CUCs-20-81

SELFISH OPTIMIZATION IN COMPUTER NETWORKS

Yechiam Yemini
Department of Computer Science
Columbia University

New York, New York 10027

August 1981




SELFISH OPTIMIZATION IN COMPUTER NETWORKS®*

YECHIAM YEMINI,
COMPUTER SCIENCE DEPARTMENT
COLUMBIA UNIVERSITY
NY, NY 10027

ABSTRACT

This paper describes two applications of decentralized (Pareto)
optimization to problems of computer communication networks. The first
application is to develop a generalized principle for optimality of multi-hop
broadcast channel access schemes. The second application is to decentralized
flow-control in fixed virtual-circuit networks (e.g., SNA) using power
maximization as the performance index. The decentralized approach to optimum
network behavior yields, among other results, characterization of fair global
objective functions, and optimal decentralized greedy network control
algorithms. The main conclusion of this paper 1is that Pareto-optimality
methods can be successfully used to develop optimal decentralized behavior
algorithms where a centralized approach is (sometimes provably) not
applicable.

*This research has been supported in part by an NSF grant No. MCS 8110319
and by the Defense Advanced Research Project Agency of the Department of
Defense.

*This paper will be presented at the 20-th IEEE conference on Decision and
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1. INTRODUCTION

How should one derive optimal behavior algorithms for computer
communication networks? The classic approach to the problem views the network
as a single entity to which a global performance objective is assigned. Tais
leads to a centralized optimization problem. The major shortcoming of this
approach is that when one has overcome the complexity of deriving an optimal
solution the network problem is still not solved, since the centralized
objective usually leads to a centrzlized behavior policy. This centralized
optimal behavior needs to be decentralized to serve as an adequate solution.
The process of decentralization is usually more difficult than that of solving
the original optimization problem. Therefore decentralization is usually an
ad-noc approximation process with little formal methodological support.

An alternstive approach is to view the network as a loose collection of
interfering agents (i.e., nodes, processes), each of which is assigned a
selfish utility function whicn it seeks to optimize. The problem then becomes
that of finding an adequate compromise among the selfish needs of the agents.
One usually adopts Pareto optimality as the norm for rational behavior. That
is, the agents should select a policy which is not dominated by any other
policy*. The major advantage of this selfish approacn to optimal network
behavior, compared with the global approach, is that it generates policies
that are immediately decentralized. The major disadvantage is that global
optimization is much better understood, formally speaking, than selfish
optimization.

The objective of this paper 1s to demonstrate the value of selfish
optimization in providing useful solutions to decentralized network control
problems. We present two successful applications of the selfish zpproacn to
two computer network problems: broadcast channel sharing and flow control.
The presentation style is intentionally semi-formal, and the models selected
are as simple zs possible to avoid unnecessary matnematical complexity that
would hide the forest behind the trees. (We do, nowever, point to some "trees"

of further research interest).

*In the sense that no subset of agents can improve their performance without
a performance degradation of some other agents.



2. SELFISH PACKET BROADCASTING

This section briefly summarizes results published in [YEMI 79] and is
included for the sake of completeness. We give only a rudimentary description
of the results: the interested reader may find precise derivations in [YEMI
791.

Consider the problem of channel sharing, (i.e., designing a multiaccess
scheme), in a network of packet switched broadecast units. The single-hop
access scheme problem, when all the broadcast units can hear each other, has
been thoroughly explored (see [TOBA 80] for a recent survey). However, the
multi-hop problem remains a terra-incognita. Therefore, let us consider the
general case of a network where the broadcast units are not necessarily within
hearing distance of each other. Let us also assume that péckets are routed
using a fixed routing scheme*. Finally, the communication channel will be
assumed to be time-slotted to packet-size slots. A transmission may only take
place within a certain slot, and will be successfully received if it does not
collide with another transmission at its destination.

An access scheme is an algorithm to decide which busy units* should be

selected to transmit in any given time slot, that is, an algorithm to schedule
channel access rights.

Let us ‘establish a mathematical model of the problem. We use numbers
{1,2;...N} to denote the broadcast units. Consider an access algorithm: at any
given slot unit i may be assigned a transmission right with probability p;; it
will use this right and transmit if it is busy. Therefore the behavior of an
access algorithm may be described by its choice of transmission policy vectors

Rﬁ (p‘] 7921"'1pN)°

¥This assumption may be easily relaxed to allow general models of routing;
it is only used to simplify the discussion.

%A unit is said to be busy if it has packets ready for transmission



Let S;(p) denote the thruput (i.e., probability of successful transmission)
obtained by unit i when the transmission policy is p. The performance of an
access algorithm is completely described by specifying the transformation

S(p)® (sq,S0,...,5y), of transmission policies to attainable thruputs.

The global approach might seek to optimize some global function of the
thruput vector S(p) (e.g., the average thruput). Clearly an optimal solution
to the global problem is to select a maximal set of non interfering units and
let them transmit with probability 1 while the others are kept quiet.
Unfortunately, this policy cannot be effectively decentralized.

The selfish approach considers the thruput Si(g) as the utility of unit i;
the different units seek to jointly maximize their individual thruputs. A
thruput vector S is sald to dominate the vector S' if 3;>3'; for all i, with

at least one strict inequality. A thruput vector is Pareto optimal if it is

not dominated by any other attainable thruput vector. A transmission policy
which attains a Pareto optimal thruput is said to be a Pareto optimal policy.
An access scheme would clearly prefer Pareto-optimal transmission policies.
The selfish optimization problem is to characterize Pareto optimal

transmission policies.

Let p, denote a Pareto optimal policy whose thruput is S,. A small
perturbation in the policy A p results in a perturbation A S in the thruput;

the two perturbations being related through:

AS=05Ap

Where 5§ is the Jacobian matrix of the transformation §(E)' It is easily

demonstrable that a necessary condition for Pareto optimality of a policy p is

that the Jacobian matrix 6§(9_) be singular at p.

Define E.l to be the expected number of slots that are empty at the

destination of unit i given that unit i is busy, and S to be the thruput of

i/j
unit i, given that unit j is busy and interferes with unit i. It can be shown
[YEMI 79] that the necessary condition for Pareto optimality is that there

exist multipliers 2 (& {,& 5 ...,&Xy) such that:



G E = Z %G §/1 (1
F6I(1) 353
where I(i) is the set of units with which unit i interferes.

These optimality conditions may be interpreted as follows. Each unit is
given a multiplier & which indicates its relative "dollar" value. The left
hand side of the equation represents the dollar value of channel loss by unit
i due to silence at its destination; the right hand side represents the dollar
value of thruput that unit i1 might interfere with; we thus use silence and
thruput to denote the two sides of the equation (1) respectively. The
optimality rule may now be restated: if a transmission policy is Pareto

optimal than it must equate "silence" and "thruput" of each unit. This

optimality principle is intuitively plausible; a broadcast unit should only
waste its silence "dollars" if it can expect other units to use this silence
to gain an equal amount of thruput "dollars".

Let us briefly apply these optimality conditions to the classic multiaccess
problem of a single hop network. Suppose the broadcast units use the Slotted-
ALOHA transmission policy, i.e., a busy unit tosses a coin with probability of
transmission p and decides whether or not it should transmit accordingly. The
problem is to find an optimal transmission policy p. The classic solution is
to maximize the overall thruput S=np(1-p)"?, where n is the number of busy
units; this is maximized when p=1/n. Let us apply the Pareto optimality
conditions to this model; equating silence=(1-p)? and thr‘uput:(n-=-1)p(1-p)n'1
yields that the optimal choice of p is p=1/n, in agreement with the global
approach. ’

Let us apply the Pareto optimality condition to the Urn scheme [YEMI 78];
again, we consider a single hop network with n busy units. The Urn scheme
selects at each slot k random units out of the N units and gives them access
rights. The problem is to find a k which optimizes the performance. The global
approach yields [YEMI 78] k=(N-n+1)/n as the value which optimizes the overall
thruput. Now, one can easily verify that:

(N-k-1>
. n-1
silence = —=3meuo

(1)



If silence and thruput are equated the conclusion is that the optimum
policy is to select k=(N-n+1)/n, again in agreement with the global
optimization result.

There is more, however, to these results than the mere reassurance that
global optimization results may be rederived using selfish optimization. Both
Slotted-ALOHA and the Urn scheme require knowledge of the channel load n for
their control. This knowledge is not readily available. The characterization
of Pareto optimality in terms of silence and thruput suggests new access
control algorithms for both schemes. Namely, rather than estimating n, which
is not directly observable, the control algorithm should estimate silence and
thruput and adjust the control parameters (p or k) to equate the two
quantities at each unit. While these algorithms require further study (e.g.,
how do we guarantee convergence), they are inherently decentralized and do not
depend on information which is not observable. In addition, the
characterization of Pareto optimal policies 1is parameterized by the cost
multipliers &. By assigning different values to the broadcast units, one
obtains a priority mechanism for access schemes. Finally, the selfish approach

was successfully applied to a very general multi-hop network, a problem that

has so far resisted the global approach.

3. SELFISH PCWER CONTROL

A major objective of flow-control mechanisms in computer communication
networks is to regulate the use of shared communication resources to achieve
an adequate delay-thruput response. As with other queueing systems, one has
two conflicting objectives: to maximize thruput and to minimize delay. It was
suggested by Giessler et al. [GIES 78] that the dilemma may be resolved by
using a single performance measure power, defined as the ratio of thruput to
delay. In [GIES 78] and then [KLIE 79] the properties of power and its



generalizations were explored. It was shown that maximization of power offers

a desirable network objective.

Bharath-Kumar and Jaffe [KUJA 81] considered power-maximization as a
mechanism to control flow over virtual circuits (VCs). They show that certain
notions of global network power, when optimized, lead to unfair flow control

mechanisms.

In another paper [JAFF 81] it is shown that different notions of power
cannot be optimized by decentralized algorithms based on local observations of
thruputs and delay. This negative result epitomizes the shortcomings of using
the global optimization approach and supports our application of the selfish
optimization approach to derive decentralized optimal power control

algorithms.

To fix the ideas, consider a packet-switched computer communication network
which provides virtual circuit communication between nodes. We assume that a
VC, once established, uses a fixed path through the network. This is the view
on which the SNA and TYMNET architectures are based, for instance.

The VCs share the communication resources over which their traffic is
multiplexed. The problem is to derive a flow control mechanism for the VCs to
adjust their mutual thruputs in order to maximize their power. 1In this paper
we consider a simple example to illustrate the issues and derive optimal
selfish policies. (The generalization of our results to a network is discussed

in a forthcoming paper).

Consider the case of two VCs sharing a single link. This is illustrated in

figure 3-1 below.

Let x and y denote the thruput rates of VC-1 and VC-2 respectively and let
U be the capacity of the physical 'link shared by the two virtual circuits. We
assume that arrivals to the virtual circuits are Poisson and that transmission
time is exponentially distributed with rate 1. The expected delay over the

VCs is given by D;(x,y)=1/(p-x-y).
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Figure 3-1: Two interfering virtual circuits

The utility of each VC is its power, given by

x(p-x-y)

P1(x,y)9 x/Dq1(x,¥)

Pz(x,y)e ¥/Do(x,y) = y(H-x-y)

respectively. The objective of a selfish power control policy is to have each
node select a Pareto optimal thruput.-

A necessary condition for a thruput pair (x,y) to be Pareto optimal is that
the Jacobian matrix of the transformation P(x,y)& (P1,P2) is singular. Tais
is equivalent to the existence of a multiplier &« such that:

0= QPJ( + R} = K (P-2x-y) - X 2)
0 = C{F§ + P}2, = - &y +(P-x-2y)

Where Pi and P§ denote the partial derivatives of Pi(x,y).

It is easy to see that if &=-1 then these optimality conditions are
equivalent to x+y=U while for a k-1 these conditions are equivalent to x+y=n/2.
Clearly the first case i.e., &=-1 is not an adequate policy (the physical link
will be saturated with the flows causing the power of both VCs to be 0).
Tnerefore, we conclude that the set of Pareto optimal thruput pairs is the

line x+y=p/2.




3.1. Fair Global Performance Measures

In [KUJA 81] a number of global performance measures, based on the
functions of the individual powers, are examined. The main concern of that
paper is with fairness of global objectives. A global performance objective is
fair if it does not lead to a policy which provides zero power to any of the
VCs.

Given a global objective measure, one may consider its level curves in the
(x,y) thruput plane, i.e., the curves on which the performance measure is
constant. A sound global objective should not select an optimal thruput pair
which is not Pareto optimal. Theréfore, optimal thruput pairs lie at the
meeting points of the line x+y={/2 and the highest attainable level curve of
the global objective.

One can see immediately that any linear combination of individuzl powers is
not a fair global objective,* since its level curves in the (P1,P2) plane are
straight lines and would select the policy yielding the power pair (O,(p/2)2)
(i.e., corresponding to the thruput pair (0,p/2)) if VC-2 is given more weight
and the policy (M/2,0) if VC-1 is given more weight. This lack of fairness may
be easily generalized to any global objective function, the level curves of
wnich are concave with respect to the Pareto optimal line when observed in the

direction of the origin.

On the  other hand, consider the global objective  function
g(x,y)s P1(x,y)P2(x,y). The level curves of this function in the (P1,P2) plane
are strictly convex with respect to the line of Pareto-optimal powers. Tne
optimum global policy thus intersects the Pareto-optimal line in its interior.
Moreover, g(x,y) is symmetrical so that the optimum thruput pair allocates
identical thruputs to both virtual circuits. These properties of the product
measure clearly render it fair [KUJA 81].¥ To summarize, the geometry of

Pareto-optimal solutions provides an easy explanation of fairness.

¥*That is, except for the trivial case when all powers are taken with equal
weights and thus any Pareto optimal policy is globally optimal.

*Tf we choose a product measure with the Pi's raised to different powers,
other fair optimum behaviors are obtained.



3.2. Greedy Algorithms For Selfish Optimization

How can individual VCs adjust their thruputs on the basis of local
observations, to reach a Pareto optimal policy? We shall consider greedy
algorithms i.e., algorithms where a VC adjusts its thruput rate according to
the gradient of its utility (power). Formally, let Pl be the gradient of the
power of VC-i, a greedy algorithm is one where

dx _ ypla!
3t = oP2

| (3)
=0

Here the vectors .gi represent directions along which the gradient is
projected. The idea behind greedy algorithms is that a VC should change its
thruput (the left hand sides of the above equations) proportionally to the
increase in utility incurred to it. The increase in utility is represented by
a projection of the respective gradient, given by the right hand side of the
equations 3 . Note that we use a continuous-time approximation of a discrete-
time process. This helps simplify the computations while not influencing the
results since our model is essentially stationary and the model of time has no
intrinsic significance.

Before proceeding to analyze the dynamics of greedy algoritnms let us
consider the steady state limit of the process described by equations 3.
During a steady state the thruput pair (x,y) satisfies:

0 = 5p'4!
| (4)

Let us note in passing that the greedy algorithm presented in [XUJA 81] is
obtained by selecting _519 (1,0) and .329 (0,1). This selection represents a
process wWhere the VCs take turns adjusting their thruputs; each VC, in its
turn, maximizes its power for the given thruput of the other VC. Therefore,

the thruput zdjustment process is such that each VC only considers its own
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influence on its power (i.e., the respective component of the gradient)
ignoring the changes of power resulting from the choices of the other VC. The

solution of the steady state equations for this choice of _} is easily
computed to be (p/3,p/3), which is not Pareto optimal. Clearly, the reason why
this greedy algorithm does not lead to an optimal solution is the lack of
coordination in the choice of direction vector'sg_i (the two nodes are pulling

the cart in orthogonal directions).

It may be easily demonstrated that the steady state equation (4) is
equivalent to the necessary conditions for Pareto optimality (equation (2)) if

1

and only if the direction vectors a* are equal. Therefore, in order to ensure

that the greedy algorithm will converge to the Pareto optimal line x+y=p/2,
all that is required is to select the direction vector a in the linear space

spanned by (&,1) where a#-1.

Having seen the significance of the projection vectors é_i for proper
coordination, let us study their role further. Returning to equation 3, we
may interpret the right hand side as the directional derivatives of P! in the

direction specified by al. Therefore, one possible interpretation of the

greedy algorithms is that the two VCs alternate synchronousely adjusting their
thruputs to maximize their power in the direction indicated by the respective
3}. When the two direction vectors are identical, another useful
interpretation of the greedy algorithm arises. Namely, suppose each VC
iterates adjusting its thruput proportionally to the observed changes of its
power. However, let us assume that the two VCs iterate at different speeds.
The coordinates of the common direction vector a represent the relative speeds

of iteration of the two VCs.

Finally, let us consider the stability of convergence of the greedy
algorithm when both VCs use the same direction vector a=(a,1). The equations
describing the evolution of the greedy algorithm (equation 3) are linear witn
a matrix whose eigenvalues are &+1 and 2(&X+1). Therefore when &<-1 the
algorithm is stable (note again the singular role of the value a=-1).
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3.3. Open Problems

When one tries to add more realistic details to the simple model of
interaction described above, a few major mathematical difficulties arise,
requiring the development of adequate tools. The first problem is that of the
interaction between the control algorithms and the underlying stochastic
processes. In our model it is assumed that convergence to a steady state is
much faster than the speed of iteration of the control algorithm. Tnis renders
the algorithms quasi-static; that is, the time between any two iterations of
the algorithm must be greater than the time constant of the steady state
convergence. What if we wish the control algorithm to proceed at faster
speeds? The simple mathematics above is no longer applicable. What is the
dynamics of the control algorithm when it is no longer a quasi-static process?

Another problem is that of incorporating delayed and partial observations
into the model. In the model above the information required for control (e.g.,
the change of power incurred) is available instantaneously. This makes sense
for quasi-static control algorithms, but what if the control algorithm
proceeds at a speed comparable to the time it takes to obtain observations?

Finally, modelling the stochastic asynchronous operation of the distributed
agents is important. The model above assumed that the control algorithms
executed by the different agents are synchronous. The physical significance
of the relative speeds in which the agents execute their algorithms was
discussed. In reality, however, one can expect asynchronous operation. How
should the models account for this?

4, CONCLUSIONS

The two examples discussed here demonstrate the advantages of the selfish
optimization approach in providing an explanation of optimal decentralized
behavior and offering useful decentralized optimality algorithms. In a recent
work [BROO 82] similar ideas have been successfully applied to generate
optimal decentralized traffic light control algorithms. Other applications of
selfish optimization to'network problems are currently being pursued.
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