LEARNING META-RULE CONTROL OF PRODUCTION SYSTEMS
FROM EXECUTION TRACES

Malcolm C. Harrison
Courant Institute, NYU
and

Salvatore J. Stolfo
Columbia University

Ques-10-%0




LEARNING META-RULE CONTROL OF PRODUCTION 'SYSTEMS
FROM EXECUTICN TRACES*

Malcolm C. Harrison
Courant Institute, NYU

and

Salvatore J. Stolfo
Columbia University




Summacry

In the last decade, work in Artificial Intelligence has
stressed the importance of having both declarative and procedural
forms of kncwledge available. Recently, a number of workers have
pointed out that procedural information can be regarded as control
information which can be used to control the sequencing of applica-
tion of the declarative components, and have remarked en the
advantages of keeping these two types of information secarate
(see, for example, Sigart Newsletters 263, June 1977 and #70, Feb. 1980].
In the last few years we have been looking at the problem of
automatically inferring this control component from the behaviour
of the declarative component [ 7). In this paper we describe
briefly scme experiments we have done, discuss some of the difficult-

1€S we have encountered, and show now they might be overcome.

[



Introducticn
Cur previous work (7,8] has shown that it is possible to synthesize

orocedures (seguencing informaticn) by analyzing successful executicn traces

provided v a trainer of a nondeterministic producticn system (PS) program

f3]. Cur approach was as follows:

(1) Select a 'typical' input to the program and run the
program repeatedly on this input.

(2) Record the sequence of rules selected together with input/
cutput information and the set of rules which could have been

fired (called the conflict set of rules).

(3) Repeat this for other typical inputs.

(4) Describe the better (i.e. shorter) successful sequences in a
control - language, CRAPS, designed for this purpose (and
described belcw).

(5) Generate a set of meta-rules whose abjective is to aid
the CRAPS description if the sequencing is inarorcpriate.

(6) Use the CRAPS description and the meta-rules to guide the

program's subsequent decisicns.



The CRAPS language provides a semantic framework with
which to specify or describe segquences of rule applications in
the execution of the PS program. The basic primitive of CRAPS
is called a unit. A unit specifies either a rule apolicaticn
(with preconditions), in which case it is called a simplz unit,
or a control operation applied to a segquence of units. The
control operations are Permutation of a set of sequences,
Alternative or conditional selection of a sequence from a set
of sequences, Repetition of a sequence controlled by simple
Boolean assertions (described below) in Disjunctive Normal
Form (DNF) and (implicit) Concatenation of units producing
sequences. (From which we have derived the acronym CRAPS.).

The control primitives are represented syntactically
in Cambridge form by PERMUTE, IF-THEN-ELSEIF, and REPEAT,
respectively, while concatenation is represented by a list
of units enclosed in double pointed braccets (<< >>) .

The CRAPS operators correspond to various control
primitives of conventional programming lancuages, and to that
of Reqular Expressions (whers permutation corresponds to a
shuffle operator). The choice of using Regular Expressions
for control depends on several considerations. First, people
generally use descriptions of their own actions which appear

very much like Regular Expressions. Secondly, since they are



one of the simplest formalisms, it would appear that they would
be easier to induce from examples than other more complicated
formalisms. Lastly, they are easily implemented and easy to
understand.

However, it would appear that Regular Expressions are
too limited in their expressive power to be of much interest.
However, coupled with a powerful PS program as we use here, the
total system is at least as powerful as the PS representation
and is capable of a wide range of behavior with the additional
control constraints. For example, consider the following example
taken from Georgeff [ 4 ] (interpreting this production
system in the usual formal grammar sense).

Pl: S - ABC

P2: A ~ aA

P3: B + bB
P4: C -+ cC
P5: A+ a
P6: 3 +b
P7: c -+ c.

Beginning with the initial sentential form (WM) containing S,

these productions generate the language {aibjck,i,j,k 2 1}

which is context-free. If we restrict the permissible sequence
of rule applications to be a member of the language cenerated
by the following Regular Expression:

(1) pl (p2 p3 pd4)* p5 p6 p7, then the language generated

is {anbncnl n » 1} which is context-sensitive. Notice that



22 o3 p4 can be used in any order as can p5 p6 p7. We can
describe these additional control constraints in CRAPS as:

(2) <<pl [REPEAT [PERMUTE <<p2>> <<p3>> <<pd>>]]

(PERMUTE <<p53>> <<p6>> <<p7>>] >>,

Georgeff describes the use of Regular Expression control
in this fashion to both limit the number of productions to be
tested on each cycle and to leave nondeterministic selection
points in tact and at well specified points within the control.
For example, in (1) above, at the end of the repetition, only
p2 and p3 can enter the conflict set of rules (severely limiting
the number of productions to be tested, which can obviously be
useful for large systems, but also be too restrictive in
general) and leaving the final decision as to which production
to select up to the conflict resolution strategy (or meta-
lavel knowledge base, see [ 2 ).

There is some attempt in CRAPS to lessen the responsibility
of the conflict resolution strategies built in to the PS
interpreter by allowing explicit specification of conditions under
which repetitions should be allowed and alternatives should
be selected. The repetition operator in CRAPS, therefore,
contains both a While and Until clause and the alternation
operator contains conditional expressions for each alternative
very much like the LISP COND. Further, even the simple unit,
which specifies the next rule to apply, contains a precondition
for that rule to be applied. 1In total, this wealth of scecified
conditions is intended to move many of the nondeterministic

decisions cut of the PS interpreter and into the control



mechanism ezplicitly. The human expert who defined the PS and trained
the system was allowed O view cnly the conflict set of rules during
training, which proved to be an adequate model of the state of the
preblem-solving system. (Dynamic additions to the production memory were
possible.) Therefore, the exact form of the conditicns we used in the
original language were (disjunctive) sets of rules whose, left-hand sides
matched the current contents of the data base. (The latest versicn of
the language permits additicnal information cn how data is shared

between the rules in the conflict set.)




There are four types of meta-rules which assist a CRAPS
description in controlling a PS. It is the simple unit which
actually selects the next rule to fire on each cycle (the
higher level control units produce sequences of simple units),
and if in the event that the DNF expression evaluates to false
or the specified rule is not active, the meta-rules are called
upon to suggest a list of rule names to try in order to force
the DNF expression to evaluate to true. (We use the control
in an irrevocable fashion, not wanting to resort to backtracking.)
For example, suppose that the simple unit (A (B C)) 1is in
control, E was the previously fired producticn, and the current
conflict set of rules is {B D}. This situation may be
described as:

(1) A and C should be active

(2) D should (perhaps) be inactive

(3) (B D} is currently active

(4) E was just fired.

Accordinglf, the meta-rules which we have developed are

designed to deal with the four cases listed using the primitive
functions Want-active, Want-inaciive, Currently-active, and
Just-fired respectively. In each case, a meta-rule may suggest
a list of rules to try in that situation using the primitive
function Try-to-fire. The suggestions are weighted since a

rule may be suggested several times by different meta-rules.



In spite of the apparent sparsity of informaticn, we were able
to construct very useful and interesting procedures for solving our first
experimental problem a slightly idealized jigsaw puzzle. In fact, cur
program synthesized, with one or two minor errors, all the strategies
used by the trainer (separating pieces into piles, building the cuter
edge first, etc.) . Our program also constructed a set of meta-rules,
(see for example (2]) which in most cases had the ability to correct
the behavior of the jigsaw puzzle program when the CRAPS descripticn
controlling it was not adequate.

Since the technical problem with our approach is equivalent to the
prcblem of Inductive Inference of the Minimum Regular Expression fram
incamplete samples, which was proven by Angluin (1] to be NP-camplete,
the procedures we develcped were ﬁecessarily heuristic in nature.

We encountered a number of other difficulties with this arovrocach.
The first difficulty is the (lack of) power of the CRAPS descripticn,
which corresponds to an extended form of finite state control.

Thus, for example, a tree-traversal program with productions:

start

go—left, can't go left

go-right, can't go right

go—up

print

stop
and a finite-state control language cannot be used to implement an incrder
scan procedure. To do this would require a context-free control language,

vermitting definition of self-embedding sequences (which correspend to



recursive procedures). See the secticn below for the details of this
exanple.

A second difficulty is the lack of flexibility in the CRAPS
description, which in essence specifies a set of acceptable execution
sequences. Thus when the description is not applicable (e.g. the
recommended production is not fireabklé) no heuristic information

is available. This suggests that the rigid forms of control

~investigated by Georgeff [ 4] may not be adeguate for real-world
problems. We attempted to make up for this in the set of meta-rules,
which in effect contained local information about fragments of the
original seguences (e.g. if you want to fire x, try to fire vy).
The meta-rules are of course more flexible, but do not contain as
much specific information as the description; an experiment using
thé meta-rules alone failed to solve the problem.

A third defficiency of our approach was that the explicit
contents of the working memory was completely ignored.

In the following section we describe the characteristics of
a new control language, tentatively called MCL, which we

believe will contribute to a solution of these problems.

The MCL Control Language

The MCL control language is designed within the
following constraints:
a. A MCL description should consist of a set of meta-rules,

rather than a description of a set of seguences.



b. These meta-rules should be probablistic rather than
deterministic, based on the closeness of the matching of their
conditions to the current situation.

c. The meta-rules shculd make use of a goal-subgoal structure.

d. The meta-rules should be able to refer to the current
state of the working memory.

Thus a meta-rule in MCL will be of the form

if the working memory is similar to M
and the current gecal structure is similar

to G, then the correct action is similar

to A.

A may specify a firing of a procducticn, cor medifying the goal structure.

The goal structure will be a treé, with each node being an CR ncde (its goal
might be achieved by first achieving the goal of any of its child nedes), an SEQ
ncde (its goal might be achieved by first achieving the gaoals of its child
ncdes in the sequence specified), an IND ncde kits goal might be achieved by first
achieving the goals of its child ncdes, in any order), ar a REP node (iss goal
might be achieved by first repeatedly achieving the goal of its child node).

The warking memory will be described by giving the set of producticns which
are fireable, together with any necessary instantiation informatien. Previcusly
this infarmation just specified the set of producticns; the new scheme will show
how the varicus possible instantiations are related.

Notice the clcseness of this meta-rule formalism to that of Davis [2]; the
essential differences are the richness of the goal structure in cur design, and
the certainty cf usefulness of a rule is dependent on its dynamic applicability

rather than static specificatien.



Automatic inference of MCL meta-rules

In corder to simplify the problem of analysing the
execution traces, we will require that the trainer specify goal
information for each aciion. This will be in one of the fcrms:
I can achieve the current goal by firing production P next.
To achieve the current goal I will first try the following
(OR,SEQ,IND,REP) subgoal structﬁre. |
I: have achieved the current goal.
This is no good, backtrack to gcal G.
Goals may be specified either b? arbitrary name, by specifying a
production which is to be fired, or by specifying a desired wdrking
memory property. The only informatizon available to the trainer
will be the description of the working memory in terms of the

productions which can fire and the current goal structure. If this

is inadequate, the trainer will be permitted to introduce new produc-

tions.

Each action of the trainer thus provides a meta-rule; this
meta-rule may have been used before, or may be new. The set of
raw meta-rules will be used to construct the MCL descriptiocn.

To do this, the raw meta-rules will be refined as follows (Mj

refers to a meta-rule):
if Mj is an instance of M;, delete M;:
if M; has strictly stronger constraints than Mj, and

recommends the same action, delete Mi’

In addition, we will attempt to generalize the set of meta-rules.




This set of generalizations will include [cf. 6]:
if M; contains a condition which can be deleted without
causing a conflict with some Mj, add a new meta-rule .M.'i

which is obtained from M: by deleting the constraint.
i

if Mi and Mj

t; # t;, add a meta-rule which says that t; is (in centext

only differ slightly, with t; € Mj, tj € M3,

Mj) similar to tj.

if M; and M; only differ slightly as above and t; is similar

1 J
to ty, add a meta-rule with (t; or tj)replacing t; in M; .
if M; and My are generalizations of some meta-rule My not

in the set, add M.’

As we note below, _the effect of some of these operaticns can also

be achieved by the MCL interpreter.

If the meta-rules are written as conjuncticns of literals, the general-
izaticn procedure described by Vere [9] can be used to campute the camon
generalizaticn \’k of two meta-rules Mi and Mj. Vere uses the notation
(Yl « + 8 to describe a production Y ~ a - v ~ 8, where ¢,8, and vy are
conjuncticns of literals. EHe cbserves that if [*{3] ag > 83 is a maximal
cammen generalization of [Yl] a; > Bl ard [YZJ a, > 82, then Y5 may have less
literals than Y1 ard Yo but a3(83) must have the same murber of literals as
c.landaz(alandsz). In cur case, meta-rules can be written in the form
of cenjuncticns of literals of the following forms:

(GALS futuregoals)

(CR gecal subgecal)

(SR goal goalseguence)

(IND goal subgeal)

(REP goal subgoal)

22



(producticn instantiaticn)
(FIRE croduction instantiation)
The GOALS literal can describe the unexpanded part of the goal stxucture, while
+=2 CR, SBQ, DD and REP literals can describe the part already expanded.
Informaticn about the state of working memcry can be given as a conjunction
of (producticn instantiaticn) literals specifying which instantiations of
which producticns can fire; this generalizes the notion of association chains
used by Vere to association graphs, since the instantiaticn information can .-

specify substitutions which can be linked in an arbitrary way.

Interpretaticn cf MCL descripticns

The meta-rules available to ccntrol the sequencing of the producticn
system will be of the following types
WAG+PA, WG & .P3, W.G-G&RA

where W is a working memory description, G is a goal structure
description, PA is a sequence of productions, and GA is a secguence
of goal structure modifications. At each point that a production
must be selected to fire frcem the conflict set, the MCL inter-
preter will consult these meta-rules to determine the appropriate
action. This will be done as follows:

Each meta-rule will be matched against the current situation,
using a partial matching algorithm (fcr exarple(8]). The acticn recarmended bv a
meta-rule will be weighted according to the closeness cf the match,
with an exact match getting the highest weight, a match requiring
substitution cf variables somewhat lower weight, and a match in
which both matcher and matchee ars instances of the séme expression
lcwest weight still. This will be done by looking for exact matches

first, etc. In the case when no actiocn is reccmmended with a weight

3




greater than some threshold, the interpreter will backtrack to a

point at which two or more actions with similar weights were recom-

mended.

An Example

Consider the following nondeterminisfic PS ?rogfam which
scans a binary tree. In the exact form of the PS representation
we use, data elements can be any LISP data structure. An atomic
data element in the LHS of a production must match an exact data
element in WM and a list must match a list with the same structure
and content. A symbol preceded_with an equals sign represents
a pattern variaéle which can match any data structure. The symbol
! is an operator which matches the entife remaining porticon of the

.

list that contains it, assigning the list value to the variable

which foiléws it: ﬁh;£; it-;ppeérs in the RHS of a production,
it deposigs the matching list into WM but without the enclosing
parentheses. Data elements are deleted from WM only if they ar=
included as arguments to the < delete > system fﬁnction in the RHS
of a production.

A binary tree is represented in WM by the following data

format: The root of the tree is represented by (ROOT =x). If
nocde 3 has a left son A, it ié represented by (LEFT B A) and
similarly (RIGET P C) represents C as the right son of B. The
father 3 of a node A is represented by (FATHER B A), and the current

node scanned is (NODE = x). Production memory contains the following

-productions:



START

[(ROCT = X) ~ (NODE =X) -=> (NODE =X) ]

GO-LZFT
(< delete > (NODE =X)) (NCDE =Y) (FATHER =X =Y

I

{ (NODE =X) (LEFT =X ay) -->

PRINT

[ (NODE =X) - (ALREADY-PRINTED =X) --> (<write> =X) (ALREADY-PRINTED =X)

GO-UP

[ (NODE =X) (FATHER =Y =X) -=> (< delete > (NODE =X))
(NODE =Y)]

CAN-T-GO-LEFT

[NODE =Xf - (LEFT =X =Y) -->]
CAN-T-GO-RIGHT

[ (NODE =X) = (RIGHT =X =Y) =--=>]

STOP

{ (NODE =X) (ROOT =X) --> (< halt >)]

-Previously, we were able to infer a CRAPS description controlling
this PS to deterministically scan in-order balanced binary trees.
The CRAPS language -‘is. equivalent to finite state control and
therefore lacks the power of a push-down automaton, making it
impossible to construct a description to scan arbitrary binary
trees with the existing PS. With the introduction of a goal struc-
ture, and allewing for recursiye definitions of goals, the following
(abbreviated) set of meta-rules achieves the desired deterministic

control of the PS program:




ML

M3

M4

MS

M6

M7

[ (START = dl) _—>

((GOALS INSCAN ! =

[(GOALS (SEQ INSCAN

[ (GOALS INSCAN-LEFT

(GO-LEFT = dl = d2)

[ (GCALS INSCAN-LEFT
(CAN-T-GO-LEFT = dl)

[ (GRALS (SEQ INSCAN

( (GALS (FIRE PRINT)

(PRINT = dl1)

rest) —>
(GOALS (SPQ INSCAN (INSCAN-LEFT
(FIRE PRINT)
INSCAN-RIGHT) )
! = rest)]
(INSCAN-LEFT ! =1r)) ! = rest)
_— (GCALS INSCAN-LEFT
(SEQ INSCAN ! = 1)
! = rest)]
! = rest)
— > (FIRE GO-L&FT)
(GCALS INSCAN
(FIRE GO-UP)
| = rest)]
! = rest)
—> (GQAIS ! = rest)]
(FIRE PRINT) ! =r) ! = rest)
—> (GOALS (FIRE PRINT)
(SEQ. INSCAN ! = r)
1 _=rest)]
! = rest)
— > (FIRE PRINT)
(GOALS ! = rest)]

16



The remaining meta-rules specify how to satisfy the primitive goals
cf firing producticns (as in meta-rule M7, if PRINT is active, and the goal
is fire PRINT, then select PRINT fram the conflict set), and the goal

structure for the symmetric case of traversing the right son.

further 3Applications

The applicatian area that we have chosen for this work is
graduate student advisement. This will be a question-answering program
whose data-base is essentially the contents of the Carmputer Science
Department bulletin. Questions will range from working out a suitable
course schedule to requests for advice on possible careers - we anticipate
Deing able to solve the former but think that we will have difficulty with
the latter. The input will be in declarative form, with no centrol or
sequencing heuristics at all. Our abjective will be to infer, fram
sessions in which the program is guided by a trainer, this control

information.




Refarences

Angluin, D., On the Camlexity of Minimum Inference of Regular Sets,
unpublished marmuscript, 1977.

Davis, R., Applications of Meta Level Rnowledge to the Constxucticn,
Maintenance and Use of lLarge Rnowledge Bases, Ph.D. thesis, Sténford u.,
197s6.

Davis, R., and King, J., An Overview of Producticn Systems,

Stanford U., AI Lab Memo, ATM-271, 1975.

Geor geff, M.P., A Framework fcor Control in Production Systems,

Proc. IJCAI6, Tokyo, 1979.

Hayes-Roth, F., and McDermot%t, J., Rnowledge Acquisiticn from

Structural Descriptions, Proc. IJCAIS, Cambridge, 1977.

Ditterich, T.G. and Michalski, R.S., Learning and Generalization
or Characteristic Descriptions: Evaluation Criteria and

Comparative Review of Selected Methods, Proc. IJCAI6, Tokyo,
1879.

Stolfo, S.J., and Harrison, M.C., Automatic Discovery of Heuristics

for Non-deterministic Programs, Proc. IJCAI6, Tokyo, 1979.

Stolfo, S.J., Automatic Discovery of Heuristics fcr Non-deter-
ministic Programs from Sample Execution Traces, Ph.D. thesis,

Courant Institute, NYU, 1979.

Vere, S.A., Inducticn of Relaticnal Producticns in the Presence of

Backgrourd Information, Proc. ITCRI 5, Cambridge, 1977.
23



