cucs-17-81

Supsyscen

(o))

A Highly parallel VLsI-Zase

o the NON-VON Database Machine
[Extended Abstraci)

David Elliot Shaw

qussein Ibrahim

Department Of Computer Science
Columbia University
Gio Widerhold
Jim Andrews
Department of Computer Science

Stanford Universitvy

A Highly Parallel VLSI-Based Subsystem
of the NON-VON Database Machine

(Extended Abstract)

David Elliot Shaw
Hussein Ihrahim

Computer Science Departmens
Colurnbia University

Gio Wiederhold
Jim Andrews

Computer Science Department
Stanford University

July 1981

Summary

The NON-VON machine (portions of which are presently under construction in the Departmeat of Computer
Science at Columbia, in cooperation with the Knowledge Base Management Systems Project at Stanford) was
designed to apply computational parallelism on a rather massive scalc to a large share of the information
processing functions now performed by digital computers. The NON-VON architecture comprises a tree-
structured Primary Processing Subsystem (PPS), which we are implcmenting using custom nMOS VLSI chips,
and a Secondary Processing Subsystem (SPS) incorporating modified, highly intelligent disk drives. NON-
VON should permit particularly dramatic performance improvements in very large scale data manipulation
tasks, including relational database operations and external sorting. This paper includes a brief overview of
the NON-VON project and 1 more detaiicd discussion of the structure and function of the PPS unit and its
constituent proccssing elements,

This rescarch was supported in part by the Defense Advaanced Research Projects Agency under contract
N00039-80-G-0132.

1. Introduction

The past decade has seen great progress in the development of poweriul tools for the management of large
and complex databases. Most evident, perhaps, is the tremendous influence of the rclationai model of data
[Codd, 1971}, whose great promise lies in its potential {or insulating those who must administer and use the
database from the peculiarities of its physical structure, focusing their attention instead oa the underlying
logical constructs defined by the problem at haad.

With this {ramework has come a number of high-level linguistic tools for the definition, organization,
manipulation and recrieval of data. A common theme evident in the design of many such languages has
beea the incorporation of mechanisms supporting the nonprocedural specification of data manipulation and
query tasks. [n particular, a wide range of languages based on the relational and predicate calculi (Codd,
1972; Gallaire, et al., 1978; Shaw, 1980 have been introduced that allow the user to indicate what database
operations are desired while minimizing the requirement for an explicit specification of how these operations
are to be performed, Applying techniques borrowed {rom the field of Artificial [ntelligence, some researchers
(Wiederhold, et al., [1981}; Shaw, {1980]) have begun to construct systems capable of communicating ia an
even more “human-iike” manner, making reference to domain-specific entities and relationships in the “real

world”.

In view of the rapid progress during the past decade in the development of powerful high-level tools for
managing large, complex databases, the extent to which these tools have been appiied in practice is quite
disappointing. While a certain period of time must of course be allowed for the transfer of any technological
advance from the research laboratory to its intended sites oi application in the public or private sectors, there
is reason to believe that the diffusion of contemporary database management technology has been severely
retarded for more particular reasons. Specifically, the very limited actual peaetration to date of relational
systems into the industrial, commercial and military data processing arenas seems to be attributable in large
part to the rather serious time inefficiencies which characterize the performance of most currently operational

systems.

Recently, a great deal of commonality has become apparent among the most time-consuming operations
involved in a surprisingly large aoumber of superficially disparate computational approaches to high-level
database management. Although these operations have been [ormulated in dilfereat ways by different re-
searchers, their essential characteristics are captured by the “dilicuit” operators of the relacional algebra
defined by Codd [1972]. Among these operations are the set theoretic operators union, intersection, and set
difference, the relational operators equi-join and projection. and several other operations derivable from these
five. Although the best sequential algorithms known for these operations are still quite inefficient on 3 von
Neumann machine. particularly in the case of very large databases, we believe it possible to design alternative
machine architectures supporting the highly efBcient parallel execution of each of these relational algebraic
operations, along with a number of other operations of practical inportance, inciuding large-scale external

sorting. [t is this belief which motivated the design of the NON-VON database machine.

-2~

primary buffer secondary

processing : processing
e —
subsystem control subsystem
(PPS) unit e B

Figure 2.1. Organization of the NON-VON Machine

2. Overview of the NON-VON Architecturs

The theoretical basis for the NON-VON architecture was developed in the course of a doctoral research
project at Stanford [Shaw, 1979], along with a mathematical analysis of the attainable time complexity of
the equi-join and projection operators on such a machine. The architecture was shown to permit an O(logn)
improvement in efficiency over the usual evaluation methods employed on a conventional computer system,
without the use of redundant storage, and using currently available and potentially competitive technology. In
many cases of practical import, the proposed architecture was also found to permit a significant improvement
(by a factor roughly proportional to the capacity of the Primary Processing Subsystem, described shortly) over
the performance of previously implemented or proposed database machine architectures based oa associative
storage devices.

Subsequently {Shaw, 1980a}, algorithms for evaluating the selection, restriction. union, intersection and se¢
difference operators (each with comparable or more favorable performance improvements) were also described,
and the key procedure on which the architecture is based was contrasted with a related, but in this application,
inferior method based on an associative sorting technique described earlier in the literature. More recently,
we have been studying several highly efficient, linear expected time algorithms for external sorting oo the
NON-VON machine.

The proposed machine involves a Secondary Processing Subsystem (SPS) based on a bank of intelligent
rotating storage devices and designed to provide very high access and processing bandwidth, along with
a smaller, but {aster Primary Processing Subsystem (PPS), again utilizing a high degree of parallelism, in
which the operations in question may be very quickly evaluated. The top-level organization of the NON-VON
machine i3 illustrated in figure 2.1,

Transfer between the two devices is based on a procedure called hash partitioning, which is performed
entirely in bardware by logic associated with the individual disk heads, and which divides the argument

relations into key disjoint buckets suitable for “internal” evaluation. Details of the SPS architecture, along

with a description aad analysis of the hash partitioning algorithm, have been presented elsewhere {Shaw,
1980aj; in this paper, we will focus on the structure and {unction of the PPS unit, which is being implemented

using custom nMOS VLSI circuits.

3. Organization of the Primary Processing Subsystem

The PPS unit functions as the site of what we call internal evaluation of the reiational algebraic and ocher
operations performed by NON-VON. Borrowing ftom the terminology of sorting, we use the term “internal”
to distinguish that case in which the operand data is small enough (or can be broken into small enough pieces)
to fit cntirely within the primary storage device—in our case, the intelligent PPS unit; “external” evaluation
refers to the case where the data exceeds the capacity of the PPS, and must be selectively partitioned and
transferred {rom SPS to PPS.

For purposes of this discussion, the PPS may be thought of as composed of a large number of very simple
processing elements (PE's}—on the order of several thousand, if a [ull-scale proiobype were to be built using
1981 technology, and perhaps a hundred thousand during that period during which NON-VON-like machines
would in fact be targeted for practical use—interconnected to form a complete binary tree. With the exception

of minor differences in the “leafl nodes”, each PE i3 laid out identically, and comprises:

1. a single common data bus,
2. a very simple (and area-efficient) one-bit-wide ALU for local lag manipulation,

3. an intelligent memory/comparator unit containing 32 bytes of local random-access
storage and capable of arithmetic comparisons between values derived from the bus
and from specified memory locations, and

4. [/O logic for local commuinication with the parent and (except for “leaf” PE's) two
children, and for global data transfers, using the tree-structured inter-PE bus on a
dedicated, “broadcast” basis, as explained in the pext section.

The top-level structure of a single PE is illustrated in Figure 3.1.

By contrast with a conventional micro;arocwor, no finite-state control logic is incorporated within the
constituent PE’s. Instead, a single programmable logic array (PLA) associated with each chip services all
PE's on that chip, as described below.

The PPS will be implemented largely using two custom-designed VLSI chips, which we cail the PPS
Bottom Chip and PPS Middle Chip. Botiom Chips will each contain a subtree of the full PPS tree, and
will thus embody 2% — 1 constituent PE's for some k depending oa device dimensions. Rough preliminary
estimates based oa 2.5 micron design rules suggest that a value of & = 3, corresponding to 7 PE's per Bottom
Chip, might be feasible for our initial prototype. Within a single Bottom Chip, the PE’s will be configured
according w0 a “hyper-fI” embedding of the binary tree [Browning, 1978}, as illustrated in Figure 3.2.

Because of its fixed [/O bandwidth requirement, independent of the size of the embedded subtree, the
realizable capacity of the PPS Bottom Chip will increase quadratically with inverse changes in minimum
feature width, thus permitting dramatic increases in the computational power of the NON-VON PPS unit

as device dimensions are scaled downward with continuing advances in VLSI technology. (During the target

A

to parent PE

i/0
random
::2::»-3 comparator bit-wide
Y unit ALU
(32 bytes)

S i/0 —
to left child PE to right child PE

Figure 3.1, Components of a Single Processing Element

time frame for a production version of a NON-VON-like machine, a k value of 7 or 8, corresponding to several
hundred processing elements per PPS Bottom Chip, scems {easible).

The PPS Middle Chip, on the other hand, will embed 2™ — 1 “internal nodes” of the PPS tree (where
m is a constant determined by pinout limitations, and independeant of device dimensions), serving to combine
2m—1 subtrees, embedded either in separate Bottom Chips or (recursively) in lower-level subtrees rooted in
other Middle Chips, into a single complete binary subtree. Because the number of processors per middle chip
will be constrained by pinout limitations, and not by minimum feature width, the capacity of the PPS middle
chips will ot benefit from the effects of scaling as will the bottom chips. This (provably unavoidabple) [/O
bandwidth limitation, however, will resuit in only a small, constant waste factor; the tree-structured intra-
and inter-chip interconnection topology of the NON-VON Primary Processing Subsystem is in fact extremely

well suited to the effects of future downward scaling.

4. Function of the Primary Processing Subsystem

The NON-VON PPS instruction sct was designed to support a number of operations invoiving associative
retrieval, logical manipuiation of local (to the individual PE's) Qags. and a number of incidental functions

(input and output, for example). While a discussion of all these functions is not within the scope of this

finite
state
control

(PLA)

—

Figure 3.2. Structure of the PPS Bottom Chip

extended abstract, the two fundamental associative operations executed by the PPS hardware arc of sufficient
importance in the implementation of database management applications to merit special attention here.

In the context of the present discussion, these associative operations are probably best described in
relational terms. intuitively, a relation may be thought of as a table, with the rows referred %o as tuples, and
uiie columns called attributes. The relation shown below, for example, expresses a part-whole relationship

between airplanes and their (hypothetical) constituent parts.

PRODUCT | PART

DC-10 | wheel
DC-10 | engine-mount
DC-3 | oxygen-mask

DC-10 axygen-mask
DC-10 radio

In performing associative operations, the NON-VON PPS unit functions as a relatively fast, but inexpen-
sive content-addressable memory, and may be thought of as permitting the operation of refational selection

[Codd, 1972] to be carried out in a short, fixed amount of time, independeat of the size of the argument

relation. Given a partial match criterion—that is, a set of attribute/value pairs that musc be satisfied by any

“matching” tuple—NON-VON is capable of either

1. associative marking: Simultaneously setting a flag bit in all PE’s associated (in a
manner to be explicated shortly) with a matching tuple, or

2. associative enumeration: Reading successive matching tuples out of the PPS unit
(and into the control module) irredundantly, with each new tuple produced in a smail,
fixed amount of time.

Before examining the exact manner in which tuples are stored and selectively retrieved in the PPS, it
will prove instructive to consider a simpler {non-VLSI-based) associative device proposed by Lee {1962] whose
operation is closely related to the associative mechanisms employed in NON-VON. Lee’s “distributed logic”
memory is based on a large, linear string of identical ceils, each embodying a small amount (on the order of
a byte) of storage, a few single-bit ags, and a modest amount of logic. Each cell is connected to (and can
access the flags of) its immediate right and left neighbors; in addition, all ceils are attached to 2 common
broadcast bus.

Lee’s device is capable of retrieving character strings on a content-addressable basis in time proportional
to the length of the pattern string, but independent of the total storage capacity of the device. To illusirate
his algorithm for associative parallel siring matching, we assume each string to be stored in a contiguous
sequence of ceils, beginning with a distinguished delimiter symbol. To retrieve all strings beginning with,
say, the sequence “SA”, a command is first issued (over the common communicatin channei) instructing all
cells containing a delimiter symboi to set their fag bits (independently, and in parallei). Next, a command
is broadecast which instructs any cell whose leftmost aeighbor has its Aag bit set to turn off that neighbor’s
flag, but to set its own fag if its own storage byte contains an “S8”. During the third step, the match fag
propagates another step to the right in all strings whose next character is an “A"; the matching strings are
then easily identified.

[t is not difficult to see how this associative string matching aigorithm for a distributed logic memory
can be extended to handle attributes and tupies, thus providing for a rapid parallel implementation of
reiational selection. There are at least two respects, however, in which Lee’s approach is unsuitable for the

implementation in VL3I of a practical Primary Processing Subsystem.

1. Direct broadeasting over a simnpie, single-levet bus structure to a very large (and as
device dimensions coatinue their downward trend, rapidly increasing) number of ceils
is, for reasons related to capacitive loading, impractically inefficieat in a technology
such as nMOS.

2. Although simple by comparison with a conventional microprocessor, the necessary
matching, communication and control logic embodied within each cell would occupy
considerably more area than the byte or so of local storage we have assumed in our
description of Lee’s distributed logic memory device.

The NON-VON PPS design addresses the first concern by utilizing a siogle, hierarchically organized iuter-

PE data path to effect both the common broadcast and adjacent neighbor communication {unctions required

for contiguous propagation-based parallel matching. The broadcast function is supported by interpolating
simple level-restoring inverter logic at each level in the tree, yielding a highly eificient structure for driving
large capacitive loads. By choosing an appropriate order in which to sequeatiaily enumerate the aodes of
the PPS tree (two such schemes are now under :oasideration, and will be discussed in the final paper) and
including the neccessary 1/O control logic within each PE, the same binary tree-structured data path may also
be used for eficieat ¢communication between logically adjacent neighbors.

The second problem with a straightforward adoption of Lee's architecture for implementation in VLSI
is soived in NON-VON by “amortising” the cost (in chip area) of each PE’s logic over a larger amount of
local storage. Specifically, each PE embodied in the PPS Bottom and Middle Chips includes a full 32 bytes of
random-access starage. Associated with each local memory is a simple, area-efficient, byte-wide comparator
module capable of testing for either equality or one of the five other arithmetic relations (7, <, >, <, and
>) and of retaining the intermediate results necessary to sequentially perform a variable-length comparison
between the stored and pattern values.

For simplicity, we may assume (at least in the context of this paper) that a given PE will store at moat
oae tuple. The converse, however, is not the case: a single tuple, or even 3 single attribute value, could well
exceed the capacity of one PE {there being no restriction on the length of either), and might in general be
shared among several logically adjaéent PE’s. While the details are somewhat more complex, propagation
among logically contiguous PE’s in such cases is effected in a manner quite similar to the analogous process
in Lee's hypothetical distributed logic device. {Details of this process will be included in the final paper.)

[t is expcted that the time required for an associative marking operation will be quite close to thac
necessary o simply input the partial match specification through the broadcast tree, one byte at a time.
After some consideration, it may be seen that no significant time cost is associated with our amortization of
the comparator logic over 3 larger local memory whea I/O and local processing times are well matched. [t is
only the problem of wasted capacity when the tuples are much smaller than the local store which prevents our
amortizing the PE logic over an even larger amount of RAM. [n short, the NON-VON PPS architecture ollers
the possibility of performing associative matching operatioas extremely rapidly—in f{act, at a pace limited
largely by the speed at which the partial match specification itself can be input. Through the expioitation of
contemporary approaches to VLSI system architecture, along with the carefui balancing of storage capacity
against distributed intelligence, we hope to bring the cost of PPS storage to within a smail constan¢ multiple
of the price of an equivalent amount of ordinary random access memory impicmented using comparabie
technoiogy.

[n addition to the above discussion of associative matching, our final paper will briedy outline algorithms

for

1. associative epumeration

(3]

. multiple match resolution
3. sorting
4

. certain arithmetic and statistical ealculatioas

ia order to convey a feeling for the kinds of operations for which the NON-VON architecture should prove
well suited.

References

Browning, Sally, “Hierarchically Organized Machines®, in Mead, Carver and Conway, Lyna, Introductioa to
VLSI Systems, Addison-Wesley, 1978.

Codd, E. F., “A Data Base Sublanguage Founded on the Relational Calculus®, Proceedings of the 1971 ACM
SIGFIDET Workshop on Data Description, Access and Control, Association for Computing Machinery, 1971.

Codd, E.F., “Relational completeness of data base sublanguages”, in Rustin, Randail (ed.), Courant Computer
Science Symposium 6: Data Base Systems, Eaglewood Cliffs, New Jersey, Prentice-Hall, Inc., 1972.

Gallaire, Herve, Minker, Jack, and Nicolas, J. M., “An overview and iatroduction to logic and data bases”,
in Gallaire, Herve and Minker, Jack, Logic and Data Bases, New York, Plenum Press, 1978.

Lee, C. Y., “Intercommunicating cells as a basis for a distributed logic computer”, Proceedings of the AFIPS
1962 Fall Joint Computer Confarence, Spartan Books Inc., Baltimore, Maryland, pp. 130-138, 1962.

Shaw, David Elliot, “A Hierarchical Associative Architecture for the Parallel Evaluation of Relational Algebraic
Database Primitives”, Stanford Computer Science Department Report STAN-CS-79-778, Qctober, 1979.

Shaw, David Elliot, “A Relational Database Machine Architecture”, Proceedings of the 1980 Workshop
on Computer Architecture for Non-Numeric Processing, Asilomar, California, March, 1980. (Reprinted in
publications of ACM SIGARCH, SIGIR and SIGMOD.)

Shaw, David Elliot, Knowledge-Based Retrieval on a Relational Database Machine, Ph.D. Thesis, Department

of Computer Science, Stanford University, 1980a.

Weiderhold, Gio, Kaplan, S. Jerroid and Sagalowics, Daniel, “The Knowiedge Base Management Systems
Project”, ACM SIGMOD Record, 1981.

