Programming the DADO Machine:
An Introduction to PPL/M*

Salvatore J. Stolfo
Daniel Miranker

David Elliot Shaw
CUCS-34-82

Columbia University
November 15, 1982

=This research was supported in part by the Defense Advanced Research Projects
Agency under contract N00039-82-C-0427.

Errata: Programming The DADO Machine
Page 8:

»...Untyped procedures are CALLed, while typed procedures are referred to within

expressions as a function call.”

Page 0:

CPRR should be declared as type BIT.

Page 10:

Call RECV(<ncighbor-PE>);
-- the contents of register A8 is set to the value

stored in 108 of <neighbor-PE>. <amei hbor-PE>
may be ome of: LC, BC, LN, RE aad P (parent)

Table of Contents

1 Introduction
9 SDMD Mode of Operation
9.1 SIMD ENABLED state
2.2 SIMD DISABLED state
3 MIMD Mode of Operation
4 SIMD Instruction Set
4.1 SIMD RAM
4.2 PPL{M: Parallel PL/M
4.3 Parallel Processing Primitives oo
4.4 Added Built-in Communications Primitives
5 Examples

OO U LW WIOIN —

[S N

Figure 1:
Figlill:e 2:
Figure 3:

List of Figures

The DADO memory map
Sequentially Loading DADO

Associative

Probing

13
14

1 Introduction

DADO ([Stolfo and Shaw, 1982| is a highly parallel, tree-structured machine
designed to provide significant performance improvements in the execution of
Artificial Intelligence software. The DADO prototype, currently being constructed at
Columbia University, comprises 1023 processing elements (PE’s) each consisting of
an Intel 8751 microcomputer chip and an Intel 2188 8K by 8 RAM chip. The PE's
are interconnected in a complete binary tree. A full version of DADO would
comprise on the order of a hundred thousand PE’s each consisting of a much
smaller amount of local memory, roughly 2K bytes of RAM. (The 8K RAM
employed in the DADO prototype was chosen to allow a modest amount of
flexibility in designing and implementiag the software base for the full version of
DADO.) In addition, a specialized combinatorial I/O switch is incorporated in the
full DADO design to perform the most basic communication primitives at much
higher speeds than is possible with sequential logic, as it is implemented on the
prototype machine.

The Intel 8751 is a powerful 8bit microcomputer incorporating a 4K Eraseable,
Programmable ROM (EPROM), and a 256 byte RAM on a single silicon chip. One
of the key characteristics of the 8751 processor is its I/O capability. The four
parallel, bi-directional, 8bit ports provided in a 40-pin package, has substantially
contributed to the ease of implementing a binary tree interconnection between
processors.

Certain aspects of the DADO machine are modelled after NON-VON [Shaw, 1982;
Shaw, et al., 1981], a tree-structured, highly parallel machine containing a larger
number of much simpler processing elements.

In NON-VON, most of the PE's are severely restricted in both processing power
and storage capacity, and are thus not typically used to execute independent
programs. Instead, a single control processor (CP), located at the root of the
NON-VON tree, typically broadcasts a single stream of instructions to all PE’s in
the tree. FEach such instruction is then simultaneously executed (on different data)
by every PE in the tree. This mode of operation has been referred to in the
literature of parallel computation as single instruction stream, multiple data stream
(SIMD) execution [Flynn, 1972].

Within the DADO machine, on the other hand, each PE is capable of executing
in either of two modes. In the first, which we will call SIMD mode, the PE
executes instructions broadcast by some ancestor PE within the tree, as in the
NON-VON machine. In the second, which will be referred to as MIMD mode (for
multiple instruction stream, multiple data stream), each PE executes instructions
stored in its own local RAM, independently of the other PE's.

When a DADO PE enters MIMD mode, its logical state is changed in such a way
as to effectively ‘‘disconnect’” it and its descendants from all higher-level PE's in
the tree. In particular, a PE in MIMD mode does not receive any instructions that
might be placed on the tree-structured communication bus by one of its ancestors.
Such a PE may, however, broadcast instructions to be executed by its own
descendants, providing all of these descendants have themselves been switched to
SIMD mode. The DADO machine can thus be configured in such a way that an
arbitrary internal node in the tree acts as the root of a tree-structured SIMD device
in which all PE's execute a single instruction at a given point in time.

DADO supports communication between physically adjacent tree neighbors, as well
as communication between PE’s that are adjacent in a logical linear ordering
embedded within the tree. (The NON-VON 1/O switch supports the in-order tree
enumeration, whereas DADO supports the bounded-neighbor ordering through
sequential logic. Thus, two adjacent PE’'s are never more than 3 tree edges apart.
[Shaw, 1982] provides a complete specification of various methods of embedding a
linear ordering on a tree.)

In the following sections we detail the precise semantics of both execution modes,
and have outlined the methods employed to simulate each in the current DADO
prototype design. In subsequent sections we define PPL/M, a variant of the PL/M
language providing several additional primitives for parallel computation.

2 SIMD Mode of Operation

A processor in SIMD mode (henceforth, a SIMD PE) can be instructed to enter
one of two states which is determined by the contents of a special single bit
register called EN1. If EN1 is set high (logical 1) within a PE, the processor will be
in the SIMD enabled state, otherwise it is in the SIMD disabled state.

2.1 SIMD ENABLED state
A DADO PE in SIMD enabled state will:
1. accept an instruction from the broadcast bus (received from its parent),
2. pass the instruction on to its descendants, grovided the PE is not a leaf
processor AND its immediate tree neighbors (children) are logically
connected (see below), and ‘

3. the instruction is executed by the PE.

2.2 SIMD DISABLED state
A DADO PE in SIMD disabled state will
1. accept an instruction from the broadcast bus, and

1w

. as in the enabled case, it will pass the instruction on to its descendants
if they exist, however

[8]

. the instruction is fgnored, unless it is one of the special functions to be
detailed shortly:

- RESOLVE
- ENABLE

- Communications instruction (SEND, RECY, BROADCAST,
REPORT)

3 MIMD Mode of Operation
A PE in MIMD mode of operation (henceforth, a MIMD PE) will:

1. be logically disconnected from its parent (Thus, instructions from the
broadcast bus will not be accepted.)

2. executes code from its local memory (The tree below the grocessor
remains logically connected and thus, can be utilized as a SIMD tree.)

3. execute the entire Intel 8751 instruction set,
4. executes the SIMD instructions it broadcasts to its descendents,

5. enters SIMD disabled state, after broadcasting an instruction to disable
its descendents, when it terminates its MIMD operation.

4 SIMD Instruction Set

We have defined a superset of PL/M [Intel, 1982], which we have come to call
PPL/M, which provides a set of facilities to specily operations to be performed by
independent PE's in parallel. In this section we first discuss the assignment of
special registers to memory, and then detail the additions to PL/M of new data
types, new built-in functions and DO blocks for the SIMD operation of the machine.

The external 8K RAM (referred to as AUXILIARY space within a PL/M
program), is logically divided into a 1K portion, which stores the data space for the
SIMD operation of the PE, and a 7K data/program space for storage of MIMD
code. The 4K EPROM (referred to as CONSTANT space within a PL/M program)
is used for system level code performing the most basic communication and
synchronization instructions.

4.1 EINMD RAM

To facilitate the conversion and simulation of NON-VON code on DADO, the
NON-VON registers are assumed to be resident within the system. Thus, any
PL/M program can reference the NON-VON registers without prior need to define

them explicitly. The allocation of
follows:

NON-VON Logical Register

MAR
Al1-Z1,I01,EN1
NV-RAM 64-byte

DADO Logical Registers
CPIO Register

CPRR Resolve Register
DADO-RAM 947-byte

memory, as depicted in figure 1, is defined as

DADO RAM location
(relative)

qu@mﬁmmwo

Figure 1: The DADO memory map
DADO PE
8751 2188
Processor RAM
Rom IK:---
DADO
SIMD SIMD
Interpre- RAM
gor 1 1 0 ==
7K:
Comm. MIMD
Protocols Pgm +
ata
Sypek. L 0] ljemee==
128 byte
apec.nﬂu
128 byte
SIMD TS
Interp
Data
space

‘4.2 PPL/M: Parallel PL/M

Before defining the primitives for parallel computation on DADO, we begin with a
brief introduction to PL/M.

PL/M is a high-level language designed by Intel Corp. as the host programming
environment for applications using the full range of Intel microcomputer and
microcontroller chips. Some of PL/M'’s salient characteristics are:

block structure, employing several forms of the PL/I DO statement,

]

a full range of data structure facilities including arrays, structures and
pointer-based dynamic variables,

“strong typing” facilities (thus, data and subroutine definition statements
are provided)

a statement-oriented syntactic structure
all data is either of type BIT, BYTE or WORD (2 bytes)

*

A PL/M program is constructed from blocks of associated statements, delimited by
either a DO or PROCEDURE statement, and a terminating END statement. As is
typical of a block oriented language, nesting is permitted following the usual
conventions for variable scoping.

We will describe each of the executable statements briefly in turn. (In the
following definitions, symbols appearing within the bounds of square brackets| | are
optional, whereas symbols appearing within set brackets {} are alternates.)

Assignment statement
* :
identifier [identifier] = expression;

. The expression follows the usual conventions with the added provision of implicit
type conversion between BYTE and WORD data. Implicit conversion of BIT data
is prohibited. (Refer to the section on data structures in the PL/M manual.)
Multiple assignment is unpredictable if a variable appears on both sides of the
assignment operator.

IF statement
IF relational-expression THEN statement;
[ELSE statement;] :

The relational expression provides the full range of logical and relational operators,
resulting in a value of type BIT.

Simple DO statement

(label:)DO;
statement-0;

stétement—n;

END [label];

The statement may be a data definition whose scope is defined by the bounds of
the block.

Iterative DO statement

DO counter = start-expression TO limit-expression
step-expression|;
statement-0;

statement-n;

)

Each expression is evaluated once prior to the loop, while the termination test is
performed on each entry into the loop.

DO WHILE statement

DO WHILE relational-expression;
statement-0;

siatement-n;

The relational-expression must result in a value of type BIT.

DO CASE statement

DO CASE select-expression;
statement-0;

siatement-n;
ND;

The select-expression must yield a BYTE or WORD value, which is used to select
a single statement for execution. 84 cases are the maximum allowable number. If
the select-expression is out of range, disaster will strike (refer to the manual).

CALL statement
CALL name|(parameter list));

The name must be the name of an unfyped procedure. Indirect calling is possible
by specifying the address operator defined below.

Definition statements
label-name: statement;

Labels are defined by use and are subject to the same scoping rules as variables.

Explicit declaration and typing is done primarily with the declare statement.
DECLARE variable [(single array dimension)] type {kiAIN

Y
CONSTANT)
[{EXTERNAL

DECLARE (variable list) type;

The type of variable may be:

BIT
BYTE
WORD

STRUCTURE) *
(variable type [,variable type]])

{BIT BYTE WORD} BASED variable

Strings and constants can be manipulated by operating on memory referenced
indirectly through based variables and pointers. For example,

DECLARE ptr WORD AUXILLIARY;
DECLARE string(64) BYTE BASED ptr;

Any reference to string will use the current WORD value stored in the variable
ptr as the base address. Based variables used in conjunction with the dot operator
perform all of the indirect addressing capabilities of a high level language.

The dot (.) operator
. variable

This operator returns the address location (a value of type WORD) of variable. It
can also be used with constant lists as for example:
.("'ABC")

The dot operator serves the dual purpose of structure variable qualification. If x

is of type structure with subcomponents y and z, each component is referenced by
X.y and x.z.

Procedure definitions

name: PROCEDURE [(parameter list)] [type];
statement-0;

statement-n;
name;

Typical conventions are used with type conversion of arguments. Untyped
procedures are CALLed, while untyped procedures are referred to within expressions
as a function call.

4.3 Parallel Processing Primitives

The following two syntactic conventions have been added to PL/M for
programming the SIMD mode of operation of DADO. The design of these
constructs was influenced by the methods employed in specifying parallel
computation in the GLYPNIR language [Lowrie, et al., 1975] designed for the
ILLIAC IV parallel processor. The SLICE attribute defines a variable that is
defined to be resident within each PE for which the declaration applies. The
second addition is a syntactic construct, the DO SIMD block, which delimits
instructions broadecast to SIMD PE's.

The SLICE attribute
DECLARE variable(single array dimension)] type SLICE;

name: PROCEDURE|(parameter list)] [type] SLICE;

Each declaration of a SLICEd variable will cause an allocation of space for the
variable within the DADO SIMD RAM. SLICEd procedures will be automatically
loaded within the MIMD portion of RAM (by an operating system executive resident
in DADO's CP). As an example, the following declaration defines the NON-VON

and DADO SIMD RAMs.

LARE DADO-MEMORY

DEC DA ETURE
(AS BYTE
B BYTE,

| UXILIARY
DADO-RAMS47) BYTE) i e

An assignment of a value to a SLICEd variable will cause the Frans.fer to oceur
within each enabled SIMD PE concurrently. A constant appearing 1o the right
hand side will be automatically BROADCAST to all enabled PE's. Thus, the
statement

X=5;
where X is of type BYTE SLICE, will assign the value 5 to each occurrence of X
in each SIMD PE. However, statements which operate upon SLICEd variables can
only be specified within the bounds of a DO SIMD block.

DO SIMD block

DO SIMD;
r-statement-0;

r-statement-n;

'

The r-statement is restricted to be either

- an assignment statement incorporating only SLICEd variables and
constants or

- a call to a subroutine that has been declared to be of type SLICE.

A non-SLICEd variable may appear within an r-statement only as an argument to
the BROADCAST function to be defined shortly. The parameters of a SLICEd

subroutine are assumed to be also of type SLICE by default. Examples of the use
of these facilities is provided in the concluding section.

10

4.4 Added Built-in Communications Primitives

Besides the full range of instructions available in PL/M, a DADO PE in MIMD
state will have available to it the following list of built-in functions (each defined to
be of type SLICE). These have been modelled after the instructions employed in
the NON-VON supercomputer. For consistency, the NON-VON registers are used
in precisely the same manner as that defined in the NON-VON instruction set.

Call RESOLVE; -- the Al registers in all PE's except the *first® PE
are set to zero. The register CPRR in the
MIMD PE is set high. If no descendent PE has Al=t,
CPRR is set lovw.

Call REPORT; == the contents of A8 in the one enabled descendeat PE
is written to the resilter CPID in the MIMD PE. I?f
more than one descendent FE is enabled, the resalt
is undefined.

Call BROADCAST(<byte>); ‘
-= the value of the single byte argument is atored
in the I08 register of every descendeat SIMD PE.

Call SEND(<neighbor-PE>);
== the contents of register 108 of <neighbor-PE> is
set to the value stored in A8. <neighbor-PE> may be
one of: LC left tree child
RC right tree child
LN left linear order neighbor
RE right linear order neighbor

Call RECV(<neighbor-PE>);
-- the contents of regiaster A3 of <neighbor-PE> are
changed to the value stored in 108. <aeighbor-PE>
may one of: LC, RC, LN, RE aad P (parent)

Call MIMD(<address>);
== any ENABLED SIMD PE vill eatsr MIMD mode of
operation and exscuts cods stored locally in RAM
starting at address <address>

Call EXIT; == the MIMD PE wvill terminate its MIMD ogeration.
The PE vill issue an instruction to SIMD
descendants to disable themselves (set E¥1 low)
and vill reconnect itself to its pareat ia SIMD
disabled state.

Call ENABLE; -= the EN1 register of all descendent PE's are sst
high, thus enabling the eatirse tree.

Call DISABLE; =~- the EN1 register of all descendent PE's are set
low, thus disabling the entire tree.

The BROADCAST instruction is used to communicate a specified BYTE constant
from the MIMD PE or CP to all (enabled) PE's in the tree below. (Note that this
constant may in fact be the value of a variable in the CP or MIMD PE.) The
REPORT instructions, on the other hand, provide the means for the contents of the

11

A8 register of a single enabled PE to be communicated to the CP. The REPORT
instructions are intended for use only when it is known that at most one PE is
currently enabled — for example, immediately following execution of a RESOLVE
instruction (discussed below). The effect of a REPORT instruction is not defined in
the case where more than one PE is enabled.

The SEND and RECYV instructions are used for communication among physically
and linearly adjacent PE’s — that is, between PE’s that are either physically
adjacent within the tree, or logically adjacent with respect to the total ordering
imposed on the nodes in the linearly adjacent neighbor communication mode.
When a PE executes a RECV instruction having either P, LC, RC, LN or RN as
its argument, its A8 register takes on the value stored in the IO8 register of the
specified (physically or logically) adjacent PE. When a particular PE executes a
SEND instruction, on the other hand, the contents of its A8 register is transferred
to the IO8 register of the adjacent PE specified as its operand.

Unlike the RECV instructions, however, a PE can not SEND data to its parent,
since the semantics of this operation would be undefined if both children of that
parent were enabled. Thus, only LC, RC, LN and RN are legal operands for the
SEND instruction. It should be noted, however, that the parent is capable of
receiving data from its children through the use of RECV LC and RECV RC
instructions. The semantics of the SEND and RECV instructions are not
immediately apparent in the case where the operand PE is currently disabled. In
such cases, it is the recipient’s status, and not that of the originator, which
determines whether data is in fact transferred. Specifically, it is always possible to
RECV data from a PE, regardless of whether it is enabled, but an attempt to
SEND data to a disabled PE will not result in a transfer of data.

A PE may be disabled by transferring a 0 into its EN1 register using an ordinary
assignment statement in PPL/M. In a typical application, the contents of EN1 will
be set to the result of some boolean test prior to the execution of such a store
instruction, resulting in the selective disabling of all PE’s for which the test fails.
This technique supports the ‘‘conditional” execution of a particular code sequence.
Following the execution of such a sequence, an ENABLE instruction is issued to
‘““awaken’ all disabled PE's. In combination with appropriate register transfer and

logical operations, this approach may be used to implement more complex
conditionals, including nested “[F-THEN-ELSE' constructs embedded within a DO
SIMD block. ‘

The RESOLVE instruction is used in practice to disable all but -a single PE,
chosen arbitrarily from among a specified set of PE's. First, the Al flag is set to
one in all PE’s to be included in the candidate set. The RESOLVE instruction is
- then executed, causing all but one of these flags to be changed to zero. (Upon
executing a RESOLVE instruction, one of the inputs to the MIMD PE will become

12

high if at least one candidate was in fact found in the tree, and low if the
candidate set was found to be empty. This condition code is stored in the ‘‘logical
register’” CPRR, which exists within the MIMD PE or CP.) By issuing an
assignment to ENI, all but the single, chosen PE may be disabled, and a sequence
of instructions may be executed on the chosen PE alone. In particular, data from
the chosen PE may be communicated to the CP or MIMD PE through a sequence
of REPORT commands.

If the candidate set is first saved (using another flag register in each PE), each of
the candidates can be chosen in turn, subjected to individual processing, and
removed from the candidate set, allowing the sequential processing of all candidates.
Typically, the individual processing performed for each chosen candidate involves
the broadcasting of information contained in, or derived from, that candidate to
other PE’s within the DADO tree. This paradigm for sequential enumeration is
thus employed as a sort of ‘“outer loop™ in a number of highly parallel NON-VON
and DADO algorithms.

In the DADO prototype, the Al flag is preserved in that PE which would be
assigned the lowest number in an bounded-neighbor enumeration of all nodes in the
tree. The RESOLVE function is implemented using special sequential code,
embedded within the ROM, that propagates a series of ‘“kill” signals in parallel
from all candidate PE’'s to all higher-numbered PE's in the tree. (As is the case
for all of the global communication functions, the RESOLVE operation would be
very fast if implemented in combinational logic; thousands of candidates might be
‘“‘killed” in less than a microsecond in DADO, for example. All communication
primitives in our current prototype will be implemented with sequential logic.
Future research will be devoted to the implementation of a custom VLSI chip for
all of the most essential communications on the machine.)

Finally, the MIMD function causes an enabled SIMD PE to begin executing in
MIMD mode. The argument address is first broadcast as the base address of the
portion of MIMD RAM within which the local subroutine to be executed resides.
Return to SIMD mode is performed by the EXIT function when the MIMD PE
terminates its computation. Synchronization can be performed with sequential logic
to explicitly test whether or not data may be transfered to the MIMD PE. Thus,
when such a test indicates that data may be transfered, the MIMD PE has
terminated its operation and reconnected itself in SIMD mode. Algorithms for the
synchronization of MIMD PE’s have been presented elsewhere [Stolfo, 1981].

13

5 Examples

Code for two fundamental operations are presented in this section: the first loads
the DADO tree sequentially; the second is used to associatively mark all PE’s that
match a given search string.

Figure 2: Sequentially Loading DADO

/¢ Ve will assume that this program is executed within
DADO’s CP, The system function READ is used to load
string data into a buffer from scme external source. ¢/

D0:

DECLARE Intolligent-record(64) BYTE SLICE;
DECLARE Not-done BIT SLICE;

DECLARE Index BYTE SLICE;

DECLARE Buffer(84) BYIE;

DECLARE 1 BYTIE;

DECLARE DADO_MEMORY EXTERNAL;

DO SIMD:

Call ENABLE: /¢ All PE's are enabled. o/
:o:-donoo= 1; /¢ A11 slices initialized. s/
ndex = 0;

Call READ(Buffer); /s Data provided by some
external source. ¢/

DO WHILE length(Buffer) > O; /s AND CPRR o/

D0 SIMD:
Call ENABLE;
Al = Not-done;
Call RESOLVE; /* Oanly one Al is nov set. s/
EN1 = Al; /s Selectively disable all bat one PE. s/
Jot-done = O;

IF NOT CPRR THEN quit; /¢ No PE’s enabled, thus overflov.s/
DO i = 0 to length(Buffer) - 1 ;
DO SIMD;

Call BBOADCASI(an!er(i)g:

Istelligent-record (Index) = 108;

Index = Index + 1;

EXD;
Call READ(Buffer);
EXD;

EXD;

14

The second example implements the most basic operation for associative matching
on NON-VON and DADO.

Figure 3: Associative Probing

DO;
DECLARE Intelligent-Record(84) BYTE EXTERNAL;
DECLARE Index B TE SLICE;
DECLARE i BYTE
DECLARE Search(ﬁ&) BYTE;
Call READ(Search);
Call ENABLE;
D0 1 = 0 to length(Search) - 1 ;
DO SIMD;
Call BRDADCAST;i)
Index = I08; /+ This 1- an alternative method of addressing
SLICEd arrays. */
Call BROADCAST(Search(i));
EN! = 108 = Intelligent-Record(Index); /sDisable those
that do not match.s/
END;
EID;
Call RESOLVE;
IF CPRR THEN /¢ we have responders! s/ ;

EXD;

15

REFERENCES

Flyon, Michael J., “Some Computer Organizations and Their

Effectiveness”, IEEE Transactions on Computers,
September 1972

Intel Corp., "PL/M-51 Users's Guide for the 8051 Based
Development System”, Order Number 121966, 1982.

Lowrie, Duncan D., T. Layman, D. Daer and J. M. Randal, “Glypnir-
{‘7{ Prggri'zgm715111ng Language for ILLIAC IV", Comm. ACM, 18 3,
March, .

Shaw, David Elliot, Salvatore J. Stolfo, Hussein Ibrahim, Bruce

Hillyer, Gio Wiederhold and J. A. Andrews, “The NON-VON Database
Machine: A Brief Overview””, Database Engineering 4(2), 1981.

Shaw, David Elliot, The NON-VON Supercomputer Technical Report,
Department of Computer Science, Columbia University, 1982.

Stolfo, Salvatore J., The DADO USERSGUIDE, DADO Project Report,
Department of Computer Science, Colubmia University, 1981.

Stolfo, Salvatore J. and David Elliot Shaw, “DADO: A Tree-structured
Machine’Architecture for Production Systems’, Proe. National
MeTlon Un

Conference on_Artificial Intellizence, Carnegie-Mellon University
and University ol Pittsburgh, iugust, 1982.

