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ABSTRACT

A list of 31 problems presented here reflects some of the main trends in
topological graph theory.

0. INTRODUCTION

During the past 10 vears or so. about 100 different authors representing a
total of about 20 different countries have used recognizably topological
methods to obtain graph theoretic results. Although the majonty of these
authors are best known as graph theorists. many others among them are
primarily topologists. algebraists. or computer scientists. The great em-
phasis on genus in the present collection of problems 1s about propor-
tional to that in the general literature. Some of the problems are included
for their seeming strategic value for obtaining additional results. others
because they would strengthen the ues to areas such as group theory or
computational complexity, and others mainly due tw the longstanding
interest of the present authors in their solution.

For further information on the context of some of these problems. it
may be useful to consult the recent surveys of topological graph theory by
Stahl [37] and by White and Beineke [44]. All unexplained graph
theoretic terminology here follows the usage of Harary [22)
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1. GENUS OF CAYLEY GRAPHS AND SCHREER GRAPHS

Much of the progress in obtaining graph embeddings has been for various
kinds of Cayley graphs. For instance, the complete graphs, whose genus
was determined in the classic work by Ringel and Youngs [36], are
Cayley graphs. Schreier graphs are generalizations of Cayley graphs that
include, as proved by Gross [15], all regular graphs of even degree or of
odd degree and sufficiently high connectivity.

For compieteness, we now define Cayley graphs and Schreier graphs.
Let A be a group and X be a set of generators for A. The vertices of the
(right) Cayley graph C(A, X) are the elements of the group A. For any
a,, a;€ A the vertices a, and a, are adjacent in C(A, X) if either
a;' a;e X or a;' a, e X. One observes that under this definition. C(A. X)
is a graph, and not a digraph. Sometimes the set X includes a redundant
generator x, in the sense that x is a product of some members of X ~{x}.
Otherwise, the generating set X is called minimal. If {X]=1, then A is
cyclic and, obviously, the genus of C(A, X) is zero. To inaugurate a
systematic approach to the genus of Cayley graphs, following problem is
suggested:

Problem 1.1. Let P be a minimal generating set for the cyclic group Z,.
What is the genus of the Cayiey graph C(Z,, P)?

Let B be a subgroup of a group A, and let X be a generating set for A.
The vertices of the (right) Schreier graph S(A/B, X) are the right cosets of
the subgroup B in the group A. The right cosets Ba, and Ba, are
adjacent in S(A/B, X) if either a;'a,e X or a;'a,eX The main
interest in Schreier graphs is for the case when the subgroup B is not
normal, because if B is normal, then A/B is a group, and S(A/B, X) is
simply the Cayley graph C(A/B, X).

A cubic graph is regular of degree three, and a quarric graph is regular
of degree four. From results of Gross [15] it follows that every 2-
connected cubic graph is a Schreier graph and that every quartic graph is
a Schreier graph.

Problem 1.2. Calculate the genus of all 2-connected cubic graphs.

A solution to Problem 1.2 would yield the genus of every cubic graph,
because of the theorem on the additivity of genus due to Battle et al. [4].
A possible reduction of Problem 1.2, to calculating the genus of 3-
connected cubic graphs, is apparent in recent work of Decker et al. [8].

Problem 1.3. Calculate the genus of ail quartic graphs.
Since Problems 1.2 and 1.3 are likely to be very difficult, it is approp-
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riate to provide another problem whose solution would be a stepping
stone. One recalls Petersen's theorem [32] that a graph (or pseudograph)
is 2-factorable iff it is regular of even degree. Thus, quartic graphs are
2-factorable. Petersen [32] also proved that every bridgeless cubic graph
is decomposable into a 1-factor and a 2-factor. By doubling the 1-factor,
i.e., for each edge in the 1-factor, inserting an additional edge with the
same two endpoints, one obtains a 2-factorable multigraph that is regular
of degree four. The stepping stone problem is concerned with the
properties of cycle decompositions that are "consistent with a 2-
factorization.

Let F=F,, ..., F, be a 2-factorization for a graph G. Fori=1,...,n
let k(F,) be the number of components of the 2-factor F. Define the
number .

#(G) =max ) k(F).

F o=
If the graph G has p vertices and degree 2d, then clearly
d = ¢(G) = pd/3.

As indicated in Sec. 4 of Gross (15], the permutation voltage graph
construction of Gross and Tucker [19] could be used to obtain an
embedding of a regular graph G of even degree with at least ¢(G)+ 1
faces, thereby establishing an upper bound on the genus of G.

Problem 1.4. Find a good lower bound for ¢(G), where G is a regular
graph of even degree (especially degree four).

In applying the method of current graphs, either combinatorial (see
Ringel [34] or White [41]) or topological (see Gross and Alpert [16)), it is
a great convenience to be able to use a current graph of index one. From
the dual viewpoint of voltage graphs (see Gross [14] or White [42]), it is a
great convenience to be able to assign the voltages to a bouquet of circles.
Accordingly the following problem is proposed:

Problem 1.5. Characterize algebraically the generating sets X and
groups A such that the genus of the Cayley graph C(A. X) can be
realized without adjacency modifications from an index one current graph
(or dually, from a voitage assignment on a bouquet of circles).

2. GENUS OF A GROWP

The genus of a group is the least genus of any of its Cayley graphs. A
minimum generating ser for a group G is a generating set with the least
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possible number of generators. Obviously, a minimum generating set is
minimal, but minimal sets, e.g., {2. 3} for Z,, need not be minimum.
Knowing that the genus of a group could be calculated from consideration
of only its minimum generating sets would substantially simplify the
calculation in many cases.

Problem 2.1. [s the genus of a finite group always realized by a Cayley
graph for some minimum generating set?

Babai {3] has proved that the genus of a finite group cannot be
exceeded by the genus of any of its subgroups, thereby solving a problem
of White (41, p. 80]. A related problem is the following:

Problem 2.2. Can the genus of a quotient of a finite group be larger
than the genus of the group itself? Conjecture: No.

Proulx [33] has classified the toroidal Cayley graphs. thereby isolating
the toroidal groups. Previously, Maschke [31] classified the planar groups.
There are infinitely many toroidal groups and infinitely many planar
groups. However. Tucker [38] has proved that for n =2 there are only
finitely many groups of genus n. No groups of genus two have yet been
discovered.

Problem 2.3. For which integers n =2 are there no groups of genus n?

Problem 2.4. Prove or disprove the following conjecture, due to Babai:
For every integer n>2 there are only finitely many vertex-transitive
graphs of genus n.

Jungerman and White [29] have calculated the genus of most finite
abelian groups. Far less is known about the genus of nonabelian groups.
but cunously, the smallest group whose genus is unknown is abelian. If
the next problem were solved, then the smallest groups of unknown genus
would have order 32.

Problem 2.5. What is the genus of Z; + Z, + Z,? Conjecture: This genus
in 10.

Proulx [33] has proved that the genus of the symmetric group S is 4.
White [40] gives an upper bound for the genus of symmetric groups.

Problem 2.6. Determine the genus of the symmetric groups.

More information about the genus of finite groups is given by White
[40—432]. Levinson [30]) has proved that the genus of an infinite group is
either zero or infinite. tut the present knowledge of the genus of infimite
groups is otherwise scanty.
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3. EFFECTS OF GRAPH OPERATIONS ON GENUS

Let G and H be graphs, and let f: T— U be an isomorphism between a
subgraph T of G and a subgraph U of H. The amaigamation G ¢ H 1s
the graph obtained from G and H by identifying the subgraphs T and U
according to the isomorphism. If the subgraphs are both isomorphic to
K,. then the genus of G *, H is the sum of the genera of G and H. as
proved by Battle et al. [4]. Decker et al. [8] have recently calculated the
genus of an amalgamation on two nonadjacent points. Harary and
Kodama [25] have studied amaigamations on larger sets of mutually
nonadjacent points. Stahi and Beineke [38] have proved that for one-
vertex amalgamauons. the nonorientable genus is not additive.

If the graphs to be amalgamated are the complete graphs K., and K.,
and if J is the isomorphism tvpe of the amalgamating subgraphs. then
K., *; K, denotes the isomorphism type of the amalgamation. Alpert (1]
studied the genus of K, = K,. He obtained an essentially complete
answer for the case with arbitrary values of m and n and the value t = 2.
and he made substantial progress for larger values of «. especiaily =13 4,
and S.

Problem 3.1. What is the genus of the amalgamation K, * K.?

Let f: G—S be a 2-cell embedding of a graph in a closed surface. The
dual embedding f* : G™— s is obtained by placing a dual vertex ¢* at the
center of each primal face ¢ and a dual edge x* crossing each primal edge
x at its midpotnt so that x* runs between the dual vertices ¢* and 4* at
the center of whichever faces ¢ and d meet at edge x. Since it is possible
that d =c. it is possible that the dual graph G* is not a graph, but a
pseudograph.

A graph embedding f: G— S is called minimum if it realizes the genus
of G. Unpublished examples due to White (orientable case) and Haggard
{nonorientable case) show that the dual embedding of a minimum embed-
ding need not be minimum.

Problem 3.2. Let f: G— S be a minimum embedding of a graph G in a
surface S whose dual graph is a graph. Under what circumstances 1s the
dual embedding f*: G*— § also minimum?

The join G+ H (also called the suspension) of the graphs G and H is
obtained from the disjoint union GU H by adding an edge from each
vertex of G to each vertex of H.

Problem 3.3. Describe the genus of G+ K, in terms of the genus of G
and other properues of G.
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Problem 3.4. Calculate the genus of G+ K, (or more generally, of
G+K,).

Ringel {35] has calculated the genus of most cases of the cartesian
product K, X K,. A special case of Theorem 4 of White [43] is that the
genus of K, , x K, is asymptotic to 2 x genus (K, ,), where K, denotes
the n-regular complete bipartite graph. These results suggest the follow-
ing problem:

Problem 3.5. Calcuiate the genus of Gx K, (or more generally, of
GxK,).

Both the Kuratowski graphs K, and K, ; are known to have planar
covering spaces. For instance. assigning voltage 0 modulo 2 to the edges
of one 2-factor of K, and voltage | modulc 2 to the edges of the other
yields a planar denved graph (see Gross and Tucker [19]). Also, as
Angluin [2] has observed, assigning voltage 0 modulo 2 to the edges of
one l-factor of K, ; and voltage 1 modulo 2 to the edges of the other two
1-factors yields a planar derived graph, isomorphic to C¢x K.

Problem 3.6. Does every 3-regular graph have a planar covering space? .
Problem 3.7. Does every 4-regular graph have a planar covering space?

4. THICKNESS, COARSENESS, AND CROSSING NUMBERS

For complete bipartite graphs, it is known from Beineke et al. [7] and
Beineke {5] that

8K, ,)=[mn2(m+n-2)] unless m<n, mnis odd, and
there exists an integer k
such that n= |2k(m —2)/(m - 2k)),

where the notations |{x| and {x] (one says “floor” and *‘ceiling’’) mean
the greatest integer = x and the least integer =1x, respectively.

Problem 4.1. Finish the calculation of the thickness of the compiete
bipartite graphs.

Guy and Beineke [20] have calculated most of the values of the
coarseness of K, However. they are not known for p=9r+7 (r=1) or
for p=13, 18, 21, 24, or 27.

Problem 4.2. Finish the calculation of the coarseness of the complete
graphs.
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The crossing number »(G) has not as yet been determined for the
complete graphs K, or for the complete bipartite graphs K, . We
conjecture that v(K,) and (K, ,.) equal their weil-known upper bounds,
as given by Harary [22, p. 122].

Problem 43. Calculate the exact value of the crossing number v(K,).
Problem 4.4. Calculate the exact value of the crossing number v(K,, ).

Aside from the facts that v(G) =0 when the graph G is planar and that
v(G) =1 for the MObius ladders (Guy and Harary [21]), there are very
few exact crossing number results. It has been observed by Harary et al.
[24] that there are toroidal graphs, in particular, cartesian products
C.xC, of wwo cycles, with arbitrarily large crossing number, so that
v(G) and y(G) are independent topological invanants. Beineke and
Ringeisen [7] have calculated the crossing numbers for cartesian products
of certain graphs.

Problem 4.5. Calculate the exact values of the crossing number v(G) for
other interesting graphs G.

The rectilinear crossing number #(G), introduced by Harary and Hill
{23], is the minimum number of crossings required when the graph G is
drawn in the plane so that each edge is a straight line segment.

Problem 4.6. Determine the rectilinear crossing number #(G) for some
interesting graphs G.

5. ALGORITHMS

The values of some functions can be computed by substituting numbers
into a formula. However, the values of other functions cannot be calcu-
lated so easily (if at all). This section is concerned with algorithms 10
compute the values of functions important to topological graph theory.
By dualizing Heffter's method (27) for describing graph embeddings.
Edmonds [9) obtained an algorithm to calculate the genus of a graph.
Unfortunately, this algorithm requires approximately (p!)® steps, where p
is the number of vertices. To decide whether a graph can be embedded in
certain particular surfaces, faster algorithms are known. Hopcroft and
Tarjan [28] have obtained an algorithm to decide whether a graph is
planar, whose running time is bounded by a linear function of the number
of vertices. Filotti [10] has constructed an algorithm to decide whether a
cubic graph is toroidal, whose running time is bounded by a polynomial in
the number of vertices. Moreover, Filotti and Miller [11] have
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generalized this result to all graphs and to ail other orientable surfaces.
Conceivably, however. as the genus increases. the degree of the polyno-
mial bound might increase, leaving no overall polynomial bound.

Problem 5.1. Is there an algorithm to compute the genus of a graph,
whose running ume is bounded by a polynomial in the number of
vertices?

Questions about polynomial running time also apply to thickness and
coarseness.

Problem 5.2. Is there an algorithm to compute the thickness of a graph.
whose running time is bounded by a polynomial in the number of
vertices? Conjecture: No.

Problem S.3. Is there an algorithm to compute the coarseness of a
graph, whose running time is bounded by a polynomial in the number of
vertices? Conjecture: No.

It is apparently not known whether the crossing number is computable.
in the usual sense of recursive function theory.

Problem 5.4. Is the crossing number of a graph computable? Conjec-
ture: No.

Glover and Huneke [12] have proved that the set of irreducible graphs
for the projective plane is finite, an analogue to Kuratowski's theorem that
the only two irreducible graphs for the plane are K, and K, ;. Glover et
al. [13] have proved that there are at least 103 irreducible graphs for the
projective plane. Hundreds of irreducible graphs for the torus have been
listed by Haggard (unpublished) and by Glover and Huneke (unpub-
lished). Although an algorithm based on a finite complete list of irreduci-
ble graphs for the torus would not be fast. the existence of such a list
would surely be interesting.

Problem 5.5. [s the set of irreducible graphs for the torus finite?

6. EMBEDOING OF 2-COMPLEXES (N SURFACES

Gross and Rosen [17, 18] have proved that it can be decided in linear
running time whether a simplicial 2-complex is planar. Their algorithm
makes use of a local planarity criterion derived by Harary and Rosen
[26].

Problem 6.1. Can it be decided within polynomial time what is the
smallest genus surface in which a 2-complex can be embedded?




TOPOLOGICAL GRAPH THEORY 261

Gross and Rosen [17] have also proved that a locally planar simplicial
2-complex is embeddable in the sphere 1ff the l-skeleton of its first
barycentric subdivision s planar, which motivates the last problem in this
collection.

Problem 6.2. Let C be a locaily planar simplicial 2-compliex. [s the least
genus of any surface in which C can be embedded equal to the genus of
the l-skeleton oi the first barycentric subdivision of C?
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