LZARNING CCNTACL OF 2RCDUCTICH 3YSTIMS

S

[%2]

[

vatore ¢, Stolin

a

O

olunmbia Universiiy

CUcs-6-79

ABSTRACT

Ore of the central problems in Artificizal Zatelligsnce is

0.

nat of

Ct

esigning approprizte and e
representing and learning real-world knowlsdgs. We propose a scnaze

ccoposed of a declarative form, ~pradycrion svstams, controll:ad

a separats collection of procedural infermation, 2z gontral Langazg2,
together with a debugging facilizy, nmerz-rulas, We show that it is

feasisle to infer the control informaticn froam an znalysis cf trzces

of tne successful exscutions of the production systiad pregrat croviisd

= 4 : - - - = 2~
zcerlsrmance Ty sxXgerIience., We ocutline tne repressntatlion scneme 20
| P b N
the infzrence zlgoritozs, and demAnsurats ThAg ADIIC224 WITD 2D 2KEDC.2.

‘\l”“J(‘:‘!Tr""";"\‘l

During the Last fsw years, 3z nuster of relatively erffsciive Apnificizl

Intalligence (AI) progrzms nave been writzen incergzerating huge 2mounts of
- - -

for exampls

[5]). Ccnsequently, a siznificant gorticn of the desizn of such systems mus:

he devoted to mechanisms which facilitate this knowlsdge transiar, he searzn

ey

or effactive knowledge representaticns and zcquisition procedures have becore

central problems for AIL.

3y ncw it has become coammon to Zistinguish between deglarative information,
which can be thought of as Xknowing wpat, and procedursl information which can
be thought of zs knowing now. Declarative represeniazions offar the advantags
of being easisr o acquire: the decomposability of such information is readily
ncdifiable and extendable [6,16,24]. Unfortunataly, a straightiorward
inpilezentation of such informaticn corresponds to z nondeterzinistic program
which dakes a relatively blind search rtarough the sclution spzace Procedural
representations offer the advantzge of being efficiesntly sxecutad by =

machine, However, procedures are rhard to debug and 2:0dify and therefzre are

not as easy to acquire.

clarzative framework. By fine tuning <che precedural

T - a &3 1 .. - o] ? - - - pmm 5 e
AL were 2 {2w general conirscl regimes were agplied uniforaly <o 3 Zaclzrztive
& - - - - - - - b - - M
LorT anc wnich zet with very limized success., 3ome <7 zhe ezrlisst exszclas

< o - - 3 Tmn] - - trm Y ora =~
00 these Zual representazion {rzmevworks iaclude zrnizl zvzouaticn of
el - Y < - - -7 M -~ - - < - hd - s mmemrman - -r =3 - -
sredllziss In prediczte czloulus thsgrex croving (0] zad the gsfmesow fileen
’3" Sal2rmmam o U e, - sSpmrme " o S - -1 T P B U

o oe2lzrniar (5l ACre recent =axzmpless includs AL =Dalabelotel-2o Rl i
Trmmmmg T 0IT a4 aa At it am memAmmm_ mmarti e T mmmmran ol e 5. -
A mxin . -, 2 esso2TlTo LASCUSZ-IICVINE ITZIEWITL, ~oSft s oZnS LnooTn2
SVRIFS griclamezzlving zvszizm D7D and mrmssceeat 2522350200 in Trzms

representation systems [15]. Many schemes have been propcsed for embeddin
sontrol information into 2roduction Svstems [6,i14], for example, annotated
sroduction systems [i1], 2etri-nets (25], and semantic nets (:51. In [16],
Aychener discusses the approach of building a pational g2al sghougture ints a
oroduction systez while Davis (5] favors a separate unifora set of getz-ryles

R
specifying lLocal control information in a hierarcaical fashion.'

In this paper we will focus on the problem of representing and acgquiring
procedural knowledze from a human expert. We have developed a representation
schene composed of a preduction system formalisc, encoding the
problem-specific informaticn in declarative forn, togéther with a ;gn;;g;
language specifying permissible ;gﬁugnggi of rule applications, and 2 set of
meta-rules used as a debugging zid for the control language. In 101,
Georzeff independently proposes a similar scheme and discusses many of iss

implications., (See ([17] also.) We zive the details of this representation in

later sections of this paper,

Separating control completely from the declarative foram (productions are
disallowed from containing tags or 'control elements' to signal other
productions) allows us to focus on mechanisms for manipulating, and in
particular learning this information. Ihis also allows f£or ifhe possipility of
Lsing the same seh of declarafive gnatomenss i different wavs for 2 variscy
.'.Q.i F‘Y‘ﬂbTam !-:c'ss _Q.Y_ ';:nv/-f—w'-!! m Q""Q“ﬁ'"“‘e* m_

i

The idea of using a2 uniform nuiti-lzyered prcduction systez is not rew,
alihough the specified use of the metaz-rules in Davis' system Is diffarenz.
The Alzol-68 specification wuses 2 grammatical forz where one ser of
context-Iree rulas specif a pessibly infinire language o¢f acn-tarzinzsl
svabols. Members of this language are substituzed in 2 set of lower level
template rulss, also in context-fres fora. This creatss z possibly iniinite
set of rules specifying the 1lz0l-28 language. Thais scheme is aquivalsnt =2
Zsneral phrase-structured gramzars znd 1s capabls of sgecifying ths
context-sensiziviny of Alzol-Ad. Davis' meta-rulss are usad for connrcl anly,
crdering the sst of lower lavel rulss during the selzotisn gprecsss, ceonflice
resolution, znd dc net altar the forz or content of rhesa rulas,

LA

In 2any of the schemes cited atove, the control Information is acquired oy
axplizic speciflcation =y a human expert (learning 3y 3Seing :old). This
presuzposes that human éaxperts can readily describe their netheds and
procedures for sclving problems as easily as say a amedical doeter czn

enumerata the formal names of the dénries In one's arz.

It is our belief <zhat this type of -information czannot be easily
cormunicated thi: way. Instead, it geems preferable that gontrsl infarmma-dicn
.‘Q_i affane<iynly 1a=rn§d or infor‘wnri m Qbsgnving m bgh:v‘gn _Qf. _.m b‘vman
2xgers wWhen sSolving exampie problems. In one's own experiences, in facet,
learning by obserwvation or example is probably the dominant way information of

this type is conveyed. Learning how to program or prove theorems, and the

phrase we all have heard as youngsters when our parents were angry with our

[N

behavior, 'L S2 ®Hkat I do, do =phat I say!, exemplify this type o

learaing.)

Sickel's work [18] is an example of zutomatically infarring 2cntrol

information from a syntactic analysis of the declarative form. The work of

3]

~xes, Hart and Nilsson is closer to what we mean by learning contrcl frem
cbservation. In the STRIPS problem-solving system, sequences of operator
applications used in the solution of simpler problems were stored (along wizh

data rlow information) for possible guidance (or planning) in solving more

difficult problems. (The work we report stresses the importance of a deerer
analysis of the sequence of operztor zpplications.) Jowe7er, the STRIZS

sy7sten anzlyzes sequences produced by the problsm-solving systen alene when

solving simpler problaas. We have decided to infer thnis information freom

cr

races supplied oy 2z numan expert guiding the pregrza in actisn., Thalis s z

siaplsr problem since the traces we analyze c¢ontain much qore useful

- - PN I3 - - - PR - . - -
laformaticn tnan :traces f{cund by :trizl and errcr sezrcn, =2sgscizlly LD the
[= = - - - . SEE 3 - D] P S - -
trziner iz z good teacher., The werk of Zisrmann (4] is zlsc 27 tnis forz,

1% 22n Ze argusd that with this scenario the declzrzcoive comzenents wnils

constructad by the human expert inevitably contain some control information
that is thrown away and then rederived later with considerabls eofforz. We
claim that the control information®will be much more accurates- and clearly
formulated when a specific example i3 presented and its solution is displayed
and examined, Prespecifying control would invariably need modification.
(Hand simulation or several runs on sample data remains the best way to
uncover bugs in a computer program.) Furthermore, this might not allow for

different uses of the same information for a variety of problems.,

In general, we might expect that the control information will embody very
sophisticated principles which are ihferable only by the use of considerable
intelligence. For example, it is ;lear that the deduction of the heuristic
principles of evaluation and alpha-beta search from a declarative chess
program which specifies only the rules of chess will require an analysgis which
is considerably beyond the ability of present ‘techniques; even <the

optimization of the parameters in a linear evaluation function involves hizhly
sophisticated processing.

However, it is the contention of this paper that there are a numbef of
important areas in which it might be possible to deduce contrel information
automatically. These include declaratively specified problems:

- for which there exists a relatively simple algorithmic procedure

- whose performance can be improved in frequently occurring or
particularly important special cases

- in which particular subproblems can be solved by sizmple algorithmic
proccedures.

In the following sections we present our approach in detail zalong with a

problem that our system was applied £o with gnod success.

(V1]

2. Guide the selsction of appropriate knowledgze (rulss) when a
conflict arises,

3. Record the sequence of rules selected together with Ingut/output
information and the cconflict ser of rulas on ezch cyelsa,

—aia

4, Descrite the better (i.e. shorter) successful sequences in a
centrol language, CL/7, designed for this purzose (and described in

=~

the next section). . -

5. Generate 2 set of meta-rules whose objective is to aid cthe CL/3
deseription if the sequencing is inappreopriate.

8. Use the CL/1 description and the zeta-rules to guide the program's
subsequernt decisions.

In view of the complexities of-the technical problems with this approach,
it was necessary to define a starting point from which we can proceed to study

the xzc¢re general case, Accordingly, we have made certain assumptions and

decisions in order to derive useful results.

Innerent in ocur approach 1is the assumption that good decision-making

e

procedures or heuristics can be inferred from the performance of the program
on only selascted inputs. We anticipated that the selaction of inputs would be
critical and that eventually new inputs would bte handled incrementally, as was

4 - .4 - - - - - .
J. Heowever, in this work we concentrate on the siaplar

ny
N

dcne 5y Winston (
problem ¢f getting a gcod solution for the nonincremental czse., In zZeneral,
as sugges:ad by work on learning systems [25] and infzcrzation theory (32,201,
we give preference to short CL/' descriptions which will generzte a nigh
prorortion of short successful solution sequences and f=w long or unsuccessful

seguences.

The human 2xpert running the prograz in 'trzining zode' is aware of the

internal structure ¢ the grograz, 1 sutseguent genmerzliizziica of this
agpreach, We anticipate the necessity of using techrnizues similzr t2 those of
Nowda 727 mwiam eed 11 Aamanlzs tha Frmadmap mA <Saal PR I red - P |
oY D Lo, L ROy L - S v LT vesw LoZIner -~ -2 -;.-_f [PN view SXLSTNEas
- I - - -
tenavior of the srograo.
We 2lso nzvs Zdeliterztiasly chgssn w3 sxcluids inlirzanion zcut seguences

which end In failure, It is clesar that, as found by Winston and others
{3,291, counterexamples will be extremely valuable. However, as the reader
will note below, even the simpler problem we stuay poses considerable
technical difficulties and it was our fe2eling that a clearer picture would

emerge from the simpler approach. Furtheramore, the eXperiments described
3 ;

‘o
—
w
u
N

below suggest that useful results can be obtained without counterexam

The description language, CL/1, i3 modelled after Regular Expressions.
Therefore, the technical problem that we are faced with can be statsd as the
construction of-the minimum length Regular Expression which agrees with the
sample data (solution sequences). anortunataly, this problem has been proven

to be NP-complete by Angluin [2]. The approach we use is therefore heuristic

in nature,.

In the following sections we outline the details of the representaticn

scheme and then present the inference algorithms which analyze the soluticn

sequences.

uE T ™ f
The declarative information acquired from the human expert is written in
Production System (P2S) form [6,8,14,16]. A PS is a (nondeterministic) program
consisting of a set of produyctions or rules, called Produgtiopn Memorv together
with a data base of assertions, called Horking Memorv (W) . Each rule
consists of a conjunction of patterns of data elements, czlled the laff%-nand
side (LHS) and a series of actions called the pight-nand sids (RHS

pecifiss information that is to be deposited in or removed form WM,

(n

xecution of the program consists of repeating the follewing zacticns 2:zch

O]

:

called a gvela):

teration

[

ts LHES matches the current environasn:s
ions are possibla}.

1.

In the axact form of the 2SS representation we use, called PRCSYS a variant

-
-

Y]

-
=%

2f CPS2 (3], data elements can be any LISP data structure. aAn ateamice

[¢)

2lement in the LHS of a rule nust match an exact data element in WM and a lis
2ust ZJatch 3 list with the same structure and content. A symbol preceded with
an equals sizn (=) represents a variable (existentially quantifiasd) which can
match any data struéture. A symbol preceded by * can match any data structure
not equal to the data structure matched by a corresponding varizble prefixed
by an equals sign. The & gsymbol has the same function as the SNCBCLY
immediate assiznment operator, When a rule is fired, the mnatching data
elaments are not deleted f{rom WM unless they are included as arguments o the
<delete> system function in the Rﬁs 2f the rule. The other system functiops
are representad in lower case and enclosed in pointed brackets (< >). Their
function is described by their names. The operator - in the LES has the szne
function as <not> (the associated data element is not contained in WM).
Finally, the symbel ! is an operator which =matches the entire remaini=zg
portion of the list that contains it, Where it appéars in the RHS, it

deposits the list matched in the LHS but without the enclosing parentheses:

The following set of productions is a pportion of a gZsnerzl roboct
problem-solving program that our 3ystem was applied to. The entire progrza
contains 36 productions. The robot is modelled as a) naving a single eve with
which to focus on a single object, b) a hand with which to grasp zn object and
¢) a limited memory which can remember 2 singls object, a single pile ¢

objects and a parzicular color at any one time, The particulzr protlam we

focussed on is a jigsaw puzzle task. Some of the producticns are general in
nature znd allew for the piling of zaysical objects znd through the functichns

of the eye, hand znd Demory, the systematic scanninz of zn crdered ils 2

ctljects., Cther productions are unigue to the jigsaw jpuzzls demain., Various
sensing productions are used o indicate 2 wvaristy of condizians af WM,
Sisplayed 0 the =rziner ut which do net alter the contants of WM. Ia =his

the problam of learning procedures.

el jod Mamapy

LCOK-AT-OBJECT-ON-TABLE .
{(LCOKING~-AT =ANYTHING) & =C!
(CN-TABLZ =0BJECT)
-{LCOKING-AT =QBJECT)
-(CN-TCP~-OF =ANY =0OBJECT)
-->

(<delete> =C1)

(<write> |I'm now looking at! =0QBJECT)

(LOOKING-AT =QBJECT))

PICK-UP-QBJECT-IN-VIZW-TABLZ
(HANDEMPTY & =C1
(LCOKING=-AT =0BJECT)
(ON-TABLE =OBJECT) & =C3
-(ON-TOP-QF =ANY =OBJECT)
(NUMBER-IN-HEAP =NUMB) & =C4
-

(<delete> =C1 =C3 =C&)

(NUMBER-IN-HEAF (<SUB-1> =zNUMB))

(<write> I just picked up | =0BJECT)

(HOLDING =0BJECT))

PIZCE-dAS-STRAIGHT-ZDGE
((LCOKING=-AT =P)
(SIDE =ANY =P =SIGN 0. =ANYC)
-2
(<write> [Piece | =P | has a straight edge!))
PIECE-FITS-IN-PUZZLE
((LOOKING-AT =0R8J)
-{IN-PUZZLE =0BRJ)
(SIZE =ANY =0BJ =SIGN =N =ANYCOLOR)
{IN-PUZZLE =0BJECT2)
(SIDE =ANY2 =0OBJECT2 ¥SIGN =N =ANYCOLOR2)
-

(<write> [The | =ANY | side of piece |
=0BJ | fits the | =ANY2 | side of pizce |
=QBJECT2 | which is in the puzzle!))

PUZZLE-I3-FINISHED
({NUMBER-IN-PUZZLE =N)
(NUMBER-OF-PIZCES =N)
-
(<write> | The zuzzle is now complate!})
(<nalz))

MAKZ-A-PILZ
({H0LDING =QBJECT) % =C;
(LOCKING-AT =0BJECT)
(NUMBER-QF-PILZS =M) & =C3
CALL-PILES ! =R) & =C4
NQ-ZURRENT-?ILZ & =CS
-
(<deleate> =C1 =C3 =C4 =CS)
(NUMBER-QF-PILZS (<ADD-1> =M))
(ALL-PILZS (<ADD-1> =M) ! =R)
(<¢write> |I just created a new pile called pile |
(<ADD-1> =M))
(CURRENT-PILZ (<ADD-1> =M))
(IN-PILE (<ADD-1> =M) =0BJECT)
(ON-TABLE =0BJECT)
HANDEMPTY) ’

PICK-A-PILE -
(NC-CURRENT-PILE & =C1
(ALL-PILES =P1 ! =R)
-
(KWRITE> iI am now working with pile | zP1)
(<DELETE> =C1)
(CURRENT-PILE =P1))
PUT-QBJZCT-TIN-PILE
((CURRENT-PILE =P1) & =C3
(EOLDING =0BJECT) & =C2
(LCOKING-AT =0BJECT)
(ALL-PILES =P1 ! =R])
(IN-PILE =P1 =0OBJECT2)
-(CN-TOP-QOF =ANY =0QBJECT2)
-=> =C1
(CHRITE> I just put | =
1 on £op of pile
(<DELETE> =C2)
HANDEMPTY .
(ON-TOP-OF =0BJECT =0BJECT2)
(IN-PILE =P1 =QBJZCT))
FORGET-CURRENT-PILE
((CURRENT-PILE =P1) &=C!
-
(<DELZTE> =C1)
(<WRITZ> |Pila

i =P1 | is no longer bYeing used!)
NC-CURRENT-PILZ)

CCNSIDER-ANOTHER-PIL
((ALL-PILES =21 =
NO-CURRENT-2ILE

P2 ! =R) & =Ci

-
(ALL-PILZS =P2 ! =] =P1)
(<DELETE> =C1)
{<WRITE> !The next pile to consider is pile; =P2)
LCCK-AT-7IRST-IN-PILZ
((LOCKING-AT =ANYTHING) & =C1
(CURRENT-PILZ =P1)
(IN-PILE =P1 =OBJECT & *ANYTHING)
-(ON-TOP-QF =ANY =0BJECT)
-—
(<DELETE> =C1%)
(<WRITE> |I am now looking at object | =0BJECT
| on top of pils | =P1)
(LOCKING=-AT :OBJECT))
AEMEMBERED-QOBJECT-IN-VIZW)
((REMEMBERED-OBJECT =CBJECT)
(LOOKING-~AT =QBJECT)
-
(<WRITE> =0BJECT | which is tagged!

! as special is in viewi))

* 1)

The CL/1 language provides a semantic framework with which to specify cor
describe sequences of rule applications in the execution of the PS program.
The basic primitive of CL/1 is called a uni%. A4 unit specifies either a rule
application (with preconditions), in which case it is called a gizple unis, or
a control operation applied to a sequence of units. The control operaticns
are: Permutation of a set of sequences, Alternative or conditional selecgioh
of a sequence from a set of sequences, Repetition of a sequence controlled dy
simple Boolean assertions (described below) in Disjunctive Normal Forz {ONF)

and (izmplicit) Concatenation of units producing sequences.

The control primizives are represented syntactically in Cambridge forz by
2.% A% ard R,.*¥, respectively, while concatenation is representsd by a list

of urits enclosed in doutle pointed hracksts (<< >>).,

The CL/% cperatcors corresgeond 55 various control primitives ¢f zsonventional

srograzning languaszges, znd to that ¢

iy
(S}

Regulzar Zxpressions (where permutation

corresgonds <0 a shuffls cperaztor). The choice of using Jegular Ixpgressicns

IR

for ccntrol depends on several considerations. First, people gzenerally use
descripticns of their own actions which appear very auch like Regular
Ixpressions. Secondly, since they are one of the simplest formalism, it would
appear that they would be easiesr to Iinduce from examples than other a;ore

complicated formalisms. Lastly, they are easily izplemented and easy 0
‘understand.

dowever, it would appear that Regular Expressions are too linited in their
expressive power tc be of much interest, However, coupled with a powerful ?PS
program 3s we use here, the total system is at least as powerful as the PS
representation and is capable of a wide range of behavior with the additional
control constraints. For exémple, consider the following example taken from

Georgeff (10] (interpreting this production system in the usual formal grammar
sense):

. 21: S-=-> ABC

2. 22: A-=>aA

3. P3: 3-->bB

4, Pl: C-->cC

5. 25: A-->a

8. P5: 3-->b

7. P7: C-=>c

Seginning with the initial sentential form (WM) containing S, these

productions generate the language {aibjck: i,j,¥>= 1} which is ccncext-free.

ernissihls sequence of rule applications to be a3 zember of

'
.
a
o
"3
m
n
ot
*3
[
0
r
(3]
193
®

U

-~

A~ - N - -2 < - - . 3 -
tan 3Jss8Crite thnese zaclitisgnzl 2onitrol ¢onstraiats in CL/Y as:

—al
n

Georgeff describes the use of Regular Expression control in this fashion to
both limit the number of productions to be tested on each cycle and to leave
nondeterministic selection points in tact and at well specified points within
the control. For example, in (1) above, at the end of the repetition, only P2
and P3 can enter the conflict set of rules (severely limiting the number of
productions to be tested, which can obvicusly be useful for large systems, but
also too restrictive in zeneral). This approach leaves the final decision as

to which production to select up to the conflict resolution strategy (or

meta-level knowledge base, see (5]).

There is some attempt in CL/1 to-=lessen the responsibility of the selection
strategies built in to the PS interpreter by allowing explicit specification
of conditions under which repetitions should be allowed and alternatives
should be selected. The repetition operator in CL/1, therefore, contains both
a ¥hile and {Upntil clause (written in Cambridge form as W.* and U.*) and the
alternation operator cdntains conditional " expressions for each alternative
very much like the LISP COND. Further, even the simple unit, which specifies
the next rule to apply, contains a precondition for that rule to be selected.
In total, this wealth of specified conditions is intended to move many of the

aondeterministic decisions out of the PS interpreter and into the control

mechaniszm explicitly.

2ut what might these conditions be? We could build a world model
{representing meta-level knowladge) in addition to the machinery at hand, but

this introduces additional complexity and ambiguity.

However, since the PS is defined by 2 human 2xperz, we assume that the
program i3 an accurate zodel of the problsm domain (it can after all solve
problems). Furtherxzore, the state of the PS program during execution is zn

the state of the world viewed by the exgert when solving

[1H]
[¢]
[¢]
[}
]
(]
(o
19
B
[o]
o
U]
'4
o
Lo
«r

probolems., Therefore, %he conditions we have defined are expgressions testing

tne stzte of the PS pr<czirzm and in particular the contants of WM, Conjoining

11 of the 3ata 2lements would clzarly be uselsss, instead we would probably

ity

need 0 know what relationsnips exist between the elaments. The zroblem then
becomes that of choosing the correct relationships to descridbe, which is

"

analogous to chcosing the correct features of an object in pattern recogniticr

o]

{znd indeed lies at the neart of the knowledgs representation protlam).
TEIRISIAS-MYCIN approach is to interrogate the human expert to make explicit

what the relationships might be in context.)

Consider the rule: P: (C1 C2 ... Ca =-=> A1 42 ... Am). FTrom the point of
view of the human expert, this rule states that if the data elements C1, C2,
... Cn are contained in the data ba;e at the same time, some special effect in
the system should result, That is to say, there is a gtrong relationspin
between those elements, which represents an important feature of the state of

the world, and the problem-solving systen. (Cf course, a different set of

productions could have a major impact on this approach, but we are relying on
the expertise of the human trainer to decide what is important and what is not
in the context of solving real problems.) Therefore, if we wish %o describe
the state ¢ the system, describing the list of rule names whose LHS's match
the data base appears %o be useful. The conditions we use are exactly of this
form but allowing for several list of rules in disjunctive forz (wrizten as

OR.*). (The latest version of the language contains additioral infsrmation on

how the instantiations of the productions share matching data elements.)

The human expert is allowed to view only the conflict set of rules during
training and is forced to zake decisicns based solely on this iaformation. If

ct

nis proves inadequate (which it has at times), dyrnamic additions to
prcduction zemery are allowed at any point during execution.

Jecome gerdansnt addltions to the knowladge Base, A naturzl conseg

ot
[
)4
n
w
(8}
‘0
3
(o]
[
O
)
[

is the use of s=2nsing croductisns (whizh output iaformaticn

'.J
{
0
]
-
4]
18]
or
4]
[t}
[p]
o]
2]
ot
[{1]
18]
ot
4]
(e}
"3
]
B
o
[}
9]
(L
w
oY

without changing WM) and rroduction names ref

to a control operator, each condition has some implicit notion of a global

context in which it applies., Examples of the CL/'1 operators with conditions

follow.

When aexecuting the simple unit:

1. (PUZZLZ-IS~-FINISHED]
(OR.* (HEAP-EZMPTY)(CURRENT-PILE-IS-EMPTY)))

the production PUZZLE-IS-FINISHED would be selected if
it 1s a3 member of the conflict set along with either
of the productions HEAP-EMPTY or CURRENT-PILE-IS-EMPTY.

2. (R.*® (W.* (PIECE-HAS-STRAIGHT-ZDGE))
(U.* (REMEMBERED-OBJECT-IN-VIEW))
<<(LOOK=-AT-NEXT-IN-PILE
(REMEMBER-CURRENT-QBJECT))>>)
produces the sequence of simple units:
<<(LOOK-AT-NEXT-IN-PILE (REMEMBER-CURRENT-QBJECT))
(LCOK-AT-NEXT-IN-PILE (REMEMBER-CURRENT-OBJECT))

>>
while the production PIECE-HAS-STRAIGHT-ZDGE is active
and REMEMBER-CURRENT-CBJECT 1s inactive. The conditions
are tested prior to producing the sequence on each
iteration. Notice that the conditions of the simple units
contained in the argument sequence must still be satisfied
when executing the argument sequence.

3. (2.2
<<{LOCK-AT-FIRST-IN-PILE ())(LOOK-AT-NEXT-IN-PILE ())}>>
<<({FORGET-REMEMBERED-OBJECT (})>>)

could produce three sequences:
{<<(LCOK~-AT-FIRST-IN-PILE())
(LOOK-AT-NEXT-IN-PILE())
(FORGET-REMEMBERED-OBJECT())>>
<<(LOOK-AT-FIRST-IN~-PILZ())
(FORGET-REMEMBERED-OBJECT())
(LOCK-AT-NEXT-IN-PILZ())>>
<<(FORGET-REMEMBERED~-QBJECT())
(LCOK-AT-FIRST-IN-PILZ())
(LOOK-AT-NEXT-IN-PILE())>> }
In a parallel environment both sequences could b
siznultanecusly, In the actuzl implsmentaticn, ¢
sequences are concatenated and executed in orde

4 {A.* (PIZCEZ-5AS~STRAIGAT-ZDGE) <<K{PICX-UP-0BJEICT-IN-VIZW(N>>
{AZMEMEERED-0RJECT-IN-VIZW) <<K{CCNSIDER-ANCTHZR-PILI(3 >>)
produces thne sequence <<{PICK-UP-CBJECT-IN=VIZW{})>> if
PIZCZ-83AS-3TRAIGHT-ZDGE is active, o.ne" 1se
<<\CC§S:EER-AIOT ER=-PILZ{))>> if RAEMEMBE BSECT-IN-VIZAW is

oroduces nc gequencing at all.

"3
t
of

-

U

IMPrIMENTATZON 2oF 2L/°

The implementation of the operators 1s very straightforward. The ?S

intersreter maintains a stack of units corresponding to the CL/1 descrigticn

®

zhat i3 in control of the sequencing. Successive units are popped frcm th
stack and appiied. If the stack is empty, or the precondizion of 2 siaple
unit is false, the meta-rules are called. The algorithm which follows is
invoked whenever a rule i3 to be selected from the conflict set. The details

of the meta-ruls inplementation can be found in the next section.

WET AR S
There are four types of meta-rules which assist a CL/1 description in

controlling a PS program. It is éhe sizple unit which actually selects the
.next ruls to fire on each cycle (the higher level control units produce
sequences of simple units). If the DNF expression evaluates to false or the
specified rule name 13 not active, the meta-rules are called upon to suggest a
list of rules to try in order to force the DNF expression to svaluate to zrue.
(We use the control in an irrevocable fashion, not wanting to resort to
backtracking.) For example, suppose that the simple unit (A4 (3 C)) is in

controal, © was the previously fired production, and the current conflict set

of rules is {3 D}. This situation may be described as
1. A and C should be active
2. D srould (perhaps) be inacti;e
3. {3 D} are currently active

4. I was just fired.

Accordingly, the meta-rules which we have developed are desizned =o dezl with

the four cases ligted usin the primitive functicns AHapn-3ghivs,
Hapnu-inaguive, Qurrentlv-acsive and Just-Zired, respectively. In esach case, z2

Zeta-rule may suggest a list of rules %to try in that situzsion using the

srizitive function ITrovw-zo-fire, The suggastions are weizhted sincs z ruls zmav
e suzzzsted several times by diffarent meta-rules. Zach zmetaz-ruls is scannsd

Figure 1: Implementation of CL/?

n

repeat forever; Apply the rule selected as follows:

casey;

(Stack Empty):
Set P to meta-rule choice;
If P not empty then select P from conflict set;
else stop; end if; :

(Simple unit on stack):
If the DNF of the unit is true and the rule name is active

then
pop the stack:
select the rule name from the conflict set;

else
set P to the meta-rule choice;
if P is not empty then select P from conflict set;

else pop the stack; end if;
end 1if;

(FPermutation unit on stack):
pop the stack;
push the appended argument seguences on stack:

(Repetition unit on stack):
if the While component, and the Until component are both
empty then
pop the stack;
push argument: seguence on stack; /* executsd once */
else
if While condition is true and Until is false then
push argument seguenca on stack:
else
pop the stack;
end if;
end if;

(Alternation unit on stack):
Scan each argument of unit;
if the DNT condition is true then
pop the stack:

push the corresponding argument saguenca;
end if;
end sczn;
if ncne weres trus then pop the stack:

(]
n
("]
0

17
o)
0.
2
(b
‘0
®
fu
or

~e

executed.

examples of

1. P’

The exzce

sach type

De a list of

+s
|

definitions of the neta-rulss fsllow, See figure 2 for

preduced from the jigsaw puzzlza systenm.

rule names

2. J be the rule just fired on %the previous cycle

3. D be the union of all the names appearing in the INF

of the current

simple unit in control

U, U be the rule specifiad by the current simple unis

5. C be the current se:t of active rules.

The primitive function Want-active- is a Boolean function which tests =he

current state of the CL/1 description and the curredtly active set of rules,

It

(Want-active 2')

(Nant-inactive P')

i3 defined as:

-

toe other orimitiv

Jtrue it p' ¢ Dy (U}

l else false

Figure 2: 3ampls Meta-rules
Type 1 Meta-rules:
((CHANT=-ACTIVED
(THERE-ARE-NO-~?ILZS)
) =-=>

(<TRY-TO-TFIRE> (DESTROY-A-2I12))]
{ (CAANT-ACTIVED
{FORGET-CURRENT-PILE
PILZ-IS-ZMPTY
DESTROY-A-PILZ
REMEMBER=-CURRENT-2ILE)
) =-=>
(<TRY-TO-FIRE> (?ICX-A-PILE))]

Type 2 Meta-rules:

{ (¢CAANT-INACTIVED
(FORGET-REMEMBERED-PILE)
) ==> :
(<TRY-TO-FIRE> (FORGET-REMEMBERED-PILEI))]
[(<KWANT-INACTIVED
(CLOSE-EYE
CBJECT-IN-HAND-IN-VIZW
FIND-COLOR-OF-21ZCZ
FORGET-COLOR-OF-PIICE
PIZCZ-FAS-CURRENT-CCLIR
PIZCZ-FITS-IN-PUZILE
PIT-PIZCZ-IN-PUIILE
PIECE-PUT-IN-PUIZLE
PUT-OBJECT-IN-PILE
REMEMBER-CURRENT-OBJECT
REMEMBERED-OBJECT-IN-VIEW
REMEMBERED-OBJECT-IN-HAND)
) ==>
(<TRY-TO-FIRE> (PIZCT-PUT-IN-PUIILE))]

Tyece 1 Meta-rules:

{ (<CURRENTLY-ACTIVED
(PUZZLE-IS-FINISEED
THERE-ARE-NO-PILES)
) ==>
(¢TRY-TO=-FTRE> (PUZILE-IS-FINISHED))]

{ (<CURRENTLY-ACTIVED>
(PUZILE-IS-FINISEED
THERE-ARE-NO-PILES
FORGET-REMEMBERED-PILE)
) ==>
(<TRY-TO-FI
(

oW

£>
ORGZT-REMEMBERES-2ILE))]
Tvpe § Meta-rules:

{{KSUST-FIRZD>

[(<SUST-FTIREDY

| -
o]

Try-to-fire(?'): procedure:

The definitions are very siznple and =0 the details of the implementation zre

not included.

The function Try-to-fire deposits a subset of its argument list of rulse
names in a master list (TRYLIST) maintained by the interpreter. All suggestad
rules =zust be active. The 2ost often suggested ruls is selzctad <or
executicn; in the case of ties, preference is given to the rule name ia the-

-
|

current simple unit, U.

20

when running a PS to a successful conclusion, a trace of the acticns
performed is generated. A series of these traces, called Jinput Ltrace
sequences, are presented to a system which analyzes and produces CL/1

descriptions of them.

The exact form of an input sequence is <<P1 P2 .o+ where Pi, called a

- § . t A
Lrace unit, is of the form: (Pi (Pi1 Pis wen Piti) (Ni1 Nis «en Niji) (Mit
Miz)). P,' is the name of the rule which was applied on the 1&h eycle of

execution during the training session. (P ? eee P } is the-r conflict
: i1 “1i2 ity

set of rules on the cycle. This set is used to calculate both the DNF

expressions and the meta-rules.

The third component of the trace unit, (Ni1 NiZ een N‘j), i3 the set of
-3
unique integers (recency numbers, see [3]) associated with the instances cf

data elements which matched the pattern of the rule ?.'. Finally, (M;1 Miz)

is the range of unique integers associated with all of the data elsrents
produced by the action portien of the ruls Pi'. The last two pleces <f
informaticn allow for the conszruction of a2 data flow Zrazn, and consequently

concatanations and permutatiocns.,

The trace sequence is an exact history of the execution of the program and
is therefore already partially ordered by the hack deminmance relation: Eve;y
ired production in a trace unit within the sequence is preceded by those
trace units wnich contain the fired production which produced data for it.

This partial ordering simplifies much of the subsequent analysis of tRle trace.

Figure 3 is an example of a portion of a trace sequence produced dy a run

of the jigzsaw puzzle PS.

The algorithms which construc: CL/? descriptions consist of several
distinet passes over the input traces., Rather than having an =2nuRerate and
test character, these algcrithams aét by gutting and glying subsequences of the
trace, much like playing with construction paper and scissors. The details of
the algorithms are presented in the next sec;ions without formal defini:sions.
Examples are used to demonstrate how they work.

=3 TION CONSTRUCT

The input sequence is scanned and a unique number is assigned to each
instance of a rule application in the trace (represented in the following as a
subscript on the rule name), A directed acyclic graph (DAG) is then
constructad with nodes (indexed by the unique numbers) correspcnding to rule
applications and edges representing the flow of data from one rule to another,.
This DAG is.coﬁstructed in an obvious marner from the recency numbers. It is
assumed that the last unit in the sequence signalled success of the problem
solution and therefore 1its corresponding node is interpreted as the unigue

sink node of the DAG.

The DAG completely specifies all of the data dependencies between rulss and
therefore all of ths possidle execution sequences. In general, an arc frem
node v %0 acde vj indicates a concatenation of the subsequence associated
with v vlsading to and ineludin vi) wizh the unit associated with ncde E

22

Figure 3: A Portion of an Input Trace Sequence

<L
{FORGET-CURRENT-PILE (PUT-OBJECT-IN-PILZ
PUT-QBJECT-DOWN-ON-TABLE
START-PUZZLEZ OBJECT-IN=-HAND=-IN-VIZW
LCOR-AT-FIRST-IN-PILE
LCOK-AT-0BJECT-ON-TABLZ FIND-COLOR-OF-QBJECT
REMEMBER-CURRENT-0BJECT PIZCZ-dAS~-STRAIGET-ZDGE
CLOSE-ZYES REMEMBER-CURRENT-PILE)
(510)(512 512))
(CONSIDER-ANOTHER-PILE (PICX-A-PILE MAKE-A-PILZ
PUT-QOBJECT~-DOWN-ON-TABLE
START~-PUZZLE OBJECT-IN-dAND-IN-VIEW
LOOK-AT-OBJECT-ON-TABLE FIND-COLOR-QF-0BJECT
REMEMBER-CURRENT-0OBJECT PIECZ-HAS-STRAIGHT-2ZDGE
CLOSE-EYES)
(505 512)(513 513)) -
(PICX-A-PILE (CONSIDER-ANOTHER- PILT MAKE-A-PILE
PUT-QOBJECT-DOWN~ON-TABLE-
START-PUZZLE OBJECT-IN-HAND-IN-VIEW
LOOK-AT-0BJECT~-ON~-TABLE FIND-COLOR-QF-QBJECT
REMEMBER-CURRENT-OBJECT PIZCE-HAS-STRAIGHT-EDGE
CLOSE-EYES)
(512 513)(514 514))
{PUT-QBJECT-IN-PILE (LOOCK-AT-FIRST-IN-PILZ
REMEMBRER-CURRENT-PILE
FORGET-CURRENT-PILE PUT-OBJECT-DOWN-ON-TABLE
START-PUZZLE QOBJECT-IN-HAND-IN-VIEW
LOOK-AT-0OBJECT-ON-TABLE FIND-COLOR-OF=-QBJECT
REMEMBER~-CURRENT-OBJECT PIECE-HAS-STRAIGET-ZDGE
CLOSE-ZYZS)
(483 505 507 513 514){(515 518))
(FORGET-CURRENT-PILZ (PICX-OBJECT-FROM-PILE
LOOK-AT- NEXT IN-PILE
REMEMBER-CURRENT-PILE LOOK-AT-QBJECT-ON-TABLE
FIND-COLOR-QF-0OBJECT REMEMBER-CURRENT-QBJ=CT
PIECE-HAS-STRAIGHT-EDGE CLOSE-EYES)
(518)(519 519))
(CONSIDER-ANOTHER-PILE (PICK-A-PILE LOOK-AT-QBJECT-CN-TABLE
REMEMBER-CURRENT-OBJECT CLOSE-ZYES)
(513 519)(520 520))
(PICX-A-PILE (CONSIDER-ANOTHER-PILE LOOK-AT-QBJECT-ON-TABLZE
REMEMBER-CURRENT-OBJECT CLOSE-EYES)
(513 s20)(321 321))
{LCOKX-AT-FIAST-IN-PILZ (LCOK-AT-OBJECT-ON-TABLZ
TIND-COLOR-OF-0BJECT REMEMBER-CURREINT-QBJZCT
LOSE-ZY¥=S REMEMBER-CURRENT-PILZ
FORGET-CURRENT-PILZ)
(493 205 3523)(322 522))
>>

23

would be represented in CL/1 as << P1 22 P3>>.

The DAG is first cleansed of irrelsevant arecs, called forward arscs. An ars
e {rom ncde vy to node Vj is a forward arc if there is some directed pacth »p
from A Lo vj which does not include e as an intermediate edge. A forward arc
specifies that ncde v; amust precede vJ and that node vy precedes ;he nodes on
path p. Since the nodes on path p enter Vj’ they .00 zust precede Vj'

Clearly, the forward arc e is superfluous and can be removed from the DAG,
which prohivits the constructicn of irrelevant perautations. The resulting
VA] . ra A a &th rule
L/% description would be <X Py Py pJ >>, where Pi» Py and pJ are the ru
names associated with the nodes.

The forward arc removal algorithm is due to R. Tarjan ([22] and proceeds as

follows:

Let DFSN(i) be a Depth-first Spanning Tree numbering assigned to node i
beginning the numbering from the sink node of the graph. Let ND(i) be the sum
of the numbers assigned to the immediate predecessors of node i. Then there is

a path p frem v, to v, iff DESN(i)<KDFSN(J)KDFSN(L1)+ND(i). Given v and

J
tne set of sentering edges, it i3 easy to check from this inequality which

£ the

edges are forward. For any two immediate predecesscrs, v, and vy, d

apove inequality holds, then the edge from vj £o v can be delesred.

The construction of perzutations is based on the observztion that if z ncde
1as tWC or zore entering edges then the sudsequences assccizated wizh its

sredecessors ¢

w

n be germouted, Tre partial ordering 3zakss this ccnstructicn

£

[EPR R P
Tr Semil

W

ty

(29

Srwar

. Using a3 sizple segquential scan, it is zssured that the

24

sequences associated with its predecessors have already been constructed when

a node is being processed,

The permutations are further processed by first factoring out common
leading subsequences (prefixes) and then applying the repetition detection
procedure so that equivalences with other permutations could be more easily

recognized,

Consider the following graph:

:(P1)——)v2 (P2,)y v 1 (P ‘55

13:(P33)——)vu:(P3u)/

The subsequences associated with nodes Vir Vo, V3 and vy are respectively,
<<v1>>, <<v1 v2>>, Kvy v3>>, and <<v, v3 vy, When processing Vs the
description <<K(P.# KLvy V0> Ky va vy>>) vg>> would be constructed
(substituting the appropriate rule names for the vi). Zach of the
subsequences begins with node vq. By definition of permutation, this is
equivalent to <<v, (p.% Kvy>d <<v3 vy>>) VgD, This final form is less
complex and more closely represents the control information in the _DAG.
Notice that if vy were instead P26 we could not factor out nodes \P) and v3
since they are distinet instances of applying rule P2 and cculd not =Te
identified as the same. The final permutation can be further condensed by
replacing the subsequence <<v3 vy>> by an operator specifying a repetition of

?

(,A)

Lastly, the node numbers assigned to the distinet rule names zare then
removed from the final description of the sequencs,

Qarars P‘(‘\n :Q"r\.nns

~3
el
[{4]
&]
(1]
~
(g}
(9}
"3
(o
0
(>
ta
[71)
§oa
ta
cr
1)
[t
(o
o
(~r
()
(3
e
(o]
jo}
O
L
3
(1]
0
®
[+V]
(42
[wR
o]
x
14
[
o
73]
o
Fe
o
[¢1]
e]
0
®
73]
Y}
3
0.
3
[
(&)
o
v
0
[
8
®
1)
«r

4
[AN]
()]

well-defined and solved by the alzoritam described above, scme sequences may
nave several equally acceptable descriptions. The alzorithm that we use gives

one description, It employs a helpful heuristic with a divide and gonquer

flaver.

The sequence i3 scanned to identify all single occurrences of rules names.
All such occurrences cannot be part of a repetition and thus divide the
sequence into shorter subsequences to which the same procedure can be applied
recursively. Once a candidate subsequence is found (svery atom in it occurs
at least twice) a left to right scan is applied to find equivalent adjacent
s;bsequences (beginrning with the shorter) and %o replace them with
repetitions. The procedure stops when it considgrs subsequencés whose lengths
are greater than half the current length of the sequence. The maximum length
of subsequences we have to consider <decreases when repetitions are
constructed. For example, given <A 3 B C A 3 A B 3>>, C occurs uniquely
forcing the recursive calls on the subsequences it delinmits, The first
recursive call given <<A B B>> finds A to be unique and in turn recursively
calls itself with <<B B>>. Here a repetition, (R.* <<3>>) is returned and
concatenated with the A giving the description <<i (3.% <>)}>>., This is
then returned and concatenated with C. This description is then concatenated
with the returned value of the recursive call applied to <<A 3 A B B>>. The

final description generated is <<A (3.%* <<3>>) ¢ (R.% <A (R.* <C3>) >>) >,

The #hils and ungil ccomponents ¢of the repetitions are computed from the
conflict set of rules, A while condition 1s interpretad to be all of the
active preocductions common to every s2ntry of the repeating subsequence which
are not zactive on exit from the subsequence. An until condi:tion is the

ogposite; everythinz that I3 active on exit but wnich was nsvar active

(PN

The critical aspec: of this agpprecach

Cur interprezatic

o]

-

s

26

aligned on a unit boundary, That i3, one sequence cannot start within a
repetizion appearing at the end of the other. When two 2squivalent sequences
are detected, a third sequence is constructed while merging the repetitions

appearing in both.

For example,
<<A (R.% <> (W.* ()) (u.* (E))) C>> and
<<A B (R.® <C>> (W.* (G)) (U.* (0))»
are equivalent, and are merged to the sequence description

<<A (R.® <> (W.* ()) (Uu.* (E))
(R.® <KC>> (W.* (G))(U.* ())) >,

Although merging sequences has the poteatial of generating many m@more
control statements than we mizht want, we have found that the while and until
conditions will keep this to a manageable number (however, if is possible that
empty conditions are computed)., In fact, whenever a merge of two sequences
ocours, we compute new while and until conditions for any repetitions that are
merged by a disjunction of the individual conditions. This will mask out any

erroneous iterations when the description is used in contrclling a PS,

Notice there is no notion of aimilaritvy of subsequences (except in a very
primitive sense) and so a slight perturbation in a repeatiﬁg subsequence
drastically effects the outcome of the analysis, There are many earlisr
attempts ‘which focus on sequence extrapolation and prediction, but these
reports focus on repeating patterns with constant periods [23]. The kind of
analysis needed in that case is inadequate for inferring Regular Zxpressicns.
in particular, Xlsene star. In this case, period size is vwvariabls when

nesting of Xlsene star is allowed leading to many alternative analyses, rFer

27

{ (a}* . (B8} * or ((ABA}* . (B} }

#“ith no information indicating or suggesting the correct interpretation.
)romrmard: "
The final process is the coalescing of several descriptions of a set of
solution sequences into one general description. Our construction is siamilar
to that of Winston [25]. ©From two or 1nore descriptions of scme object we

identify the points of similarity and alternate the differences.

This problem can- be viewed as being equivalent to the Longest <Common
Subsequence Problem. Since it is -telieved to be computationally intractable
because of its NP-completeness in the case of three or zore sequences, we do

. not intend to find the maximum points of similarity but rather a good

heuristic approximation.

The set of descriptions 1s first ordered lexicographically to aid in
discovering any equivalent ones. Then a target description is computed which
is composed of a geries of subsequences each common to all of -the
descriptions. This target identifies the points within a description that
delinit smaller subsequences to be alternated. If the target i1s empty, a new
target 1is computed. It proceeds by finding the hest series of subsequences
common to any two descriptions. Best is defined hneuristically; more weight is
given to permutatiocns and repetitions than rule names. If the targz: in this
case 1s still empty the descriptions are collected into one alternation with

conditions computed as described below.

Using the final computed target, all descriptions are scanned for the first

[

occurrence of the common target subsequence. The initial portions (prefixes)

of the descripticns scznred are then collected in a set to which tihe 2antire

<Y
-dn

ot

procedure is recursively applied. The procedure contirues in :this way un
tne ztarzget i1s =axhausted. A special tag is appended to the snd of each

description 0 force the algorithm to ceamplation.

28
We demonstrate this process with an example. Given

{<KBDE , <KBDFGD> , <D F >}
the following svents will occur: The target is ccmputed to be

{<<D>> <KT>>}

since D is common to all and T is the specizl dummy tag. Then we extract the

prefixes

<>, <KB>> and << >>,

The entire routine is recursively applied to these, The ordering produces
<< >> and <>

as the new set of descriptions. Since there is nothing ccmmon to both, the

routine alternates them and returns
KA (€< >()) (KB (B>

to the top level. The sequence returned is concatenated with <<D>> to produce
<K(AL® (<< >>()) (<«B>>(B))) D>>,

Now <<T>> is the target subsequence. The prefixes collected this tize are
<KE>>, <KF G>> and <<KF G>>.

Again the recu;sion orders them getting
<KE>> and <<7 G>>.

No commonalitias are detected so we return with

<K{ALr (KKEX> (2)) (KKF G>> (F G))I>>.

The tag is removed from the sequence at the top level and the [inal

description produced is

<<(a.® (KO>())(eB>>(3))) D {A.® (KB (2))(F G (F G)))».,

The coaputation of the conditions for the alternatives is very simple., For
each alternate, we find the set of rule names true on entry to each. From
each of these sets we remove any productlion name appearing in any other.
Intuitively, the conditions specify the productions which are true when a

particular alternative subsequence is entered but which are not true on

entering any other.

Vg"a-:vﬂ 2 S:gn:;:qgf~ on

Construction of the meta-rules is based on the transition of the PS
environment when firing a rule. The first type of meta-rule is concerned with
how rules are activated. From the trace we can determine which rules nay
‘ activate other productions when fired by computing the set difference ¢f the
new conflict set with the old. Similarly, for the second type of meta-rule
(how rules are deactivated) we compute the set difference of the old conflict
set with the new. The Currently-active type meta-rule 1s constructed by
copying the conflict set from which the rule was selected and the Just-fired
type 13 constructed from the sequence of adjacent rules fired. Therefore, the
meta-rules are constructed from fragments of the orizinal solution sequence
and contain much less information than the CL/1 description. However, as the
reader will note below, when used in conjunction with the CL/! description,

both provide quite useful information.
= mi e
The Jjigsaw puzzle-solving PS consists of 36 productions containing an
average of 3 data elements in the LHS, and was constructed in a few amzn hours.
The experiment was performed on & puzzles, each containing 25 to 30 puzzle
pisces (resulting in an average WM size of about 120 data elaments duriag

exscution). <Cne puzzle was used for training the system, and required ovar

%00 cycles of production invocations to complete the puzzle. ({4 Duch shortar

“10

=race could have been produced, but nuch less interesting procedures would

K4

nave been demonstrated or inferred.) The control information inferred from
sha trace consisted of 193 meta-rules and a CL/1 description containing 75
units (see [21] for the details). The inference program was able to construct
procedures to sort the puzzle pieces into categories of those pieces with
straight edges and those with common colors. For example, the (abbreviated)

CL/1 description:

{<LOOK-AT-FIRST-IN=-PILE

(R.* (U.* (REMEMBERED-OBJECT-IN-VIEW))
.<<LOOK-AT-NEXT-IN-PILE>>)

(R.* (W.* (PIECE-HAS-STRAIGHT-EZDGE))
<{PICK-OBJECT-FROM-PILE

FORGET-CURRENT~PILE
CONSIDER-ANCTHER-PILE
PICK-A-PILE

PUT-OBJECT-IN-PIL

(O]

FORGET-CURRENT-PILE
CONSIDER-ANOTHER-PILE
PICK-A-PILE

LOOK-AT-FIRST-IN-PILE>>) >>

which was inferred from the trace, scans one pile of indistinguished puzzle
pieces removing thecse with straight edges and piling then separately, This
description was generated from a portion of a solution trace which included
the subsequence of figure 3. The portions of the CL/1 descripticn which
follow this consist of procedures for btuildiag the outside edges of the puzzle
fsllowed by similar gprocedures for adding pisces o the puzzle gZrouped

according to cocamon ceolor.

It 2an ~e argued that the productions we have defined can Te sncoded bty

just a few rules {perhaps 2 or 3}, Ia this situation, tike control information

for solving this problem is trivial. However, such a representation wculd be
nizhly inflexible and admit only limited or narrow behavior. Ffurther, many of
the productions (in Barticular, the pile productidns) are general encugh to be
used for other substantially different problems. It would seem possible then,
that most of the control information we gzenerate for these productions would

be applicable in many different situations, and therefore would be of a more

fundamentally general nature.

0f the s3ix puzzles used in the experiment, three uncovered rather escteric
flaws in the CL/7 description. 1In each case the meta-rules were called upon

to debug the error with interesting results,

In the first case, the correct rule selection was specifisd on each of the
five calls to the meta-rules and the puzzle was correctly solved. The second
puzzle required one meta-rule call, and was completed successfully. In third
case, the neta-rules were called upon three times to 3solve a problem and
succeeded twice, As Murphy's Law will have 1it, the third call to :he
meta-rules resulted in two choices from the conflict set having maximal and
equal weight, the incorrect choice being selected. What 1s interesting is
that in each situation, the meta-rules posted a small set of choices each
containing the correct alternative. The rules we have designed are dependent
only on the state of the PS program: the conflict set of rules and the dynamic
benavior of the program during training. {This 1in effect, dynamically
calculates the list of alternatives as opposed to static specification as, for
example, PLANNER'S THUSE construct.) The effect of this 1limits the
suggestions %o those productions that were used in a soluticn, yet in many
different but similar situations. If we were to relax the restriction of
naking irreveccable decisions and backtrack on the set of m@meta-rule
sugg=estions, the 3ystem would have succeeded in all cases l2aving little to

chance,

Cur system was also applied to a “inary tree scanning prograz wWhich

32

demonstrated a difficulty with the CL/1 language. In a restricted foram, CL/?
has the power of Regular Expressions and therefore lacks the power of a
push-down automaton. The introduction of <conditions ‘testing rule
applicability seemingly provides additional power but the resulting language
remains difficult to classify in terms of the Chomsky hierarchy of languages.
The binary tree example demonstrated the ability of CL/1 to s3can balanced
binary trees with a very sparse (yet appealing for its simplicity) PS program.
(Six productions to traverse left, right and up, and to print the contents of
a node.) However, constructing a simple CL/1 description to scan an arbitrary

binary tree deterministically with the existing PS is impossible.

There are two directions in'uhich we can proceed. #e could redefine the PS
£o include rules to manipulate stacks. However, this would correspond to
requiring the human expert to redefine the ?S (not only additions, but
rewriting existing rules) after discovering during training the desired
control i3 not attainable. The alternative is to build a more powerful
control language device., This seems the more satisfactory direction yet the

required inference procedures would necessarily need to be more sophisticated.

In addition, the control specified by CL/1 is syntactic in nature, relying
on the names of productions. In this regard, the ideas of Davis of semantic
specification or goptent-directed invogcation seem more appealing and auch more
flexible allowing for a wider variety of control used in perhaps nrew and
interesting ways. It would appear then that a control language device with
procedure calls and variables ranging over productions satisfying scme
condition applied to the contants of the rule would be desirable. It is not
clear whether the kind of analysis we do with CL/1 could not provide the szame
ability by relaxing the way in which we use the resulting descriptions (i.e.,

sela2ct ruls P1 or another rule imilar to it). Future work and

[

xterimentation with the existing system may uncover some answers £to itihese

questions.

ol 17940

it i3 pelieved by many researchers that an important quality of intelligzent
behavior i3 the ability to improve ’performance with ex;erience,‘ and that
generalizing a concept is a critical aspect of learning., Ia CL/1, a form of
generalization occurs when a control operation is inferred from a successful
trace. Although quite restricted in scope, CL/1 shows how a systsm might
learn procedures, a form of learning which 13 believed to be very important.
Although there are a number of very difficult technical problems, it seems to

us that with more powerful pattern recognition techniques and more powerful

Zeneralizations of control statements, this approach could be very fruitful.

With less ambitious designs, CL/1 can be viewed as a pregramming aid for
the desaigner and implementer of a large AI problem-solving knowledge base.
One of the most error prone and difficult tasks in the development of an AI
problem-solving system 1is the fine-tuning of the system with heurisatic
controls to minimize search times through a large data base of facts. The
CL/1 approach might be useful in fine-tuning a declarative knowledge base as
opposed to hand-compiling control elements to effect competent performance in
such a system. This allows control information to be treated in a separate

knowledge base independent of the declarative form.

The power of the descripticns produced is limited by bYoth the expressive
power of the CL/1 language, ancd the level of sophistication of the pattern
recognition algorithms that have been developed. For example, during
repetition detection no notion of gimilar subsequence is used; furthermore, it
is not possible for alternation to appear within repetitions. Despite this,
the algorithms are powerful enough to detect interesting patterns and

sulseguentily interesting heuristics,

Qur exceriments suggest that this approach will have the bes:t chance of

7]

uccess when the 2nceding of the knowladze base of the troblem dozzin is such

ko)

Q2T on zny execution cycle a2 small number of preducticons and cnly one

cr

34

instanciation of each production is applicable. - For example, the initial
segment of the CL/1 description f{or the Jigsaw puzzle problem specifies
repeatedly picking a piece from the heap and placing it in a pile. In
actuality, the number of instantiations of the LOOK-AT-OBJECT-CN-TABLZ
production during this cycle is equal to the number of pieces currently on the
table., The CL/1 description doces not specify which instantiation to choose;
but only the name of the production to choose. This suggests one way in which
CL/1 could evolve: the execution traces should include not only producticns
but also instantiations of producticns. The control language would therefore
necessarily include mechanisms {or semantic specification of control.
Furthermore, the segmentation of the trace sequence into subsequences (or
subproblems) specified by the‘ human expert is not explicit in the final CL/1
description. Therefore, contextual or goal information should be included.
However, recognizing patterns in such sequences i3 a much zore difficult
problem. The approach outlined in this paper is viewed as an initial step in

the understanding of this more general problenm.

The meta-rule construct we have defined seems quite effective, Although
limited 'in scope, the meta-rules contain qﬁite accurate and useful control
information. The suggestion of a single rule in the RES of a meta-rule
effects a limited or local modification. More substantial statements of
control can be effected by allowing arbitrary CL/% descriptions in the RHS.
However, a correspondingly more sophisticated analysis would bYe required.
with 2ore powerful meta-rules, the correctness of the ccaplete CL/3
description would be lsss critical; we might then hope to get successful
performance with meta-rules alone. However, this would probably require more

understanding of scme difficult context and ccntrol problems,

Figure
Figure
Figure

3:

35

List of Figures

Implementation of CL/1
Sample Meta-rules
A Portion of an Input Trace Sequence

REFERENCES

(1) Abrahams, ?., Machine Verification of Mathematical Proofs, Sc.D.
Thesis, M.I.T., 1963,

(2) Angluin, D., An Application of the Theory of Computational Complexicy
ro the Study of Inductive Inference, Ph.D., Thesis, 7. Calif., Berkeley,

1976.

(3) Angluin, D., FTinding Patrterns Common to a Set of Strings, SIGACT
Proc. Symp. on Theory of Comput., 1979.

(&) Bierman, A., On the Inference of Turning Machines from Sample
Computations, Artif. Intell., 3, 1975.

(5) Davis, R., Applications of Meta Level Knowledge to The Construction,
Maintenance and Use of Large Knowledge Bases, Ph.D. Thesis, Stanford
U., 1976.

(8) Davis, R., and King, J., An Overview of Production Systems,, Stanford
U., AI Lab Mem., AIM-271, 1975.

(7) Fikes, R., Hart, P., and Nilsson, N., Learning and Executing Generalized
Robot Plans, Artif. Intell., 3, 1972.

(3) Forgy, C., and McDermott, J., the OPS2 Reference Manual, CMU, Dept.
of Comp. Sci., 1977.

(9) Gelernter, H., Realization of a Geometry Theoram-Proving Machine,
Proc., Intern. Conf. Inform. Proc., UNESCO, House, Paris, 1959.

(10) Georgeff, M.D., A Framework for Control in Producrtion Systems: Proc.
IJCAI 6, Tokyo, 1979.

(11} Goldstien, I.?., and Grimson, Z., Annotated Production Systems: A
Model for Skill Acquisitiom, Proc. IJCAI 5, 1977.

(12) Kolmogorov, A., Three Approaches to the Quantitative Definition of
Information, Problems in Information Transmissionm, 1, 1963.

(13) McDermott, J., and Forgy, C., Production System Conflict Resolution
Strategies, CMU, Dept. of Comp. Sci., 1976.

(14) VNewell, A., Production Systems: Modals of Control Strucsurss, in
Visual Information Processing. W. Chase (ed.), Academic 2ress, 1973.

(13) Rychener, M.D., A Semantic Network of Production Rules ian a Svstem
for Describing Computer Struccturas, CMU Tech Report, CS-79-130, 1379,

(15) Rychener, M.D., Conzrol Requiremencss for the Desizn of 2roducction
Systam Archicactures, SIGPLAN Nocicaes, 12-8. 1977.

(17)

(18)

(19)

(20)

(21)

Salomaa, A., Formal Languages, Academic Press, 1973.

Sickel, S., A Search Technique for Clause Intarconnectivicy
Graphs, IZEZ Trans. oun Computers, Special issue on Autom. Theorem
droving, 1976.

SIGART Newsletter 70, Special Issue on Knowledge Representatiom,
Brachman and Smith (eds.), 1980.

Solomonoff, R., A Formal Theory of Inductive Infersnce, Iaformation
and Control, 7, 1964,

Stolfo, S.J., Automatic Discovery of Heuristics for Nondeterministic
Programs from Sample Execution Traces, Ph.D. Thesis, NYU, 1979.

Tarjan, R., Finding Domigétors in Directed Graphs, SIAM J.Comput.,
3, 1974,

Waterman, D.A., Serial Patterm Acquisition: A Production System
Approach, in Computer Oriented Learning Processes, J.Simon (2d.)

Winograd, T., Frame Representation and the Declarative/Procedural
Controversy, in Representation and Understanding, 3obrow and Colins
(eds.), Academic Press, 1975.

Winston, P., Learning Structural Descriptions from Examples, MIT,
MAC T=ch Reporc-76, 1976.

Zisman, M.D., Use of Production Systems For Modelling Asynchronous,
Concurrent Processes, in 2attern-Dirscted Inference Svscems,
Waterman and Hayes-Roth (eds.), Academic P?rass, 1978.

