}$ we still cannot use a single pseudometric to generate this example.

Acknowledgments

I would like to thank J. F. Traub, C. A. Micchelli, G. Wasilkowski, and H. Wozniakowski for their comments and suggestions.

References

- [1] L. Collatz, <u>Functional Analysis</u> and <u>Numerical Mathematics</u>, Academic Press, New York, 1966.
- [2] J. Dugundji, Topology, Allyn and Bacon, Boston, 1970.
- [3] J. F. Traub, G. Wasilkowski, and H. Wozniakowski, <u>Information</u>, <u>Uncertainty</u>, <u>Complexity</u>, Addison-Wesley, Reading, <u>MA</u>, 1982.
- [4] J. F. Traub and H. Wozniakowski, A General Theory of Optimal Algorithms, Academic Press, New York, 1980.