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The compleuty of linear programming ts discussed i the “intezer” and “real number™ models of .omputation Even though

the integer model i3 widely used in theoretcal computer science. the real number model v mors wsefur for ssomaunz an

algonthm’s running time 1n aciual computaton

Although the eli:ipserd algornthm 1 a poivnomial-ume algonthm n the intezer model. we prove that .t has unpounded
compiexity tn the real number model We conjecture that there 2xsts no polynomial-time aigonthm for the hincar inequalities
problem in the real number model We also conjecture that linear inequalities are strictly harder than hinvar cquahities 0 il
“reasonable” models of computation

Computanonal complexity. models of computation. ethpsowd alzonthm, linear programming. bncar inequshities. pols nomiad-time

algonthm

l. Introduction

Why does the ellipsoid algorithm show that hnear
prozramming problems are “easv” and vet not provide
us with a useful algonthm for the linear programming
problems which anse :n practice? In thus arucle we
present a possible answer.

We assume the reader i1s familiar with the linear
programming problem and with the eilipsoid algonthm
as Jefined. for instance. 1n Aspvail and Stone [2]. An
amusing account of the media coverage of "Khachian's
algonthm™ 1s given by Lawler (9]. The hstory of the
eilipsoid alzorithm was first presented by Traub and
Wozniakowsk: [11]. A companson of the ellipsoid and
simplex algorithms may be found in Lovasz {10).

Although the ellipsoid algonthm does not seem of
practical importance for linear programming, it can be
useful for special instances. [t 1s a powerful new tool for
other combinatonal opumizauon problems: see. for ex-

¢ Poruons of thus paper were first presentec at the Polvnomiai-
Time Work:hop. New York. Februany (9%0
This researsh was supported in part by the Nanonal Science
Foundation under Grant MCS-7823676

ample. Grotschel. Lovéasz. and Schnyver {71

Our thesis is that the widespread confusion as to the
sigruficance of the ellipsoid algorthm stems from disre-
zarding the :mplicauons of the underlving modefs »f
compuranon. The linear programming problem was
shown to be “easy™ in the “integer” model often used in
theoreucal computer science. This was done by showing
that the ellipsoid algorithm 1s good in thus model. If we
wish (0 esumate an algornthm’s runrung tume on most
computers. the “real number” model should be used. In
thus second model the ellipsoid alzonthm s not a zood
ilgonthm.

Numerous improvements on the ellipsoid algonthm
have been proposed. We believe that the thesis ad-
vanced tn this paper would not be aifected by these
varants.

Before stanng our viewpoint more preciseiv. we must
define what we mean by models of ;omputauon, prob-
lem complex:ty, and easy problem.

2. Models of computation

The difficulty of a problem can oniv be discussed :n
the context of a model of computation. For the purpose

he !
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of this paper. a model of computation consists of the
specification of

a number system,
arithmetic,
costs associated with arnthmeuc.

[n this paper anthmeuic operauon shall mean: —. —. .
-

Examples of important models of computauon are:

Real number model tinfinute precision)
number system: reals,
arthmetc: exact.
cost: umut cost for each operauon:

Integer model (variable precision fixed point)
number svstem: integers.
anthmetic: exact or approximate.
cost: propornional to length of numbers.

We comment on these models. Infinute precision
Joes not exist in a finite umverse. {t 1s however a verv
useful mathemaucal abstraction. [t is the model widely
used in algebraic complexity. 1.e.. in the famous matrnx
mutltiplication problem.

Fixed precision {loating point 15 almost unversally
used for numencal calculations whether they occur 1n
science. engineenng. of economics. Complexity resuits
are =zssentially the same as in the infinite precision
model. However only approxumate results can be com-
puted and algorithm stability t5 an important issue. We
use the real number model rather than the fixed prect-
sion floatng point modei to avoid being distracted by
round-off issues.

Variable precision fixed point 1s often used in theo-
retical studies. [t does not model most numencal calcu-
latuon. In parucular. it 1s used in Khachian's paper (8]
(Khachian uses a Turing machine model but that need
not concern us here).

The essence of the difference between integer and
real number models 15 that in the former the cost of an
anthmetic operauon depends on number size. while in
the latter it s independent.

3. Problem compiexity and algorithm complexity

Let the model of computauon be fixed. Then the
minimal cost of solving a problem s called :ts computa-
nonal complexuv (or problem complexity). We often
write complexity for brevity

Algorithm complexity 1s the cost of a particular algo-
rithm. This should be contrasted with problem complex-
ity which 1s the minumal cost over all possible algo-
nthms.

&
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The compiexaty of most problems 1> unknown and
we have to content ourselves with wupper and fower
bounds. Tvpically. an upper bound :s the wost of the best
algorithm known for selving the problem. A lower
bound must be established through a theorem that
states there does not exist an alzorithm whose cost o
iess than the lower bound. Not surpnsinziv. lower
bounds are far harder 10 establish than upper bounds
See however Traub and Wozn:akowsxi [12] where sharp
lowwer bounds are obtaned for imporiant classes of
probiems.

The meodels of computauon defined in Section
would have to be more precisely spectiied 1n order to
rigorously establish lower bound theorems.

We now define easy problem in general. Let o be 2
measure of problem size in the real number model. i
the problem complexity is a polynomial 1n n. we say the
problem has polynomial complexity

[n the integer model. let n be 2 measure of problem
size and let L be a measure of the number of diaits 1o
represent the input. If the problem romplexity 15 2
polynomial in 2 and L. we say the problem has poly-
nomial complexaty.

[n either model. we say a probiem 1s casy if 1t has
polvnomiai complexity. See Aho. Hopcroft and Ullman
(1] for a2 mouvauon of thus defimuion. Easy and hard
provide a crude dichotomy. [f one is :nterested in actual
runnung umes. the coefficients and degree of the poiv-
nomial are important.

We give a simple example. Consider the l:near svs-
tem 4.x =5H where 4 15 an n by n nonsingular matnx.
This problem has 2 ~ # tnput data and n output data.

Consider the real number model. The Gauss elimina-
tion algorithm costs Ot #°) anthmetic operanons. Hence
the complexity of linear systems (that 1s, the problem
complexaty) 1n thus model is at most O« 7'y (Indeed. by
other arguments we know the vomplexity 15 less than
Orn*¥))

Consider next the integer model. Let the total num-
ber of digits used to represent the input data be L Then
there 1s an algonithm (Edmonds [4]) 50 that the numera-
tors and denomunators of the solutions .an be computed
with polvnomal cost in n and L. This proves that also
:n this model the problem complex:ty is polynomial.

4. The ellipsoid algorithm

Since linear programming an be reduced o the
solution of linear tnequalities. we will confine ourselves
0 a study of the latter. We assume there are m equa-
tions in n vanables. We consider here only stnct in-
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equalities and shall assume a solution exists.

We descnibe the ellipsoid algonthm in gualitanive
terms. A sequence of ellipsoids oi decreasing volume s
constructed such that each ellipsoid contains a solution.
The nutial ellipsoid contans a soluuon and the process
1s terminated when an <llipsoid 15 reached whose center
15 a soiunon.

How manv steps are required to solve the inequah-
ties” Let the rauo of the volumes of successive ellipsoids
bv ¢ Then ¢ depends onlv on #. and the number of
steps. &, of the elhpsoid algonthm 13
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where A £,y and A(S) are the volumes of the intial
ellipsoid and of the poruon of the solunion set in £, [t
ts known that this bound is essentially sharp.

R

Complexiry of linear systems and linear inequalities

We have now assembled the background which ena-
bles us to discuss complexity of linear inecuahies in
two important models of computauon. We aiso include
the complexsty of linear syvstems since 1t is tnstructive (o
contrast 1t with the complexuty of linear inequalities.

Consider first the nreger model.

Linear systems As noted above the complexity 15 a
polvnomial 1n 7 and L.

Linear inequalires. The ellipsoid algorithm proves
that in this model of computauon the complexity of
hinear inequalities 1s a polvnomial in n, m1, and L. This
15 why the ailgonthm has aroused much theorztical inter-
2st.

[t 15 important to realize that the values of n. m. L
arising 1n pracuce are very large. Dantzig (3] has esu-
mated that for 1vpical probiems from energy, economc
planrung. the ellipsoid algonthm would 1ake some fiftv
million vears. wiule the simplex algorithm performed n
fixed precision floatng point arnithmetic takes half an
hour.

Consider next the rea/ number model.

Linear systems. As noted above. the complexity is a
polynomial in n.

Linear inequalinnes. The ellipsord algonthm 1 not a
polynomial algorithm. Indeed we shall show that the
complexity of this algonthm s unbounded. We provide
a proof below The complexity of the simplex algorithm
15 finute. Although in the worst case the complexity of

OPERATIONS RESEARCH LETTERS

Ape 1982

the simplex algonthm is at least exponential. for prob-
lems arising 1n practice the simplex algorithm > surpns-
ingly fast (Dantziz [3]). No poivnomial alzonthm s
known. The complexity of linear inequalities 1» open in
this model.

We prove thatin the real number model the eilipsond
algorithm has unbounded complexity This 15 estab-
lished by giving a 2 by 2 example for which the number
of steps of the eilipsoid aizonthm s arbitraniy large.
Hence the ellipsoid alzorithm certaniv does not have
compiexity which 1s polvnomial 1n # «ln contrast. the
sumplex algonthm would take only a couple of steps for
this problem.)

We use the version of the ellipsoid algonthm for the
inequalities 4x <h as defined. for example. 1n Asprall
and Stone {2]. The algonthm zenerates the sequences
P8 Y by

L

Peo- A . T
. t == l8|.>a”, 'U,B' g .
n -

‘ s (B u B
< | B - — .
( n- | T8y )

where 4" is the 1th row of 4 and a'v' "' = 4,
Define a 2 by 2 system of inequalities by

|

b= ‘ -
] - %

(=1 0
a={7 0).

(These starung values lead 10 ciean formulas. Thev
differ from the staruing values of Aspvall and Stone {2}
but our conclustons still apply 1f their starting v ajues are
used.) For thus exampie
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Hence
! ;3 24
c=l=(=1) Y—(:)
3 3

aslongase, (1.1 — 1/5). Let & be the smallest integer
such that ¢, =(1.1 = 1.'s). Then

5,77

log ——
A=2‘ =3 -;, 5 logs
llog ¢+ log *

'
t

We have therefore established the following:

Theorem. The cilipsoid ulgorithm s not polvnoral
afgorithm in the reul number model,

Now assume that 5 1s an :ntezer. Multipiving by s
3ives us inequalities with integer coefficients Observe
that L =logs. Hence our example shows that the num-
ber of steps of the ellipsoid algorithm (and not just the
bound) increases as L.

Although the dependence on L s expected and
acceptable tn the integer model, 1t is not expected 1n the
reai number model. The fact that the number of $eps in
the ellipsoid algonthm increases as L (which of course s
true in ether model) causes the difficulty when the
alzgonthm is used in numerical computauon.

[t is instructive 10 compare the linear transportauon
problem with hnear programming. For the former prob-
lem Edmonds and Karp {5] give an algonthm whose
runmung ume also depends on the size of the input
numbers. Yet their aigonthm 1s of pracucal value. The
difference 1s that for the ellipsoid algonthm tvpical
runming tmes are given bv the upper bound wherzas
this 15 not the case for the Edmonds-Karp algonthm.

6. Conjectures
We propose

Conjecture 1. The linear tnequulities problem does ot
have polvnorual complexity n the reul number model.

We believe that a central problem in malhemaucs.
and computer science 1s (0 ascertain a hierarchy ot
problem difficulty. We say a problem 15 hardes thaln a
second problem if it has hugher ;omplemy. {f prob er:l
4 has polynomial complex:ty while problem B does no ]
then B is harder than A [f both enjoy polynomi
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complexity we can still compare ther complexities by
comparing Jegrees. v

Let the number of vanables in the liner svstem by
the maximum of #, m 1n the tnequalities. Gale [6) asked
whether 1nequaliuies have higher complexity. We pro-
pose

Conjecture 2. The solutton of linear tequaiittes s strectl.
harder than finear svsiems in all “reusonabie’ niodeis ot
computation.
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