CUCsS-29-32

The NON-VON Supercomputer!

David Elliot Shaw

Department of Camputer Science
b Columbia University

August 1982

Abstract

NON-VCN is a highly parallel, non-von Neumann "supercomputer™, portions of
which are now being implemented in the Computer Science Department at Columbia
University. The machine is intended to support the extremely rapid execution
of large scale data manipulation tasks, including relational database
operaticns and many other functions relevant to commercial data processing.

The NON=VON architecture includes a tree-structured Primary Processing
Subsvstem (PPS), which we are implementing using custcm nMOS VLSI circuits,
along with a 5ﬁ99nda:x.E:gssﬁilns_ﬁunizﬁﬁﬁm (SPS) based on a bank of
intelligent disk drives. A high-bandwidth parallel interface provides for
rapid data transfer between the two subsystems. This paper describes the
organization of the NON-VON machine, with particular emphasis on the structure
and function of the PPS. Scme of the most important NON-VCON programming
techniques are then outlined, and their application to typical data processing
applications illustrated with simple examples,

"This research was supported in part by the Defense Advanced Research
Projects Agency under contract NO0039-82-C-0427.

Table of Contents

1 Introduction

1.1 Project History and Current Status

1.2 Camparison with von Neumann Machines

2 Organization of the NON-VON Machine

2.1 System Organization

2.2 The Primary Processing Subsystem

2.3 Topalogical Considerations

2.4 The Processing Element

3 Programming NON-VON

3.1 The PE Instruction Set

3.2 The "Intelligent Record®™ Metaphor

3.3 Associative Operations on the NON-VON Machine

3.4 Packed and Spanned Records

3.5 Examples of Symbolic and Numerical Algorithms

1

16

24

31

31

1

42

45

S4

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure T:

Figure 8:

Figure 9:

Figure 10:

List of Figures

Organization of the NON-VON Machine

Interconnection of Two Leiserson Chips

The PPS Printed Circuit Board (Leiserson Layout)

Hyper-H Embedding of the Binary Tree

Inorder Embedding of the Linear Array

Bounded Neighborhood Embedding of the Linear Array

Block Diagram of the Processing Element

Routing of an N-Bit Data Bus through a 90-Degree Turn

Linear Allocation of Spanned Records

Bush Allocation of Spanned Records

13
14
15
21

23

29
49

51

Acknowledgements

The efforts of a number of individuals are reflected in the research reported
in this paper. In particular, the author wishes to acknowledge the
contributions of his faculty co-investigators, Professors Salvatore J. Stolfo,
Zvi M. Kedem, and Michael Lebowitz, and of the eight gifted and zealous Ph.D.
students who form the central core of the NON-VCON Project. Specifically, much
of the design and VLSI layocut of the PPS processing element is due to efforts
of Hussein Ibrahim and Dan Miranker, aided by the critical insights of Sanjiv
Sharma. Dan Miranker and Dayton Clark were responsible for a large part of
the implementation of the NON-VON simulator, while Bruce Hillyer made
significant contributions involving fault tolerance and testing, record
allocation, high-level languages, and parallel algoritims. Steve Taylor has
played a major role in both hardware design and translator development, while
Dong Choi and Yoram Eisenstadter have been recent participants in the
implementation of database management software for the NON-VON machine.

The "real-world" expertise of our project engineers, Ted Sabety and Shun Ueda,
has been critical to the success of our integrated circuit and system design
efforts, Substantial contributions to the theory, architecture, design,
implementation, simulation, and programming of NON-VCN have also been made Dy
Bob Floyd, Don Knuth, Gio Wiederhold and Terry Winograd, all of the Stanford
Camputer Science Department, and by Dave Bacon, Peter Brajak, Lincoln Hu,
Kevin Kalajan, Stuart Kreitman, Ted Markowitz, Reynaldo Newman, Terry Newton,
Alessandro Piol, Arthur Sun, Danny Sykora, and Michael Weisberg, at Columbia.
Finally, Jerry Wiener deserves special recognition for his role as
administrator of the NON-VON project. The contributions of each of these
individuals are gratefully acknowledged.

1 _Iatreduction

Two observations regarding the evolution of ccmputer systems have, during the
past decade or so, become s; ccamonplace as to require little discussion.
First, the cost of digital hardware has dropped to the point where, in many
applications, processors need no longer be considered a scarce resource.
Second, the cost of computer software is increasing, both in absclute terms,

and even more dramatically, by camparison with that of the hardware on wnich

it executes.

The design of highly parallel machines is more commonly associated with the
first of these observations than the second. Indeed, the availability of
large numbers of inexpensive processing elements quite naturally suggests the
possibility of constructing highly concurrent systems capable of very rapid
execution. The NON-VCN mackiine, which incorporates a large number (between
100,000 and 1,000,000, within the target time frame) of unusually simple
processcors, is one of the most ambitious proposals to date for the realization
of very large scale parallelism using current integrated circuit technology.
It should be emphasized, hcwever, that issues related to software are as
central to the goals of the NON-VON project as is the achievement of

unprecedented processing power.

NON-VCN was designed to apply computational parallelism on a rather massive
scale to a large share of the information processing functicns now per<crmed
by digital cocmputers. In particular, highly efficient support is preovicded for
the kinds of operations which seem to characterize much of the workload
involved in commercial database management and data processing applicaticns.
This paper describes the architecture of the NON-VON machine and illuscrates

the manrer in which it achieves such a high degree of parallelism.

The paper is divided into three sections. The current section Sriefly reviews

the history and current status of the NON-VON Project, and provides an
informal comparison between the essential elements of a conventional computer
system and the analogous components of the NON-VON machine. In the second
section, NON-VON's physical organization is described at several levels. The
final section describes the instruction set of the NON-VON Processing Element
(PE), and introduces same of the most important paradigms for the
implementation of NON-VON software,

1.1 Project History and Current Status

The theoretical basis for the NON-VON machine was established in the course of
a doctoral research project at Stanford University [16], (17]. Asymptotic
improvements in the evaluation of a number of relational database operations
were reported. These results employed a highly general technique known as
hash partitioning, by which many large-scale data processing operations having
O0(n log n) time camplexity on a von Neumann machine may be implemented in
linear time on a different type of machine which has the same hardware
canmplexity. The interested reader is referred to these earlier results for a
rigorous analysis of the complexity of algorithms to which the current paper

will make only casual reference.

Detailed design of the NON-VON hardware began in the latter part of 1981, and
has gained mamentum since that time. Major funding for the NON-VON project
has recently been obtained from the Defense Advanced Research Projects Agency,
supporting the implementation at Columbia University of certain key elements
of an initial prototype, which we have come to call NON-VON 1. These elements
employ custom—designed nMOS VLSI circuits, which are to be fabricated remotely
using DARPA's "silicon brokerage" system, MOSIS. As of August, 1982, a
preliminary data path for the NON-VON 1 Processing Zlement (to be described
shortly) has been laid out in nMOS VLSI, simulated and debugged at the logic

portions of these

1evel, and mechanically checked for design rule yiolations.
Jesigns have recently been submitted for fabrication.
nine has proceeded in parallel

tor for the NO
and has since been

the NON—VON mac
A simula

f software {for
N-VON

plementation ef
plemented in th

Tne development ©
n our nardware im

forts.

Wit

e fall of 1981,
develo;ment of NON-VON
1emented a3 par
s for THO parallel

About

uction sel wWasd im

instr
¢ of

snnance
software.

an eyolving

d to provide 23
ucts have peen imp

Higher-level linguistic constr

nt, and compiler
ow under development.
and have tested
scale

amming envirorme

LISP-based progr
are n

jed after pas
g have thus far W
g the jpstructi
t veen implanented,

cal and APL,
ritten NON-VON P

on set simulator.
our experienc
ed to several mi

rograms,
while no large-
e with this mode
nor refinements ©

1anguages, model
rwenty individual
st corpus

ir execution usin
£ the

the
appli
of 3imp

arcnitect

g the essential

ify a asingle principle underlyin
bably choose to

ON-VON architect
assing and storage

cations nave ye
le NON=VON pro
ure and instrueti

grams has already 1
on set.

ure, we would Ppro

termingling proc

If pressed to ident
“philosophy“ of the N

nigniignt tne strate®y
This strate®y

of extensively in

is employed at 3

preciated by contrast with @

a conventional ccaputer systen.
powerful) gentrad

e (often quite
ten quite large) random 3ceSs

nary von Neumann machine, 23 singl

In an ordi
cted to 2 single (of

ir is conne
for the

o)
rograms and data.

storage of both P
weakly parallel) fasnhion
nyon Neumann hottleneck".

ce

narrcwW conduit which Backus (2] has called the

e organization of

The CPU and

chrough 2

Moreover, the limitations of this organization are beccming more serious as
technological pregress increases both the potential pcwer of processing

hardware and the realizable size of computer memories,

In the NON-VON Primary Processipng Subsystem (PPS), on the other hand, a large
number of very simple, highly area-efficient processing elements (PE's) are,

in effect, distributed throughout the memory. In particular, each integrated
circuit in the PPS contains a number of PE's (eight, in our planned prototype
version, which is based on typical 1982 nMOS device dimensions and die sizes),
Each PE is associated with a small amount of locally accessible randam access
memory (64 bytes, in NON-VON 1). The potential processor/memory bandwidth in
NON=-VON is thus many orders of magnitude higher than in conventional machines.

In practice, many or all of these tiny PE's are often able to operate
concurrently on data stored in their respective local memories, supporting
effective execution speeds far exceeding those of today's fastest
supercamputers. Because of their small size, however, the PPS is expected to
be scarcely more expensive than an equivalent amount of ordinary random access
memory. (Specifically, we estimate that a NON-VON PE might occupy as little
as twice the area that would be required for the amount of RAM it would
incorporate.) Fram the viewpoint of performance, the PPS may thus be regarded
as an ultra-high-speed parallel processing ensemble; from a cost perspective,
though, it is better viewed as a (slightly overpriced) random access memory

unit.

A similar comparison between the mass storage facilities of a conventional
computer system and the analogous subsystem within the NON-VON machine may
also prove instructive. In the typical large-scale data processing system, a
large bank of disk drives is charged with the task of responding "mindlessly"
to a sequence of requests for data pesed by the CPU. In practice, most of

this data in fact proves irrelevant to the task at hand. The secondary

storage subsystem -~ a husky and obedient, but rather dim-witted brute -- is
Zenerally incapable of separating wheat from chaff, and must pass both along

to its more intelligent master.

As in the case of the von Neumann bottleneck, the patiway between the
"thinking part" and the "remembering part" of such a system is a relatively
narrow cne, even in the most sophisticated contemporary systems. While a
modest degree of paralleli=sm is scmetimes achieved in the disk-to-computer
interface, the process of transferring data between primary and secondary
processing hardware remains, for the most part, an essentially sequential

function.

In the NON-VCN Secondary Processing Subsystem (SPS), on the other hand, a
small amount of processing hardware {s associated with each disk head. This
hardware allows records to be inspected "on the fly" to determine whether a
given record is relevant to the operation at hand. The NON-VON SPS is thus
able to be more discriminating in the data it passes along to the primary
processing hardware. Furthermore, the topology of the PPS supports a
massively parallel interface between primary and secondary storage, alléwing
data transfers between the subsystems to keep pace with the greatly
accelerated execution possible within the PPS. In short, the SPS is able to
"filter™ data before it is sent to the PPS, and to transfer the "filtrate™ in
a highly parallel manner,.

2 Organization of the NON-VON Machine

In this section, we describe the physical structure of the NON-VON machine.
The top-level organization of the system is outlined in the first subsection.
Our principal concern in this paper, however, will be with the Primary
Processing Subsystem, which isrdescribed in more detail in the second
subsection. In the third subsection, we discuss certain topological
considerations that influenced the design of the PPS. The section concludes
with a detailed description of the individual processing elements from which
the NON-VON PPS is constructed.

2.1 Svstem Orgapization

The top-level organization of the NON-VON machine is illustrated in Figure 1.

The PPS is configured as a binary tree of processing elements. By dynamically
altering certain switch settings within the PE's, however, the subsystem can
be reconfigured to provide for linear, tree-structured or global bus
communication. With the exception of minor differences in the "leaf nodes",
each PE is laid out identically, and camprises a small randam access memory, a
modest amount of processing logic, and an I/0 switch supporting the various

modes of inter-PE communication.

At the root of the tree is a von Neumann machine called the Ceontrol Processor
(CP), which is responsible for coordinating various activities within the PPS.
In a production version of the NON-VON machire, the CP would in fact be
specialized in several respects to optimize its performance as a controller
for the PPS. In the context of this paper, however, the CP may be thought of
as a conventional single instruction stream, single data stream (SISD)
cocaputer, While certain sequences or instruétions are executed sequentially

within the CP, it is alsoc capable of broadcasting instructions to be

IHU

®» @ %

|HU

(T s (L (D) o (=
HEADS

NON-VON Machine

10

simultaneously executed by all enabled PE's in the tree on a single
instruction stream, multiple data stream (SIMD) basis [6].

The SPS is based on a number of rotating storage deviceés, which might in
practice be realized using either slightly modified multiple-head disk drives
or urmodified single-head drives. Associated with each disk head in the SPS
is a separate sense amplifier and a small amount of logic capable of
dynamically examining the data passing beneath it. These Intelligent Head
Units (IHU's) are also capable of performing simple computations (hash coding,
for example), and of serving a control function similar to the role played by
the CP.

Assuming that the number of intelligent disk heads is equal to Ek, for scme
integer k, the k-th level of the PPS tree (where the root is considered to be
at level zero) is used to interface the PPS and SPS. Specifically, each of
the k internal PPS nodes at this level is associated with a different IHU.
Physically, this connectiocn is made by interposing the IHU between the
interface-level PE and its parent PE, as illustrated in Figure 1.1. 1In its
passive state, the IHU acts as a simple bus, passing information in both
directions without change.

In certain algorithms, though, each IHU serves as an active control processor
for the subtree it roots, allowing independent, asynchronous ccmputation
within the varicus jnterface-rooted subtrees. (NON-VON is thus not, strictly
speaking, a SIMD machine; in practice, however, it often functions as either a
single SIMD machine or a collection of such machines.) The most common
application of this capability is in the concurrent loading of each interface-
rooted subtree fram its respective disk drive. Such parallel transfers
between SPS and PPS account for the unusually high effective I/Q bandwidth

achieved in a wide range of applications. Other algorithms make use of the

“pqp Fart" of the PPS tree — more precisely, the portion consisting of all

IE———

11

PE's lying above the interface level. Among other things, this portion of the
tree can be used for the efficient synchronization of interface-rcoted

subtrees following asynchronous operation.

A more thorough discussion of the SPS, its interface to the PPS, and the kinds
of algorithms that make explicit use of the upper and lower portions of the
tree is, unfortunately, beyond the scope of this paper. The reader may,
however, find the discussion of hash partitioning presented in [18] to be
useful in gaining scme appreciation for the way NON=VON=like architectures
provide support for at least one important family of highly parallel

algorithms involving large amounts of data.

2.2 The Primarv Processing Subsvstem

Although physically structured as a binary tree, the NON-VON PPS can be
dynamically reconfigured to support communication patterns characteristic of
two other topologies in a highly efficient manner. In this subsection, we
describe the physical corganization of the NON-=VON PPS and discuss the three

medes of communication it supportas,

The PPS is implemented using a number of identical PPS chips. Our use of a
single circuit is made possible by the adopticn of a tree-partitioning scheme
first suggested by Leiserson [12]. This approach embeds both a ccmplete
subtree (containing 2°-1 constituent PE's, for scme ¢ depending on device
dimensions) and a single interior node on each chip. Four nine-bit busses
(eight bits for data, and one for a control function, which will not be
discussed in this paper) enter the chip. One, called the T connection, leads
to the root of the chip's subtree, while the other three, called the F, L, and
R connections, attach the single interior node to its father, left child and

rignt child, respectively, within the tree,

'\

12

A simple recursive procedure allcws the construction of a complete binary tree
of arbitrary size using only chips of this type. This construction is
illustrated for the case of two chips in Figure 2. Note that the resulting
circuit consists of a larger complete binary subtree (in this case rocoted by
the interior node of the chip on the left side of Figure 2), together with a
single unconnected interior node (the interior node of the chip on the right).
This circuit has the same four external connections — T, F, L and R — as did

a single chip.

The interconnection scheme shown in Figure 2 may be easily extended to allow
the construction of a simple, planar printed circuit board layout (also due to
Leiserson), which is illustrated in Figure 3. The regularity of this PC board
layout scheme has greatly simplified the task of designing the NON-VON PPS.
Furthermore, the area required for routing wires within the PC board is
strictly proportional to the number of chips, allcwing the efficient
implementation of boards of arbitrary size.

The PPS is simply a collection of these PC boards, interconnected in precisely
the same manner as are the constituent PPS chips. This scheme is suitable for
the construction of a PPS camprising 251 PE's, for arbitrarily large b, and

leaves only a single interior PE unused.

The subtree incorporated within each PPS chip is configured gecmetrically
according to a "hyper-H" embedding [3], as illustrated in Figure 4. This
construction is highly regular, is area-optimal (in the sense that the amount
of silicon area occupied by the tree is proportional to the number of PE'S),
and is easily extended to incorporate larger numbers of PE's as device

dimensions scale downward.

The tree structured inter-PE bus structure supports three distinct modes of

communication:

13

lllllll

L — — F

terccrnection of Two Leiserson Chips

-
I r
-

igure 2

F

14

The PPS Printed Circuit Board (Leiserson Layout)

Figure 3:

Figure 4:

Hyper-H Embedding of the Binary Tree

15

16

1. Global bus commupication, supporting both broadcast by the CP to
all PE's in the PPS and data transfers from a single selected PE to
the CP.

2. Phvsically adjacent (tree) communication to the Parent (P), Left
¢hild (LC) and Right Child (RC) PE within the physical PPS tree.

3. Linearly adjacent nejghbor communication to the Left Neighbor (LN)
or Right Neighbor (RN) PE in a particular logical linear sequence.

The global broadcast function supports the rapid parallel communication of
instructions and data fram the CP to the individual PE's, as required for SIMD
execution. As will be seen in Section 3, it is also possible for a selected
PE to send data to the CP. Using the CP as an intermediary, any PE can thus
send data to any other PE. No communication concurrency is achieved, however,

when data is passed fram one PE to another using the global mode primitives.

The physically and linearly adjacent communication modes, on the other hand,
support fully parallel communication. The former is used in many tree-based
algorithms. (Parallel sorting and the logaritimic-time addition of n numbers
are two examples). The linear mode is used in algorithms in which many PE's
simultanecusly exchange data or control information with their immediate
predecessor or successor PE's in scome predefined total ordering. Several
mappings between the linear logical sequence and the tree-structured physical
topology of the PPS are possible; these alternatives are discussed in the
following subsection. By way of summary, each PE can communicate with five
other PE's, which are referred to within its own local context as P, RC, LC,
RN and LN.

2.3 Topological Considerations

The choice of a tree-structured topology for the PPS was based on
considerations involving such factors as the efficient use of silicen area,

favorable pinout properties, and suitability for the rapid broadcasting of

17

data. Anothe; important factor was the ability to efficiently emulate a
linear array (a sequence of PE's, each connected only to its immediate
predecessor and successor), which, among other things, plays a central role in
cne of our techniques for manipulatihg records too large to fit within a

single PE.

First, we observe that each PPS chip has exactly four external connectiocns
(each nine bits wide, in NON=VON 1), regardless of the number of PE's
contaired within its subtree. Because of its fixed pinout requirements,
independent of the size of the embedded subtree, the realizable capacity of
the PPS chip will increase quadratically with decreases in minimum feature
width. This will permit dramatic increases in the camputational pcower of the
NCN-VCN PPS unit as device dimensions are scaled downward with continuing
advances in VLSI technology. (During the target time frame for a production
version of a NCN-VCN-like machine, a c value of 7 or 8, corresponding to

several hundred processing elements per PPS chip, would seem feasible.)

It is worth mentioning that, with the notable exceptions of linear arrays and
such closely related architectures as simple rings, most topologies proposed
for parallel computation in VLSI do not share the area and pinout properties
we have just outlined. A hamogeneous implementation of the orthogonal and
hexagonal mesh-connected topologies proposed for the implementation of
Svstolic arrays (10], for example, would require a numter of pins proportional
to the square root of the number of PE's embedded within a chip. This is also
true of such ™early equivalent! architectures as toroidal meshes (7] and the
chordal ring (1]. In the absence of a breakthrough in packaging technology
allowing a dramatic increase in the number of pins per chip, such
architectures 4ill thus beccme progressively more "I/0O=bound™ as device

dimensions continue to scale dowrward.

A large family of closely interrelated architectures exemplified by the

18

shuffle-exchange [11] and cube-connected cycles [13] networks are even more
limited in this regard. The pinqut requirements of this family of
architectures grow considerably faster than those of the two and three-
dimensional meshes. Furthermore, area proportional to nz/logzn is (provably)
required to embed n PE's within a single chip using such schemes [19]. Thus,
such architectures are subject to quickly decreasing returns to scale as

improvements are made in logic densities.

Another topological consideration in designing a machine having as many
processing elements as is envisioned for NCN-VON is the manner in which global
camunication is handled. If a "processor density" camparable to that of the
NON-VON machine is to be achieved, only a very =mall amount of local memory
can be associated with each PE. The extremely fine "granularity" of such a
massively parallel machine is thus inconsistent in principle with the
replication of substantial programs within each PE. For this reason, the
realization of very high processor densities would seem to be inextricably

tied to the efficient global broadcasting of instructions.

What are the implications of this requirement for rapid global broadcasting
capabilities? First, we note that the "bounded valence assumption" (the

. restriction that no "node™" be connected to more than a fixed maximum number of

"Wwires"), which is central to all contemporary models of camputation in VLSI,
precludes the possibility of broadcasting in time less than logarithmic in the
nunber of recipients. While this lower bound is realized by members of the
tree-structured and shuffle-based families, most other topclogies do not share
this property. The two-dimensional meshes, for example, are incapabtle of
broadeasting in time less than proportional to the square rcot of the number
of recipients. In the linear array, broadcast requires linear time. The same
is true of the ring network, which may be considered "almost equivalent"™ to

the linear array in the context of these concerns.

19

In the NON-VON PPS, broadcast cammunication is effected not only in
asymptotically optimal time, but with extremely small constants as well.
Specifically, information that is broadcast is not buffered at each level of
the tree according to a sequential discipline, but is instead propagated in an
unclocked manner, passing through a very small amount of cambinational logic
at each level. NON-VON thus provides highly efficient support for the global

broadcasting of instructions and data to all processing elements.

By way of summary, the meshes are as area-efficient as the binary tree, but
would increasingly suffer fram pinout limitations and broadcast inefficiencies
if used in high-density applications of the sort with which we are concerned.
Such architectures as the shuf{le—exchange network and cube-connected cycles,
while matching the optimal broadcast time of the tree, have area camplexity
and pinout characteristics that would be incompatible with this degree of
parallelism. Of the architectures we have considered, only the linear array
and the tree may be considered jndefinitelv scalable, in the sense that their
pinout is fixed, and their area proportional to the number of embedded

processors.

There are two reascns for our selection of the tree, and not the linear array,
as the topology for the NON-VON PPS. First, a strictly linear interconnection
network requires time proportional to the number of processors for broadcast.
Second, the NON=VON PPS tree is in fact capable of dynamically reconfiguring
to emulate the benavior of a linear array with only a minor constant-facter
degradation in speed, as shown telcw. (It should be clear that the converse
is not true.,) Thus, we are in fact giving up very little by chcosing the tree

cver the lipear array.

There are several ways in which a binary tree can be used to smulate the
benavior of a linear array. The most obvious possibility is to map the nodes

of the tree onto a linear sequence according to a standard precrder, ilnorder

20

or postorder traversal scheme [9]. The nodes of the tree shown in Figure 5,

for example, are mapped onto those of a linear array by inorder enumeration.

Let us now consider what data would have to pass along each tree edge in order
to simultanecusly transfer a single data element along the path from each tree
node to its successor in the linear sequence. These paths are indicated in
Figure 5 by arrows extending from each node to its linear successor, in
general passing through intermediate nodes along the way. It should be noted
that since every other element in the inorder sequence is a leaf node, half of
these arrows (which we have colored black) originate in internal nodes and
terminate in leaf nodes, while the other half (colored white) extend fram leaf
nodes to internal nodes. Note further that each tree edge is associated with
exactly one black and one white arrow. If the communication cycle is divided
into separate phases for ccmmunication to and from leaf nodes, all nodes in
the tree can thus communicate with their respective successors within a single

communication cycle.

The inorder embedding scheme, however, has the property that the maximum
number of physical tree edges between two nodes that are adjacent in the
linear logical sequence grows logarithmically with the size of the tree. This
drawback is present in the preorder and postorder enumeration schemes as well,
since both mappings contain paths extending from root to leaf. Since each
phase of the cammunication cycle must be at least as long as the maximum time
required for communication between any two linearly adjacent neighbors, it is
worth investigating whether a linear array can be embedded in the binary tree
in such a way that the maximum path between linearly adjacent nodes is bounded

by a constant.

As it happens, we have found a way to configure NON-VON's simple I/0 switches
So that the longest path Letween linear neighbors is exactly three. Based on

a mathematical result first reportec by Sehanina [14], our scheme requires

that the I/0 switch settings at successive levels of the tree alternate
between those that would be employed in a preorder configuration and those
that would be used for a postorder mapping. This "bounded neighbcrhood”
embedding is illustrated in Figure 6.

In practice, however, the relative advantage of bounded neighborhood embedding
over inorder mapping is not so great as it might first appear. The reason has
to do with the fact that the delay between physically adjacent PE's is not in
fact constant throughout the PPS tree. In particular, while most pairs of
physically adjacent PE's reside on the same chip, many such pairs are located
on different chips, some on different printed circuit boards, and (in a large-
scale system) a few in different cabinets. In a realistic large-scale system,
the delays encountered between chips, boards and cabinets would typically be
considerably larger than those experienced within a given chip. Because the
speed of the comunication cycle is limited by the slowest data transfer
between linearly adjacent neighbors, each coammunication phase must be slow

enough to allow for the transfer of data between cabinets.

Rough calculations based on estimates of intra-chip, inter-chip, inter-board
and inter-cabinet delays suggest that the relative advantage of the bounded
neighborhood mapping over a simple inorder embedding, while not negligible, is
not overwhelming for PPS trees of the sizes likely to be encountered in
practice. In the interest of simplicity, we have thus decided to adept the
inorder embedding for use in the NON-VCN 1 prototype. Later versions of NON-
VON will probably be capable of supporting any of the four orderings discussed

above, and of dynamically switching among these orderings.

Having argued strongly for the adoption of a tree-structured physical topolegy
in systems exhibiting parallelism on the massive scale attempted in NCN-VCN,
it must be emphasized that the alternative architectures discussed in this

Subsection may in fact prove well suited to applications amenable to coarser

24

granularities, especially in the short term. In particular, the superficially
compelling asymptotic arguments advanced above must be considered in the
context of Larry Snyder's well-phrased reminder that "we don't live in
Asymptopia", On the other hand, if device dimensions continue to decrease,
the NON-VON approach to large-scale parallelism may soon have us "living in
the suburbs”,

2.4 The Processing Element

The NON-VON PE is much simpler, smaller and less powerful than the processing
elements incorporated in previously proposed tree machines (4], [15]. In
large part, this difference reflects the SIMD execution of globally broadcast
instructions, which characterizes NON-VON's typical operation. - By avoiding
extensive reliance on MIMD (multiple instruction stream, multiple data stream)
operation, NON-VON obviates the need for large local program memories and
area-expensive processing and communication hardware, and amortizes the cost

of most of its control logic over a large number of independent data paths.

The result is a PE that occupies a small fraction of the area required for an
ordinary microccmputer, supporting a "processor density" far greater than that
of most parallel machines. Fram an applications viewpoint, the extreme area-
efficiency of the NON-VCN PE makes it econamically feasible to divide primary
storage into roughly "record-sized" units, and to associate a separate
processing element with each such unit. This aspect of the NON-VON design is
central to its processing power in large-scale data processing applications,

as we shall see in the remainder of this paper.

The NON-VON 1 PE comprises:

1. A 64 word X 8 bit random access memory
2. A set of eight 8-bit pyte registers

3. A set of eight 1-bit flazg registers

4. A byte-wide arithmetic comparison unit (ACU)
5. A bit-wide grjthmetic logical unit (ALU)

6. A byte-wide 1/Q switch

7. A programpable logic array (PLA)

A top-level block diagram of the PE is presented in Figure 7.

The data path is organized around two data buses — one eight bits wide, the v
other one bit wide. The local RAM, byte-wide registers, and ACU all

cammunicate through the eight-bit bus. One of the eight byte registers serves

as a memory address register (MAR), into which addresses are latched in the

course of accessing the local RAM. (Although the NON-VON 1 PE contains only

64 bytes of RAM, the architecture is capable of supporting a local memory of

up to 256 bytes.)

Two of the other registers, labelled A8 and B8, are distinguished as Lyte
aceumulators, and include special hardware for performing circular shifts. 1In
the course of such shift operations, the bits of A8 and B8 may be rotated
through two distinguished flag registers, Al and B1, which are referred to as
the bit acoumulators. This feature provides a bit-serial link between the
byte-wide and bit-wide portions of the data path. In addition, the ACU is
capable of of comparing the contents of A8 and 88 and latching the results
into the bit accumulators. Specifically, A1 is set if and only if the
contents of A8 and 28 are identical, while B1 is set if and only if the A8
value is greater than that of B8. Another distinguished byte register, IC8,
serves a special role, discussed below, involving the latching of data to De
transmitted between PE's, The remaining byte registers (lacelled C8, X8, Y8

and Z8 in Figure 7) are available for general use.

8-bit Bus

26

|
to left child
170 Lo t
[aren
M RAM ———F SWITCH i——)
_.
lto right child
- >
2
le—>! 108 101
f—> Z8 21
le—> Y8 Y1fe—>
—»| X8 X1 @
[—> C8 C1 3
F._L:[B8 N
]
A8 :A1 >
—
H ACU — ALU

Figure 7: Block Diagram of the Processing Element

The one-bit data bus is used to transfer data among the single-tit flag
registers, and to supply operands to, and obtain results from, the bit-wide
ALU. As noted above, two of the flag registers, called Al and B1, serve
special roles as accumulators. In particular, the bit accumulators serve as
inputs to the ALU, along with the contents of a third flag register,'c1, which
is used to store the carry bit in the course of bit-serial addition and
subtraction. Upon execution of one of the logical function instructions
(described below), the ALU is capable of computing one of the sixteen possible
boolean functions of A1 and B1, and storing the result in Al. In response to
an ADD1 instruction, the ALU functions as a full adder, camputing sum and
carry bits for the three inputs A1, Bl and C1. The sum bit is stored in Al
and the new carry bit in C1. Analogcus results are produced during a SUB1

instruction.

Another flag register, EN1, is distinguished as an gpalle flag. This flag is
used to activate and deactivate individual PE's within the PPS. In general
terms, only those PE's whose enable flags are asserted will respond to
instructions broadcast by the CP. If EN1 is set to 0 in a particular PE, all
instructions except one (the ENABLE instruction, discussed below) will be
ignored. A number of tricky issues arise in considering the behavior of
enabled and disabled PE's, particularly in the case of inter-PE cammunication
Voperations. These issues will be examined as part of our detailed discussion
of the instruction set. Finally, another flag register, I01, is the boolean
analogue of I0O8, serving as an I/0 latch in the transmission of single-bit
values between PE's. The other flag registers (labelled X1, Y1 arnd Z1 in
Figure 7) may be used to store arbitrary boolean values,

The I/0 switch is connected to both the eight-bit and one-bit buses, allcwing
the transfer of byte and flag data to the parent, left child and right child

PE's (and, depending on the switch settings, to other PE's as well). Finite-

28

state control for the I/0 switch and data path are provided by a common PLA.
Consideration has been given to the possibility of "factoring out" a portion
of the PLA associated with each PE on a given chip into a single PLA shared by
all such PE's. This approach might ultimately allow the Mamortization” of
part of the control logic over a large (and increasing, with reductions in
device dimensions) number of PE's. While we have not employed a "PLA
factorization" strategy in designing NON-VON 1, this approach is likely to be

incorporated in future versions.

In order to keep the area of the PE many times smaller than that of a
conventional microprocessor, many decisions have been made in which execution
speed is sacrificed for silicon area. While it is difficult to rigorously
defend such complex and interacting design decisions, an intuitive
justification for this strategy may prove illuminating. First, it is worth
mentioning that, in our experience, the savings in area made possible by such
decisions in practice often vary as the square of the associated degradation
in speed. While such a relationship is observed in many aspects of processor
design, the routing of an ordinary n-bit data bus through a 90-degree turn
provides a simple example. Note that the area required to "turn the corner"
is proportional not to n, but to the square of n, as illustrated in Figure 8.

More substantive examples abound.

Because the chip- and board-level layouts employed in the PPS consume area
proportional to the number of PE's, the number of PE's realizable in a system
containing a fixed number of chips varies inversely with the area of a single
PE. In the critical sections of typical NON-VON programs, all availatle PE's
are typically performing useful camputational work in parallel, Thus, NCN-
VON's maximum achievable execution speed is in same sense inversely
proportional to PE area. This being the case, we have found it

counterproductive in many cases to achieve a given speedup at the expense of a

Figure 8:

Routing of an N=-Bit

Data Bus

cnrough a 90-Degree Turn

29

30

quadratic penalty in area.

The PE instruction set provides another example of the sacrifice of execution
speed within the individual PE in the interest of minimizing area, thus
increasing the realizable throughput of the PPS as a whole. As we shall see
snortly, the NON-VON PE executes a very small, narrow, and rather low=-level
set of instructions by comparison with the current generation of powerful 16-
and 32-bit microprocessors. In particular, all PE instructions are eight bits
long, including register operands and logical function codes. (In one case,
however, the instruction is followed by a byte of data). In place of a rich
set of relatively powerful instructions, we have chosen a few low-level
operations having extremely simple realizations in hardware.

A single instruction typical of a contemporary 16-bit microprocessor might be
implemented in NON-VON using a sequence of between one and four PE
instructions. At the cost of a modest degradation in local execution speed,
this strategy dramatically simplifies the camplexity of (and hence, the area
required for) the data path and PLA, and reduces the number of pins required
to route instructions through the PPS chips.

3
3 Programming NON-VON

In this section, we introduce the NON-VON instruction set and describe the
manner in which it is typically used in the course of programming. While a
detailed discussion of each of the applications we have explored is beyond the
scope of the current paper, scme feeling for the kinds of techniques emplcyed
in constructing NCN-VON programs is necessary to understand the basis for our
architectural decisions. The remainder of this paper is thus devoted to an
exposition of scme of the techniques that characterize the NON-VON apprcach to
parallel programming.

One Mconceptual metaphor™ we have found particularly useful in describing the
principles underlying most NON=VON algoritims involves the notion of
"{intelligent records”, This construct is explicated in the subsection
immediately following our description of the instruction set. Next, we
discuss the associative operations used to access intelligent records. In the
fourth subsection, we describe and campare alternative techniques for the
allocation and manipulation of records of various sizes (relative to the local
storage capacity of a single PE). Finally, we illustrate the typical use of
the techniques intreduced in this section by informally describing NCN-VON
algoritims for a few simple symbolic and numerical applications.

3.1 The PE Instruction Set

The set of instructions executed by the NCN-VCN PE may bte diviced into six
categories. The camplete instruction set, grouped by category, is described
below. Each instruction is followed by a brief specification of its
semantics. The following symbols are employed:

<byte reg> One of the eight 8-bit registers
(A8, B8, C8, X8, Y8, I8, IC8, or MAR)

<flag reg> One of the eight 1-bit registers

32

(a1, B1, C1, X1, Y1, Z1, IO1 or EN1)

<PE> One of the physically or linearly adjacent PE's
(P, LC, RC, LN, or RN)

<address> An eight-bit address in the local RAM

<bit> A one-bit constant

<byte> An eight-bit constant

After the presentation of all instructions in a given group, a narrative

description the typical use of each instruction is provided.

1. Register Transfer Group

OPCODE OPERAND SEMANTICS

LOADAS <byte reg> A8 <~ <byte reg>
LOADBS <byte reg> B8 <- <byte reg>
LOADA1 Kflag reg> Al <~ <flag reg>
LOADB1 <flag reg> Bl <= <flag reg>
STOREAS <byte reg> <byte reg> <- A8
STCRERS <byte regd> <byte reg> <- B8
STOREA1 <flag reg> <flag reg> <- Al
STOREB1 Kflag reg> {flag reg> <- B1

The register transfer instructions are used to move data between the four
accumulators (A8, B8, Al and B1) and any of the other registers of compatible
length., Note that the MAR may serve as the destination of an eight-bit STORE
instruction, allcwing different addresses to be stored in the MAR's of
different PE's, and thus permitting simultaneous access to different locations

in the local memcries of different PE's, as described below. Similarly, it is

33

worth noting that the value of EN1 may be changed frcam one to zero using an
ordinary STORE instruction, allowing selected PE's to be disabled.

Note that transfers between arbitrary registers must be mediated by one of the
accumulator registers, requiring two instructions instead of one. In the
context of a massively parallel system, however, the fact that single-operénd
register transfer instructions are conveniently implemented in an eight-bit
instruction word with very little area expended for control logic represents a

significant compensating advantage.

2. Memory Access Group

READRAM <address> A8 <~ RAM(MAR)
WRITERAM <address> RAM(MAR) <~ A8

In order to transfer data between the local RAM and the A8 accumulator, the
address of the RAM to be accessed must first be written into the eight-bit MAR
register using an ordinary STORE instruction. Note that different PE's may
access different RAM locations simulaneously, since the values in their
respective MAR'S need not be the same. This feature is essential to such
applications as the parallel processing of variable-length records. The
starting addresses of three variable-length fields might be stored in the
first, second and third RAM locations within each PE, for example. In order
to access the first byte of the second field of each record in parallel, the
contents of RAM location two would be moved (by way of A8) into the MAR, and a
READRAM instruction executed. Successive bytes in this field could then te

accessed by perfcrming parallel arithmetic on the address stored in the MAR.

3. Arithmetic and Shift Group

34

ADD1 Al <~ A1 xor B1 xor C1
C1 <- (A1 and B1) or (A1 and C1)
or (Bl and C1)

SUB1 Al <~ Al xor (not B1) xor C1
C1 <~ (A1 and (not B1)) or (Al and C1)
or ((not B1) and C1)

ROTRA Rotate A8 right by one bit through A1
ROTLA fiotate A8 left by one bit through Al
ROTRB Rotate B8 right by one bit through B1
ROTLB Rotate B8 left by one bit through B1

While we have recently became quite interested in the implementation of
parallel numerical algorithms on NON-VON-like machines, the rapid execution of
purely numerical problems was not among the primary motivations for the NON-
VON machine. Thus, although certain operations critical to NON=-VON's typical
modes of operation (data transfer and arithmetic camparison operations, for
example) are performed eight bits at a time in NON-VON 1, all arithmetic

operations other than camparison are performed in a bit-serial fashion.

Specifically, the ADD1 and SUB1 instruction perform one-bit addition and
subtraction operations, respectively, as described earlier., Arithmetic on
operands of arbitrary width are performed by repeated execution of these
instructions. (Macros for eight-bit addition and subtraction, along with a
number of other common sequences of PE instructions, are provided as part of
the NON-VON 1 simulator.) The result is an ALU that, while fully general and
extremely compact, i1s rather slow by compariscn with conventional

microprocessors in the performance of standard arithmetic operations.

In future versions of NON-VON, oriented toward the rapid execution of a wide
range of numerical problems, we plan to experiment with the implementation of
scmewhat faster, albeit more area-expensive ALU's. It should be roted,

however, that in many common data processing applications — performing the

/

35

same ccmputation on a large number of records, for example, or camputing such
quantities as the mean or variance of selected fields -- the ability to
perform a million or so arithmetic opefations in parallel should push even
NON-VON 1's effective throughput several orders of magnitude beyond those of
todays fastest supercomputers.

The four rotate instructions treat the A8 and Al registers (and similarly, the
B8 and Bl registers) together as a nine-bit circular shift register.
Specifically, ROTRA shifts all but the low-order bit of A8 into the next
lowest bit position within A8; the low-order bit of A8 is moved into A1, and
the value previously stored in Al is moved into the high-order bit of AS8.
ROTLA similarly performs a left circular shift of the ccmbined A8 and Al
registers, while ROTRB and ROTLB perform analogous shifts on the B8 and 81
registers. In cambination with the one-bit logical function operaticns
(discussed below), these instructions permit the execution of arbitrary
operations invelving eight-bit operands on a bit-serial basis.

4. Logical Function Group

LoGIcaL <operation> A1 <= (A1 <operationd> B1)
(where <operation> is a four-bit code specifying one of the
Sixteen possible boolean functions of two single-bit variables)

CLEAR A1 <=0

SET Al <=1

NEGATE Al <~ not Al

AND A1 <~ A1 and B1

OR A1 <~ A1 or B1

XOR Al <~ (A1 and (not B1)) or ((not A1) and 21)

QU A1 <

(A1 and 81) or ((not A1) and (not 81))

Al <- not (41 and 31)

38

since the semantics of this operation would be undefined if both children of
that parent were enabled. Thus, only LC, RC, LN and RN are legal operands for
the SEND8 instruction. It should be noted, however, that the parent is
capable of receiving data fram it's children through the use of RECV8 LC and
RECV8 RC instructions. The semantics of the SEND8 and RECV8 instructions are
not immediately apparent in the case where the operand PE is currently
disabled. In such cases, it is the recipient's status, and not that of the
originator, which determines whether data is in fact transferred.
Specifically, it is always possible to RECV data fram a PE, regardless of
whether it is enabled, but an attempt to SEND data to a disabled PE will not
result in a transfer of data.

The SEND1 and RECV1 instructions function in precisely the same way as SEND8
and RECV8, but operate on flag operands instead of byte-wide values.

6. No Operand Group

ENABLE EN1 <~ 1 in all PE's, including thcse
previously disabled
COMPARE if A8 = B8 then Al <~ 1; otherwise Al <~ 0
if A8 > B8 then B1 <~ 1; otherwise B1 <- 0
RESCLVE Al <~ 0 in all PE's except "first™ PE
where Al = 1

if no PE has Al = 1,
logical register R1 (in CP) <~ 0;
otherwise R1 <- 1

A PE may be disabled by transferring a O into its EN1 register using an
ordinary STOREA1 EN1 (or STOREB1 =IN1) instruction. In a typical applicatien,
the contents of A1 (or B1) will be set to the result of scme boolean test
prior to the execution of such a store instruction, resulting in the seliective
disabling of all PE's for which the test fails. This technique supports the

"conditional™ execution of a particular code sequence, Following the

39

execution of such a sequence, an ENABLE instruction is issued to "awaken" all
disabled PE's. In combination with appropriate register transfer and logical
operations, this approach may be used to implement more complex conditionals,

including nested "IF-THEN-ELSE"™ constructs.

The COMPARE instruction sets the Al flag to 1 if the contents of A8 and B8 are
the same, and the B1 register to 1 if the contents of A8 exceed that of BS.

By cambining the two bit accumulator values using the appropriate logical
instructions, it is thus possible to perform any of the six possible
arithmetic relational tests ("equal to”", "not equal to", M"greater than",
"greater than or equal to", Tless than", or "less than or equal to") on the
values in the byte accunulators. The result may then be used to selectively
disable certain processors, allowing the use of general arithmetic tests
within a conditional.

The most commen use of the COMPARE instruction, however, is in the execution
of gontent-addressable operations. As we shall see shortly, such operations
are realized by broadcasting character strings or numeric values throughout
the PPS, comparing them in parallel with the contents of all enabled PE's, and
disabling those for which the match criteria are not satisfied. The decision
to implement the CCMPARE instruction using byte-wide comparator hardware was
based in large part on the central role played by such content-addressable
operations in most NCN-VON algorithms.

The RESOLVE instruction is used in practice to disable all but a single PE,
chosen arbitrarily from among a specified set of PE's. First, the Al flag is
set to one in all PE's to bte included in the candidate set. The RESOLVE
instruction is then executed, causing all but one of these flags to be changed
to zero, (Upon executing a RESOLVE instruction, one of the inputs to the CP
will become high if at least one candidate was in fact found in the tree, and

low if the candidate set was found to be empty. In our simulator, this

4o

condition code is stored in the "logical register'" R1, which may be thought of
as existing within the CP.) By issuing a STOREA1 EN1 command, all but the
single, chosen PE may be disabled, and a sequence of instructions may be
executed on the chosen PE alone. In particular, Qata frem the chosen PE may
be cammunicated to the CP through a sequence of LQOAD and REPORT commands.

If the candidate set is first saved (using another flag register in each PE),
each of the candidates can be chosen in turn, subjected to individual
processing, and removed from the candidate set, allowing the sequential
processing of all candidates. Typically, the individual processing performed
for each chosen candidate involves the broadcasting of information contained
in, or derived from, that candidate to other PE's within the PPS. This
paradign for sequential enumeration is thus employed aS a sort of "outer loop"
in a number of highly parallel NON-VON algorithms, including the algoritim for

set intersection described in Subsection 3.5.

In the NON-VON 1 prototype, the Al flag is preserved in that PE which would be
assigned the lowest number in an jporder enumeration of all nodes in the PPS
tree, The use of inorder enumeration as a criterion for selecting a single PE
is an artifact of the NON-VON 1 hardware design, however, and is not
guaranteed by the instruction set. The RESOLVE function is implemented using
special combinational hardware, embedded within the I/0 switch, that
propagates a series of "kill" signals in parallel fram all candidate PE's to
all higher-numbered PE's in the tree. As is the case for all of the global
camunication functions, the RESOLVE operation is very fast; hundreds of
thousands of candidates might be "killed" in less than a microsecond in NON=-

VCN 1, for example.

41
3.2 The “Intelligent Record” Metaphor

A large share of the data processing applications for which camputers are now
used involve operations on files that consist of a relatively large rumber of
canparatively small records. In many such applications, the relevant files
may greatly exceed the capacity of the primary storage device. While the
design of NON-VON's SPS, and its interface to the PPS, were in fact based
largely on the essential characteristics of such large-scale data processing
tasks, our concern in the following discussion will be with the case in which
all records are stored in the PPS. Briefly stated, the NCN-VON apprcach to
parallelizing this scrt of record-processing application is based on a Mnearly
one-to-one™ physical asscciation of PE's and records. In such applications
individual records are often, in effect, capable of manipulating their own
contents in parallel., This observation suggests the notion of an
"intelligent" record.

As we shall see shortly, NON-VON is designed to support the massively parallel
manipulation of reccrds that may be considerably larger or smaller than the
local storage available within each PE. Furthermore, the high-level languages
we are now developing for use on NON-VON permit the precise mapping between
records and PE's to be made jnvisible to the user in most applications. The
user-transparency of this mapping is in fact a critical aspect of NON=VON's
support for the intelligent record concept, since it insulates the programmer
fran the details of the hardware, allowing each user-defined logical record o

be treated as if it had its own private processor.

As an alternative to the intelligent record metaphor, the reader may wish to
think in terms of the equivalent notion of "virtual PE's", each consisting cf
3 single processor and an amount of local memory just sufficient to store a

single record cof arbitrary size.

1,1 Associative Operati the NON-VON Machi

Before examining the manner in which NON=-VCN's hardware supports reccrds of
arbitrary size, let us consider the fundamental mechaniszs employed in
accessing and manipulating intelligent records. In contrast with a
conventional ¢oordipate-addressable camputer, whose primitive instructions
access its data by address, NON-VON may be considered a gontent-addressable
machine, i{n which data is accessed on an gssociative basis. In order to
illustrate the manner in which records may be accessed by content, let us
consider an example in which each PE contains a single "employee record”
containing fields for the name, department, years of service, and salary cof
the employee in question. (Scme of these fields will be used in a later

example.)

Suppose we wish to associatively identify the records of all employees in the
sales department, and to perform scme operation on all such records (either
concurrently or in succession). Let us assume that the department name is
stored in a five-character field beginning in the 17th location within each
local RAM, and that all PE's containing an employee record are initially
enabled. We now broadcast the first character in the specified department
name, wnich is an "S", to all PE's, Each PE compares this character with the
contents of its 17th RAM location, and disables itself if the two are not

equal. The precise sequence of PE instructions follows:

BROADCAST8 n"sn . Send the pattern character
STOREA8 B8 and save it in 38

1
READRAM 17 1 Get the data character
COMPARE ; Do they match?
STOREA1 EN1 ; If not, disable this PE

Using a similar set of instructicns, the second character is broadcast and
campared with the 18th location in the local RAM of each enabled PE. After

the execution of five such code sequences, only those PE's whose DEPARTMENT

43

fields contain the string "SALES"™ will remain enabled. It should be notad
that this prbcass of agseciative marking requires time dependent only on the
length of the patternm string, and independent of the number of emplcyee
records. Furthermore, the values of any combination of fields may be used as

eriteria for success of the associative mariking operation.

In the case where different PE's are used for the storage of different types
of records, operations on a given record type must De preceded by the
disabling of all PE's but those containing records of that type. To
facilitate this process, each record {s "tagged” internally to indicate its
record type. If there are only a few distinct record types, the records can
be tagged by associating a different one-bit register with each reccrd type,
and setting its value to 1 in exactly those PE's containing records of the
type in question. In crder to enable all records of a given type, the bit
contained in the appropriate flag register is simply transferred to EN1 using
two register transfer instructions. For a larger number (up to 256) of record
types, a distinet "tag byte" {s associated with each reccrd type, and stored
in the same way as the fields of the record itself. A single BROADCAST and
CCMPARE sequence, follcwed by a STOREA! EN1 instruction, may be used to

disable all PE's except those contailning records of the desired type.

Depending on the application, associative marking is typically followed by cre
of two operations. The first, and most ccommen, is to perform a sequence of
operations in parallel on the records contained in each of the asscciatively
identified PE's., The second involves sending the ™marked" reccrds (or
selected fields thereof) one at a time to the CP in an arbitrary sequernce,
using the RESOLVE and REPORT instructions. The latter operation, wnen applied
Lo asscciatively identified records, is called assecigtive amumeration. ItT
snould be noted that the time required for asscciative enumeration, while

groperticral te thie number of ™matching” reccrds, i1s independent of the 3gial

Ly

number of records in the file. 3oth of the above applications of associative
marking will be illustrated shortly in the context of particular NON-VON
algorithms.

It is of course the case that either a conventicnal computer or a NON=VON=like
machine (and indeed, any device with the power of a Turing machine) is capable
of emulating the behavior of either a content- or coordinate-addressed
machine. In particular, a conventional system can implement associative
operations using only ccordinate-addressable primitives by employing one of
several well-understood partial match algorithms. Because they must provide
for retrieval based on any of the Zk possible cambinations of k fields,

though, such algorithms are associated with significant costs in time, space

and conceptual ccmplexity.

Conversely, NON-VON is capable of addressing data on a coordinate basis
whenever the data under consideration is best understood in terms of an
"address-like" numbering scheme. In such applicaticns, cocrdinate values are
explicitly stored as part of each intelligent record and associatively probed
to obtain the record corresponding to a given address. This technique is

employed in a number of parallel matrix algorithms, for example.

What, then, are the essential differences between NON=-VON's addressing
capabilities and those supported by a conventional von Neumann camputer? Fram
a software perspective, the c¢ritical point is that NON-VON uses a numerical
addressing scheme only when the problem at hand is most easily described in
terms of a coordinate system. In the case where records are more naturally
identified by content, the programmer is relieved of the responsibility of
translating his or her intentions into an artificial coordinate-based

descriptive formalism.

It is our contention that the great majority of the computer applications

45

encountered to date are most naturally described in terms of content-
addressable, as oppposed to coordinate-addressable primitives. While our
argument 1s perhaps strongest for the kinds of "business-oriented” data
processing tasks that presently account for most of our society's expenditures
for large-scale camputing, we believe that a surprising number of "scientific”®
applications might also be more easily specified in content-addressable terms.
By providing direct, low=level support for associative operations, NON-VON

effectively shortens the path between the description and implementation of
many ccammon computational tasks, thus simplifying the task of programming.

The other essential advantage of NON-VON's hardware support for content-
addressability, of course, relates to the time required for associative
operations. In practice, NCN-VON might provide as much as several orders of
magnitude improvement over the fastest associative retrieval operations on a
conventional computer system, without the need for complex, time-consuming,

and area-expensive indexing or hashing operations.

3.4 Packed and Scanned Records

Up to this point, we have considered the case in which exactly cne record is
stored in each PE. Let us now consider the manner in which records
considerably smaller or larger than the capacity of a single local RAM may be
efficiently stored and manipulated within the NON-VON PPS. The former case
involves the allocation of more than one record per PE, a scheme we call

2 r llocation. To illustrate the manner in which small reccrds may
De packed, let us consider an application in which it is desirable to pack as
many fifteen-byte records as possible into the PPS at once. (Although reccrds
of this size would be unccmmon in most symbolic applications, they mignt well

occur in, say, a sparse matrix manipulation or signal processing protlem.)

46

Four such records might be stored in each PE, beginning in local RAM locations
1, 16, 31 and 46. We will use the term record slice to refer to a set of
packed records stored in the séme position within their respective PE's. (In
our example, four record slices are defined.) In general terms, each
operation to be performed on a packed record is carried out by issuing a
separate set of PE instructions for each record slice. In order to move a
single byte froam the fifth to the seventh location of each of our fifteen-byte

packed records, for example, we would first execute the sequence

READRAM 5
WRITERAM 7

followed by the sequence

READRAM 20
WRITERAM 22

and then by analogous sequences of instructions corresponding to the last two
record slices. The high-level languages now under development for use on NON-
VON are intended to relieve the programmer of the responsibility for such
operations. In our Pascal-based language, for example, the user would simply
declare the collection of records to be of type PACKED MULTIPLE RECCRD; a
subsequent assigrment statement involving two fields of that record would be

compiled into the four sequences of instructions discussed above.

Not all operations on packed records, though, are so simply handled. In the
above example, the A8 register is used only for temporary storage of the value
to be transferred, and need not be preserved after the transfer is completed
for a given record slice. In general, however, the contents of certain flag
and byte registers may have to be saved prior to operations on successive
record slices. The question of how best to reduce the overhead involved in
such "state-saving" operations is one of the more interesting considerations

involved in the design of compilers for NON-VCN.

47

While packed records may be quite useful in scme applications, it should be
noted that the space saved by packing is at best proportional to the increased
time required to brcadcast each instruction to all slices. An additional
disincentive is provided by the significant compile- and execution-time
overhead required for the support of operations on packed records. For these
reasons, small records are packed only when this option is explicitly chosen
by the programmer, based on the relative importance of time and space in the

context of a given application.

In the case of records too large to fit within a single PE, each record is
split among several PE's according to one of two schemes., The first, referred
to as the linear allocation method, splits each record among several linearly
adjacent (logical) neighbor PE's. The other, which we call bush allocation,
stores each record in a distinct "tree-shaped" cluster of physically proximate
PE's called a Dusfh. In order to illustrate these schemes, let us consider an
example involving records 150 bytes in length. Under either allccation
scheme, each spanned record i3 split among three physical PE's. We will refer
to the first part of each record as segment A, the second as segment 3, and

the third as segment C.

Using one of the "tagging" techniques introduced above, all PE's containing
the A segment of a record are marked with one tag, those containing B segments
with another tag, and those containing C segments with third. In algorithms
requiring no parallel camunication between different segments of a spanned
record, the A, B, and C segments are treated as if they were distinct record
types, only one of which is enabled at any given point in time. As we shall
see shortly, algorithms in which activation (the state of being enabled) and
data must be transferred in parallel between one segment and ancther within
each record raise a number of more interesting {ssues. Parallel inter-

segmental transfers are nandled differently (and with different average-case

48

time camplexity) in the case of linear and bush allcocation. We begin with a

discussion of the former technique.

In a linear allocation of our hypothetical 150-byte records, segment A might
be assigned to the first PE in the linear sequence used for lirearly adjacent
neighbor cocmmunication (as described in Section 2). Segment B of the first
record would be stored in that PE having linear number two, while segment C
would be stored in the "linear three" PE. Segments A, B and C of the second
record would then be assigned to the linear four, five and six PE's,
respectively. The third record would be similarly split among the linear
seven, eight and nine PE's, and so on. It should be recalled that two PE's
that are logically adjacent in the linear sequence are not necessarily
physically adjacent in the PPS tree. Thus, a single record may be split among
PE's that are not physically contiguous, leading to a physical interleaving of
records within the PPS. The inorder embedding employed in NON-VON 1, for
example, would lead to the allocation shown in Figure 9. (The PE's are
labelled with the record number and segment of the data; segment B of record
3, for example, is labelled 3B.)

To see how linearly éllocated spanned records might be manipulated in the
course of an actual application, let us suppose that our sample records each
describe one of the employees in our earlier example. Assume also that the
first two characters of the DEPARTMENT field are stored in segment A and the
remainder in segment B, and that the salary field is stored entirely within
segment C. Now suppose that we wish to raise the salary of all employees in
the sales department by 10% in a single parallel operation., Earlier in this
section, we presented an informal description of an algorithm for
associatively marking each such emplcyee record in the case of one-to-one
allocation. After disabling all PE's except those containing A segments, we

employ this algorithm to disable all enabled PE's except those having "SA" as

49

SIORCIOROIO IO

Figure 9: Linear Allocation of Spanned Records

the firat two characters of their DEPARTMENT field.

At this point, each PE that remains enabled transfers activation to its right
linear neighbor. This step is realized through the use of a code sequence
that includes a SEND1 RN instruction, which concurrently communicates a
boolean value from each PE to its linear neighbor. At the end of this
sequence, which will not be detailed here, the B segments of all records whose
DEPARTMENT fields begin with "SA" are enabled, and all A (and C) segments are
disabled. The characters "LES" are now matched against the corresponding
characters in all enabled records, leaving enabled only the B segments of all
records corresponding to employees in the sales department. Activation is now
propagated to the C segments of all such PE's, and a sequence of instructions
issued to increase the salary fields of all such records by 10%.

In contrast with the linear allocation scheme, the technique of bush
allocation groups all segments of a given record together physically within
the PPS, as shown in Figure 10. Each of the "tree-shaped" clusters of PE's
enclosed within a rectangle in Figure 10 is called a Rush. Within a given
bush, successive record segments are assigned to PE's according to the
bounded-neighborhood mapping introduced in Section 2.3. The precise manner in
wnich record segments are allocated within a bush, and bushes within the PPS

tree, is presented elsewhere [18].

Bush-allocated spanned records are manipulated in much the same way as their
linearly-allocated counterparts, but using the direct physical tree
connections in place of the indirect linear patiways for the parallel
propagation of data and activation. In cur example applicaticn, the first two
characters of the string "SALES" are matched concurrently in all of the "A"
PC's shown in Figure 10. Each matching PE then enables its parent (a "B™" PE)
using a RECV1 LC instruction. Upon completion of this matching operation,

each PE still enabled executes a code sequence including a SEND1 RC

51

3a

3b

3¢

Record 3

\

/

AN

Record 1

Record 2

Record 4

Record S

Figure 10:

3ush Allocation of Spanned Records

52

instruction to enable its right child (a "C" PE), which then increases its

salary field by 10%. As in the case of linear allocation, the transfer of
data and activation between segments is fully parallel.

There are certain time/space tradeoffs involved in the choice of linear or
bush allocation for spanned records, however, Let us first ccampare the space
required for these two allocation methods. The linear alloccation method makes
progressively more efficient use of the available local RAM as the number of
PE's spanned by each record increzses. In particular, we would expect to
waste only half the space of a single local RAM (32 bytes., in NON-VON 1) per
stored record in the average case. This small amount of waste is due to the
requirement that the beginning of each record be aligned with the beginning of
some PE's local RAM, at least in the method for parallel memory accesses we
have outlined. Asymptotically (with increasing record length), the proportion
of total available RAM wasted due to aligmment thus approaches zero.

By way of camparison, this "™waste factor™ approaches 25% in the case of bush
allocation. To gain an intuitive appreciation for the reason for this
camparative inefficiency, consider the case of a spanned record just large
enough to require 2® PE's for storage. The smallest bush capable of storing
such a record would contain 2®*! - 1 PE's, resulting in a waste of M -1 PE's
worth of RAM (in addition to an alignment penalty), or approximately half of
the total available RAM, for large reccrds., It is easily seen that the
average case waste factor must fall midway between this 50% asymptotic worst
case value and the best case value of no waste, which occurs for records
consuming & - 1 PE's worth of RAM. Thus, linear allocation is more space-
efficient than bush allocation, particularly in the case of large spanned

records.

The space advantage offered by the linear allccation scheme, however, comes at

the cost of an increase in the time complexity of data and activation

53

transfers among record segments. Note that in the worst case, the data in
question must be transferred from the first to the last PE in the record (with
respect to the ordering imposed for -purposes of linear neighbor
communication), The number of instructions required for such a transfer thus
varies linearly with record length in the worst (and, in fact, in the average)
case. In the case of bush allocation, on the other hand, the werst case
occurs when data must be passed between two leaves of a bush. On the average,
such transfers require time logarithmic in the size of the record, a
significant advantage in the case of large records. In the case of tranfers
between syccessive record segments, the bounded-neighborhood ordering reduces
this time to a constant.

One other point is worthy of mention in connection with the choice of
allocation method. First, we note that binary tree algoritlms such as those
described by Browning (4] can only be directly implemented on NCN-VCN when
one-to-one allocation is possible (that is, where records are no larger than
the capacity of a single local RAM, and each is allocated to a different PE).
Many of these algorittms, however, can be easily (and in scme cases,
5mechanically") adapted to apply to meary trees. (One important class of such
algorithms will be described shortly.)

If bush allocation is chosen, such transformed algoritims can be applied %o
spanned records of arbitrary size, providing the bushes themselves are
allocated within the PPS tree in such a way as to preserve an meary tree
structure for purposes of inter-record communication. This requirement Iis
satisfied by a particular kind of bush allocation called lapndscaped allccation
(discussed in (181), in which the bushes are configured as an meary tree.
While a thorough discussion of algoritims for landscaped bushes is teyond the
scope of the present paper, the basic approach inveolves choesing m to be the

number of leaves per bush, and treating each bush as a single ncde in an I—ary

S4

tree, where m = 2k for some positive integer k. (The set of bushes depicted in

Figure 10 is in fact landscaped; forming a five-ncde quaternary tree.)

In the case of linear allocation, no such transformation is possible, since
record segments are interleaved throughout the PPS. The ability to execute
many parallel algorithms intrinsically tied to a tree-structured topology thus

constitutes another significant advantage of bush allocation.

3.5 Examples of Svmbolic and Numerical Algorithms

In order to illustrate same of the more important techniques used in the
course of applications programming, we now consider a few simple NON-VON
algorithms. First, we describe a highly parallel algorithm for camputing the
intersection of two sets. This algorithm is based on a commonly used NON-VON
programming technique involving a ccmbination of associative enumeration and
parallel matching, and is closely related to the algorithms for a number of

other set theoretic and relational database operations.

Next, we introduce an important technique for the massively parallel execution
of algebraically associative operations. Using this technique, such
quantities as the sum, maximum or mean of n numbers may be computed in 0O(log
n) time. We then consider NON-VON's application to a rather "un-NON-VON-like!
task: the simulation of large-scale physical systems. We conclude by
mentioning a few other examples of symbolic and nurerical applications we have

considered for parallel implementation on the NON-VCN machine.

In general terms, the intersection of two sets of is performed by sequentially
enumerating the elements of the smaller set, and performing one associative
probe for each such element to determine if it is also present in the larger

set. Suppose, for example, that we wish to intersect two sets of strings,

55

each stored in its own "virtual PE" (which may be realized using either one-
to-one, packed or spanned records). AS in most NON-VON algorithms, these
strings may be located anywhere within the PPS, since all accesses are made on
a content-addressable basis. The elements of the two sets are distinguished

only by tagging, and may in fact be arbitrarily intermingled.

First, we enable all elements of the smaller set by associatively mariding
those having the appropriate tag. An arbitrary one of these elements is then
sent to the CP using the RESCLVE and REPORT instructions, and marked so that
it will not be chosen again. This value is then matched against all elements
of the larger set in parallel, and a RESCLVE instruction executed to see if
that string is present. If it is, the element is included in the result set.
This procedure is repeated for all elements in the amaller set not already
marked as having been proccessed. The running time of this algoritim is linear
in the cardinality of the smaller set, and independent of the size of the
larger one. The union or difference of two sets may be constructed in a

similar manner.

It is interesting that scme of the best algorithms known for set intersection
on a von Neumann machine (the hashed intersection algoritims described by
Trabb-Pardoc [20], for example) may in fact be viewed as software emulations of
the asscciative apprcach employed in our algorithm. While we have chosen set
intersection to illustrate the "enumeration and probing" paradigm for
pedagogical reascns, NON=VON in fact cffers more significant advantages in the
case of certain "more difficult" operaticns, whose implementaticn on a von
Neumann machine may in practice be quite expensive. One example having
particular importance in relational database management zapplications is the
2qui-ioin operation (5], of which set intersection may in fact be considered a

degenerate case.

The tree-structured topology of the PPS is essential to many aspects of NCN-

VON's operation, and thus plays an important implicit role in all of the
algorithms we have discussed S0 far, None of these algorithms, though, have
made explicit use of the tree connections. A simple example of an algoritim
in which explicit physical tree ccmmunication plays an important role is the
problem of adding a large number of numeric values, each stored in a distinct
"logical record”, We might wish, for example, to determine the total yearly
payroll of our hypothetical firm by adding the salary flelds of all employees.

In the interest of simplicity, let us first consider the case in which each PE
in the PPS contains exactly one employee record. First, we disable all nodes
except those which are the parent of scme leaf node. (This is easily
accanplished in constant time using an algorithm that exploits the fact that
the leaves are the only nodes that can not receive a message fram any
descendant node.) Each of these "penultimate™ nodes is then (concurrently)
instructed to obtain the salary of its left child (using a sequence of RECVS

LC) instructions, and to add this value to its own salary field.

The process is repeated for all right children, at which point each
penultimate node holds the sum of its own salary and those of its two
children. At this point, the parents of all penultimate nodes are enabled,
and all other PE's disabled; the entire procedure is then repeated. After
(log n - 1) such steps, the root node will contain the sum of the salaries of
all (n - 1) employees. In a full-scale NON-VON prototype containing a million
PE's, we would expect the effective execution speed for such a problem to be

on the order of tens of billions of arithmetic operations per second.

3y substituting other algebraiczlly associative operations in place of
addition, this algorithm can be adapted to campute many other values of
practical importance. The mean or maximum salary paid to any employee, for
example, can be similarly camputed in logarithmic time. Such operations can

of course be combined with the techniques described earlier for the

57

associative identification of records satisfying various criteria, allowing,
say, the parallel ccmputation of the average salary paid to employees in
Department C who have been employed for between 3 and S years.

Finally, it should be noted that such algorithms are easily generalized to
support packed records. In our example, we would first add the salary fields
of all record slices, leaving a single ccmbined salary in each PE, at a cost
proporticnal to the packing factor. The algorithm for one-to-one addition
could then be applied without modification.

Spanned records can also be accamodated, but only when landscaped allocation
is employed. In order to adapt our algorithm to the case of landscape-
allocated spanned records, we treat each k-level bush as a node in 2"‘-ary
tree, The descandants of such a node are precisely the children of all leaves
of the bush in question. In Figure 10, for example, the bush containing the
root node is considered to be the root of a two-level tree with a fan-out of
four. Each of the four other bushes in the tree are treated as leaves of this
quaternary tree. In the modified algorithm, each bush adds the salaries of
each of its "descendants" into a running sum; after approximately log,n such
steps, the bush containing the root node contains the sum of all salaries,

In order to convey scme feeling for the diversity of applications for which
NON-VON may provide substantial performance improvements, we now consider a
problem which might first appear to be poorly suited for execution on a tree-
structured machine. This application, while of only modest econcmic
importance by camparison with conventional business data processing tasks, has
for scane time dominated the attention of most designers and users of
"conventional™ supercamputers. Although NON=VCN was in fact designed to have
its primary impact within the mainstream of business camputing, we will
succumb to the temptation to discuss its application to this more glamorous

scientific application. The task to which we allude is the simulation of

large-scale three-dimensional physical systems.

One technique employed in many such simulation problems uses a large number of
records (often on the order of a million), each corresponding to a small
cubical region in the space being simulated. Each record would typically
contain a small number of scalar or vector variables (temperature or fluid
velocity, for example) whose values are known to change over time according to
certain physical laws involving largely local interactions. The behavior of

the system is simulated by repeatedly applying the following two-step process:

1. The communication step. The values of certain variables at a given
point are camunicated to adjacent and ™nearly adjacent™ neighbors.

2. The computation step. A new value is computed for each peint in
the system, based on the values of variables at neighboring points.

Typically, the same numerical operations are performed at all points during
each ccamputation step. The two-step cycle is generally repeated many times to
simulate the evolution of a physical system over time.

Although it was certainly not designed with this sort of task in mind, the
NON=-VCON architecture would in fact appear to offer significant asymptotic
advantages over existing superccmputer designs in the solution of such
problems. Not surprisingly, NON-VON permits the computational component of
such problems to be solved in time ipdependent of n, the number of points
being simulated. To do so, each "cube" of the space being simulated is
associated with a distinct virtual PE, and the sequence of operatiocns is

broadcast to all such cubes for concurrent execution.

More interesting is the fact that NON-VON permits an O(n1/3) speedup in the
camunication ccmponent as well. The algoritim used for communication depends
on the a particular scheme for allocating the primitive cubes among the leaves

of the PPS tree in such a way that the nodes at progressively higher levels

59

cerrespond to progressively larger cubes. While the details of this algerithm
are beyond the scope of the current paper, NON-VON's asymptotic speedup is
based on the fact that the amount of data passing through each internal node
is proportional to the surface areas of these recursively constructed cubes,
and not to their volumes. The time camplexity of a single cammunication step

is thus O(n2/3), and not Q(n), as in the case of a von Neumann machine.

While scientific camputing applications have not been central to our design
goals, we have investigated the potential application of the NON-VON
architecture to a number of numerical problems. Among the applications we
have explored are a number of signal processing, matrix manipulation, graphics
and image processing problems. NON=VON's content-addressable primitives
permit significant absoclute and asymptotic speedups in a number of array
processing applications, but provide particularly natural and efficient
support for prcblems involving the manipulation of sparse matrices.

If numerical applications were expected to constitute a large share of the
workload of such a machine, the incorporation of a full eight-bit ALU within
each PE would almost certainly be warranted, even at the expense of a modest
decrease in processor density. Such a change would alter neither the basic
NCN-VON architecture nor the essential structure of the algoritims we have
developed.

Space does not permit a detailed discussion of all of the applications for
wnich we have designed algorithms (at various levels of detail) for NCN-VON.
It is worth mentioning, though, that the NON-VON PPS supports the execution of
several linear-time sorting algorithms, and that at least one pramising
technique for rapidly sorting very large files is currently uncer
investigation. Highly effiqient parallel algoritims for simple transaction
processing, and for a number of other operations critical to large-scale

cammercial data processing, have also been explored. Although we have thus

60

far attacked only a small samplirg of the problems to which "real world"
computer systems are applied, it has been our experience that mest such
largely symbolic applications prove amenable to massive parallelization on the

NON-VON machine.

61

fa ces

(1] B. Arden, "Analysis of Chordal Ring Networks", in IEEE Transagtions on
Camputers, vol. C-30, pp. 291-301, April 1981,

(2] J. Backus, "Can Programming be Liberated Fram the Von-Neumann Style? A

Functional Style and its Algebra of Programs", in Cammunjcations of the ACM,
vol. 21, no. 8, pp. 613-641, August, 1978.

(3] S. Browning, ™Hierarchically Organized Machines", in C. Mead and
L. Corway, Introduction to VLSI Systems, Addison-Weslev, 1978.

(4] Browning, Sally, "The Tree Machine: A Highly Concurrent Camputing
Envirorment” Ph.D. Thesis and Technical Report #3760, California Institute of
Technology, January, 1980.

(5] E. F. Codd, "Relational Campleteness of Data Base Sublanguages", in
R. Rustin (ed.), Courant Camputer Science Svmposium 6: Data Base Systenms,
Prentice-Hall, Ine., 1972.

(6] M. Flynn, "Same Camputer Organizations and their Effectiveness", in IEEE
Iransactions on Computerg, vol. C-21, pp. 948-360, September, 1972.

(7] C. Hewitt, "Design of the APIARY for Actor Systems", in Conference Record
of the 1980 LISP Conference, pp. 107-118, August, 1980.

(8] D. E. Knuth,
Algorithms, Addison-Wesley, 196G.

(9] H T. Kung and C. E. Leiserson, "Systolic Arrays (for VLSI)", in Sparse
, Society for Industrzal and Applied Mathematics, pp. 256-
282, 1979.

(10] F. Leighton, Exc
i , Ph.D. Thesis, Massachussetts Lnstluute of Technology,
August, 1981,

(11] C. E. Leiserson, Area-Efficient VLSI Camputation, Ph.D. Thesis, Dept. of

Camputer Science, Carnegie-Mellon University, October 1981.

(12] F. P. Preparata and J. Vuillemin, "The Cube-Connected Cycles: A versatile

Network for Parallel Camputation”, in Communications of the ACM, vol. 24, no.
5, May 1981, pp. 300-309.

(13] M. Sehanina, "On an ordering of the set of Vertices of a Connected

Grapn", in Publications of the Faculty of Science of the University of Brno,

62

no. 412, pp. 137-142, 1960.

(14) C. H. Sequin, A. M. Despain, and D. A. Patterson, "Cammunication in X-
Tree, a Modular Multiprocesser System", in Prcceedj of &

Conference of the ACM, Washington, D.C., December, 1978.

(151 D. E. Shaw, "A Hierarchical Associative Architecture for the Parallel
Evaluation of Relational Algebraic Database Primitives”, Stanford Camputer
Science Department Report STAN-CS-79-778, October, 1979.

[16] D E. Shaw, "A Relational Database Hachlne Archltecture", in 2:9ggg§;ng;

Ph.D. The51s, Depart&ent of Canputer Sc1ence, Stanford Univer31ty, 1980a.

(18] D. E. Shaw and B. K. Hillyer, "Allocation and Manipulation of Records in
the NCN-VON Supercamputer”, Columbia Camputer Science Department Report,
August, 1982 (in preparation).

(19] C. Thampsen, "A Camplexity theory for VLSI", Ph.D. Thesis, Carnegie-
Mellon University, August, 1980.

(20] L. Trabb-Pardo, Set Representation and Set Intersection, Ph.D. Thesis
and Stanford Camputer Science Department Report STAN-CS-78-681, December,
1978.

