CUCs-26-82
PROTOCOL SPECIFICATION, TESTING,
AND VERIFICATION. C. Sunthine fed.)

North-Holland Pubiis Compan;
O IFIP. 1982 hing Company

TOWARDS THE ONIPICATION OF THE FUNCTIONAL
AND PERPORMANCE ANALYSIS OF PROTOCOLS
OR, IS THE ALTERNATING-BIT PROTOQOL REALLY CORRECT?*

Y. YEMINI & J.F, KUROSE
COMPUTER SCIENCE DEPARTMENT
QLUMBIA UNIVERSITY,

NY NY 18027

ABSTRACT

In the past 15 years the alternating-bit protocol has been perhape the most
widely verified protocol, the benchmark of protocol verification techniques; is
it really correct? we claim that the answer is neqative. The problem is that
existing concepts of correctness do not capture an important sense in which a
protocol may be incorrect. Specifically, although protocol goals (e.g.,
delivering messages) may be attained eventually, the time periods to achieve
these goals may increase indefinitely. A notion of correctness which allows one
to consider both the probapility of reaching a goal as well as the time or
computational effort required to achieve the goal is regquired. We present a
novel approach to protocol correctness which unifies functional and performance
considerations using a recently proposed probabilistic semantics for programs,

1. INTRODOCTION -
The objective of this paper is twofold., First we wish to demonstrate that
existing techniques for protocol verification are not sufficient to capture some
important aspects of protocol correctness., Given this problem, we will then
suggest a unified approach to the verification and performance analysis of
protocols, based on a recently developed probabilistic semantics for programs; we
feel such a unified approach will be both necessary and sufficient to resolve the
problem. The remainder of this section motivates this work by discussing the
alternating bit protocol and its correctness. Section 2 then presents an
overview of a probapilistic semantics for programs and section 3 outlines how
probabilistic semantics might be applied in protocol analysis in order to bridge
the traditional gap between the functional and performance analysis of protocols.

1.1. ARE QURRENT NOTIONS OF PROTOCOL CORRECTNESS ADEQUATE
Consider the alternating-bit protocol (7, 1, 2] described in terms of the

finite state autamaton of figure 1. The left autamaton in figure 1 describes the
sender protocol while the right automaton depicts the receiver protocol.

*This work was supported in part by National Science Foundation Grant NSF MCS-
81108319, the Defense Advanced Research Projects Agency and the IBM Corp.

190 Y. Yemini & J Kurose

Although the alternating bit potocol iIn figure 1 delivers messages in one
direction only, our remarks concerning this protocol will also apply to the full
duplex version of the protocol.

A_ Jr =:imecut

(.-T,)
O

2 %
' Ay oA

I
o |
o) —)
A, Or t:imeout

L]
D —_—

2 A
Sender Receiver

Pigure 1-1: THE ALTERNATING-BIT FROIODOL

The alternating-bit protocol has became the benchmark of protocol verification
techniques; it has been verified to be correct using aimost every known
verification technique. But is it really correct? The answer to this question
depends upon one's definition of correctness. Correctness is usually divided
into proving safety properties and proving liveliness properties
[11, 8, 4, 18, 6]. Safety properties are assertions in the Floyd-foare style
stating that if anything ever happens it is not going to be "bad®. Liveliness
properties are assertions that samething "good® will actually be achieved. The
alternating-bit protocol has been verified to satisfy all reasonable safety and
liveliness properties. We do not wish to cast a doubt that the alternating-Dit
protocol has all the safety and liveliness properties that it should be expected
to have. Quite contrary, let us assume that it is both a safe and a live
protocol. Does this guarantee that it is "really® correct? That is, is the notion
of protocol correctness adequately captured Dy the notions of safety and
liveliness?

1.2, A COUNTER EXAMPLE
To answer the question raised in the previous section, let us assume that
- The medium (including the buffer for incaming messages) is perfectly
reliable and does not lose messages.

- When the sender is in the WAg oOr WAy state, there is a non—zero
probability that the sender times out (}:hus sending a2 copy of a data

Towards Unifying Funcrional and Performance Analysis 194

message) befcre an acknowledgment arrives fram the medium.

With these assumptions let us consider the Sequences of messages and
acknowledgments in the medium. Both sequences consist of runs of 8's and 1's. Let
S and R denote the sender and receiver autcmata respectively. Let 5—>R
(respectively, R—>S) denote the sequence of messages (acknowledgments) fram S to
R (R to8),.

Consider now 2 run of 8's in the message sequence 5—>R, The first message
marked @ is received at R which is in the state WMy, R performs the transition to
Mg sending an acknowledgment marked @ back to S, delivers the data message and
then moves to WMy . Subsequent additional copies of the message marked 4 cause R
to respond with an acknowledgment. So the run of acknowledgments is equal in
length to the run of messages that are acknowledged. Now, when the first
acknowledgment is received by S it moves from the state WAg to WDy, where it
picks up and sends the first copy of message 1, thus beginning a run of 1l's in
the S—>R sequence. S then moves to WAy where it responds to any acknowledgment
of message @ with a copy of message 1. Therefore, the length of the run of 1's
in the S—>R message sequence is at least as long as the previous run of 8's.

Now, each time the timer times out when S is in state WA o:WAq, the length
of the respective run in the S—D>R sequence increases by 1. implies that the
runs in the S—>R sequence (and therefore in the R—>S sequence) will always
eventually increase in size., Therefore, while any safety assertion about the
protocol is not violated and any liveliness assertion will eventually became
true, the time periods during which the protocol progresses towards achieving the
liveliness assertions increase indefinitely.

To summarize, while safety assertions can show that nothing bad will happen
and liveliness assertions can show that something good will be attained
(eventually), the time periods for the “good® thing to happen may grow, with
probability 1, to infinity,

1.3. HOW LONG BEFORE THE EVENTUAL BAPPENS AND WITH WEAT PROBABILITY

TWwO interesting aspects of the behavior of the alternating bit protocol are
illustrated by the above example. First, the "bug” occurs in its worst form when
the medium is perfect. Second, the only mechanism to save the day is to quarantee
that same fraction of the messages be lost. That is, using a simple queueing
model one can prove that A necessary and sufficient condition that the

et o ADO

ate exceeding ate 23] g 3 enera e impr. This
criteria can be met by selecting an appropriate time—out interval and introducing
a probabilistic loss mechanism (e.g., before the sender machine sends a copy of a
data message in response to a timeout or the receipt of a duplicate
acknowledgment, a coin should be tossed to determine whether or not a copy of the
message should be sent.)

In order to have a correctness theory that can adequately capture phenamena as
in the example above, it is necessary to incorporate assertions that reflect the
probabilistic behavior of the protocol, such as the probabilistic amount of time
(measured in the length of same sequence of states or events) needed to reach
sane goal or the probability that certain ghenacmena will occur. These
requirements are the basis of this paper.

It should, however, be emphasized that the counter example provided above

192 Y Yermunt & J Kurose

merely serves to underline samre of the issues and poblems which cannot be
nandled by pure functional analysis of protocols. The following claim, we feel,
is much more significant (yet less formal)., Protocols are, among other things,
real-time software. As such, their design is guided by a mixture of performance
and functional otjectives, Therefore the classical software paradigm:
"correctness first then performance® is no longer valid; the new theory must
capture this mixture of design considerations in a unified manner rather than
draw artificial boundaries.

2. THE PROBABILISTIC SEMANTICS OF PROGRAMS

Fram the pceceding discussion, it is evident that a theory is needed that can
adequately capture the probabilistic behavior of a protocol resulting fram the
non-deterministic nature of the mediun and poesibly the protocol itself,
Recently, Kozen (5] and Ramshaw [9] have developed a semantics of probabilistic
programs which we believe can provide the essential link between the functional
and performance analysis of protocols, In this section, we present the salient
features of probabilistic semantics, taking an intuitive rather than a strictly
formal approach; formal descriptions of the semantics can be found in [5] and

(9. It should be cbserved that while the probabilistic semantics presented
here pertain specifically to ALGOL-like programs, the fundamental ideas behind
probabilistic semantics extend easily to other models of computation, including
finite state machines.

An important idea underlying probabilistic semantics is the consideration of
the distribution or measure associated with a program variable rather than the
specific values of the variable resulting fram a specific execution. The vector
X containing the program variables is considered to have same joint distribution,
P on input. We can think of B as a fluid mass distributed over all poesible
values of x; the amount of mass in any region is determined by how likely x is to
have an initial walue in that region. 4 program's execution serves to
redistribute this fluid mass over all values of X. A program can be interpreted
as a Jioear operator which transforms an input distribution P to a final
distribytion p',

The transformation of ¥ to B' (i.e, the redistribution of the fluid mass) is
accanplished by the camposition of transformations resulting fram the execution
of the individual program statements. Each program statement type is interpreted
as an operator or rtransformation whose effect is to transform the distribution
ummediately preceding che statement type. Execution of an assignment statement
simply redigtributes the fluid mass. For example, if x is the only program
variable and is normally distributed around @ before the statement x:=x+l is
executed, then x is normally distributed around 1 after the assignment statement,
An if statement conditioned on the value of X splits the mass of ¥ in two and
each branch of the conditional is executed on cne piece of the split masa, In a
while loop, the part of the mass not satisfying the while test splits off and the
body of the while loop is executed on the remaining mass. The part of a mass
emerging from a pass through a while loop that does not satisfy the while test
splits off and the process is repeated on the remaining mass, Should any mass
get infinitely stuck in the loop, this indicates that for certain input values,
the program will never halt.

The formal semantics of Kozen and Ramshaw, which formalize the above intuitive

Towards Unifying Functional and Performance Analysis 193

ideas, are stated in measure theoretic terms.* Let x range over a set of values
X, P be an initial measure induced by x and S be a program. If S is zhe program:

= F(X)

then S is interpreted as a lfnear transformation that takes the input measure g
to the final measure U°'P where ° 1is the composition operator. This
mtetpret.aum agrees with our intuition and states that the probability that x
hags a value in the set A after the execut:.o? of 5 is the same as the probability
that x is initially (on input) in the set F *(A), which maps to A under F.

The interpretation of a larger program is constructed recursively. If S is
the program Ty;T, and T) and T, have interpretations t; and t, respectively, the
the interpreta 1nczn of S :.s given by t,°t). Suppoee S is the program:

if b then Tl else TZ
Intuitively, we know that if the Ty branch is taken, the initial distribution w
must De conditioned using the infOrmation that on entry to 'ré, X is known to

satisfy b. Let B be the set of all values of X satisfying and define the
measure eg on any set A to be:

eg (A) = RANB)

It can be shown (5] that the interpretation of S with an initial measure of ¥ is
the transformation:

fl'eg * tyieg
Informally, this states that if W' is the measure resulting fram S with initial
measure ¥, then the result of applying p' to some set A is equivalent to assuming

an initial measure ep for T and e;%fo: T and suming the results of applying
the resulting final measures of T T, to A,

Finally, the interpretation of the while statement can also be constructed
recursively. I[f S is the program

while b do Tl
then the interpretation of S should be the same as for
which results fram "unwinding® one pass through the while loop. This means that
the transformation associated with S must be a solution of the transform
equation:

S = e-g * S'tl'eB

A solution to this transform equation can be found using well xnown methods fram
functional ‘analysis; these methods are also discussed in {5].

*In a probabilistic context, a measure W associated with the random variables x
has the following interpretation: if the possible values of x range over a set X
and B is a subset of X, then R(B) is the prooability that the randam variables x
have a value contained in B.

194 Y Yemimi & J Kurose

3, PROBABILISTIC SEMANTICS OF PROTOCQOLS

In order to extend the probabalistic semantics of sequential programs to
protocols, several aspects of protocol operaticn must be considered., Firset,
protocols involve interaction among concurrent camputations leading to randamized
interleavings of activities, Second, protocols involve an unreliable medium
which my (and should) be modeled as a probability transformer. Third, protocols
involve timers which may time—out at random times (relative to other an—qoing
activities)., It is desirable that the prcbabilistic semantics of protocols
should provide the mechanism to model and analyze these features. In what
follows we present a cudimentary description of how this may be achieved. A more
detailed description and applications of these ideas will be published in the
near future.

To describe an appropriate solution, let us return to the alternating-bit
protocol. The protocol consists of three components: the sender, the receiver
and the medium, The sender and receiver states and transitions are completely
specified by the finite gtate autamaton description. [t remains to model the
state of the medium, The state of the medium may be described in terms of two
ghost buffers one ccntaining the S—>R message stream (represented as a sequence
of 8's and 1's) and one containing the R—>S acknowledgment stream.

Let S denote the state of the sender (S assumes the values WDy, WAqg, , WAy)
and let R denote the state of the receiver (R assumes the values ' P gﬂ
and DMy). The state of the medium may be described in terms of the 8-l sequen
valued ghost variables M and A where M(i] (A[i}) contains the i-th message
(acknowledgments) in the medium to be delivered fram S tc R (R to S). The state
of the system is described by the tuple <S,R,M,A&.

The probabilistic approach to semantics considers pcobability distributions
over the states <S,R,M,A> and describes the behavior of the system in terms of a
linear probability transformer. Suppose that the systam state is distributed
according to the probability measure Yy, How does the system transform this
distribution?

Transitions in the state of the system may be caused by either

1. Sender transitions due to an arrival of new data.

2. Serder transitions due to an arrival of an acknowledgments.
3. Sender transition due to a time out.

4, Receiver transition due to an arrival of a message,

5. Receiver transition due to a delivery of data.

fach ane of the above transitions correspords to a probability transformer.
Let T i=1..5, be the probability transformer associated with the i-th
transformation above and let B; denote the condition under which transition i is
enabled, Llet us assume that b\e delays in the medium and arrivals of messages
are exponentially distributed. With these assumptions, it is easy to see that the
System transformer T may be expressed as a linear cambination

Towards Unifying Functional and Performance Analysis 195

T = 2T ep * agTy’ep, © 3T3'ep, * 1 Ty'ep, + asTs'eg,

Where is the oonditioning operator of the previous section and 3 is_ a
coefficient representing the probability that the respective transition will
fire, once enabled.

It is interesting to note the analogy between functional and performance
analysis of protocols. First, the probability transformer of the system is
analogous to the transition matrix of the respective Markov process; the
existence of a fixed point of the system probability transformer is similar to
the ergodicity of the Markov process, Secondly, modular decamposition of
correctness proofs (11, 3], i.e. considering the receiver and the sender
separately and relating their activities through their interface with the medium,
is analogous to the conditioning process which decamposed the system transformer
to a sum of respective local operators.

4. CONCLOSIONS

In this paper, we have demonstrated that current protocol verification methods
cannot capture certain correctness properties of protocols. We have suggested an
approach to protocol verification which captures these properties through a
unified consideration of the functional and performance aspects of protocols.
Our work in this area is still in its early stages; results fram further research
concerning the development and applicability of this early work will be reported
in the future.

REPERENCES

(1] Bartlett K.A,, Scantlebury R.A., wilkinson, P.T.
A Note on Reliable Full-Duplex Transmission over Half-Duplex Lines.
Samupnications of the AM 12, No 5, May, 1969.

{2) Bochman, G.V.
Finite State Description of Cammunication Protocols,
Camputer Networksg 2, October, 1978.

{3} Bochman, G.V. and Sunshine, C.A.
Formal Methods in CCammunication Protocol Design.
IZEE Iransactions on Commmpicationg OOM~28:624-631, 1988.

(4] Bailpermn, B. and Owicki, S.
Verifying Network Protocols Using Temporal Logic.
In Irends and Agglicationg Symposiim. MBS, 1988,

[S] KRozen, D.
Semantics gf Probabilistic Programs.
In Proceedings of the 28-th Svmposiud on the Foundations of Camputer
Scienge. IEEE, October, 1979,

i96 Y Yemuni & J Kurose

(6] Lamport, L.)
Samethime is Sametimes Not Never: A Tutorial on The Temporal Logic of
Programs.
In Proceedings of the Seventh Annual Svmmposium on Principles of Programming
Languages. &AM, 1984.

(7] Lynch, W.C.
Reliable Full-Duplex Transmission over Half-Duplex Telephone Lines.
Comupicationg of the AM 11, No 6, June, 1968.

{8] Manna, Z.‘and Pnueli, A,
verification of Corcurrent Programg: Ihe Temporal Iramework,
Technical Report, Camputer Science Department, Stanford University, 1981.
Report No. STEN-CS-81-836,

{9] Ramshaw, L.H. .
Formalizang the Analysis of Algorithma.
PhD thesis, Camputer Science Dept., Stanford University, 1979,

(18] Schwartz, R. and Melller-Smth, M.

Notes on a Temporal Logic Specification of the Alternating Bit Protocol.
Technical Report, Cmpl.xter Science Lab, SRI Int., 1988.

[11] Sunshine, C.A. (ed.).
Artech House, 1981.

