CUCs-4-79

A Relational Database Machine Architecture

David Elliot Shaw

Computer Science Department
Stanford University

October 1979

Abstract

Algorithms are described and analyzed for the efficient evaluation of the project.
and join operators of a relational algebra on a proposed non-von Neumann machine

based on a hierarchy of associative storage devices. This architecture permits an

O(log n) decrease in time complexity over the best known evaluation methods on

a conventional computer system, without the use of redundant storage, and using

currently available and potentially competitive technology. In many cases of prac-

tical import, the proposed architecture may also permit a significant improvement

(by a factor roughly proportional to the capacity of the primary associative storage

device) over the performance of previously implemented or proposed database

machine architectures based on associative secondary storage devices.

Acknowledg.ements

The author gratefully acknowledges the substantial contributions of Bob Floyd,
Don Knuth, Juan Ludlow, Luis Trabb-Pardo, Terry Winograd, and in particular,
Gio Wiederhold, to the work reported in this paper.

This research was supported in part by the Advanced Research Projects Agency
of the Department of Defense under contract MDA903-77-C-0322.

Accepted for publication in the Proceedings of the 1980 Werkshop on Computer Architecture for
Non-Numeric Processing, March 11-14,13880, ana forgistnbution by SIGARCH, SIGIRand SIGMOD.

1. Introduction

The past several years has seen a dramatic growth of interest in specialized machine
architectures oriented toward the problems of data base management. During the
same period, the relational model of data [Codd, 1971] has gained considerable
attention as a powerful framework, from both a practical and theoretical perspec-
tive, for the design of database management systems. It is thus not surprising that
several hardware approaches to the efficient evaluation of the primitive operations
of a relational algebra have already been suggested in the literature.

This paper proposes an approach to the large-scale parallel execution of
relational algebraic primitives on a specialized non-von Neumann machine. The
design is based on a content-addressable primary storage unit called PAM and
a rotating logic-per-track associative device called SAM, each of which might be
realized in several ways using existing, and in the near future, potentially com-
petitive technologies. We have developed and analyzed algorithms for the very
rapid evaluation of most of the commonly used relational algebraic operators—
specifically, project, equi-join, select, restrict, union, intersect and -t difference—
on the proposed machine [Shaw, 1979]. Relational selection and restriction are
performed in much the same way on our proposed system as on several proposed
and already-implemented database machines; our design, however, appears to offer
substantial performance advantages for the evaluation of equi-join, project and
the unstructured set operators under many circumstances of significant practical
import. We will limit our attention in the current paper to the algorithms for
projection and equi-join, two of the most important, and in general, computation-
ally expensive of the relational algebraic operators.

The paper will briefly outline the organization of the architecture we are
proposing, and will describe and analyze algorithms for evaluation of equi-join and
project, both in the case where the argument relations fit entirely within primary
storage (which we call internal evaluation), and where they reside on secondary
storage (external evaluation). The section which follows introduces those elements
of a relational algebra essential to our discussion. Relevant previous work in the
area of associative processors and database machines is briefly noted in Section 3.
The fourth Section outlines our proposed architecture in general terms. Following
the introduction of notation in Section 5, the algorithms [or internal evaluation are
presented, along with an average-case analysis of their time complexity. Section
7 describes the corresponding external evaluation procedures, considering in some
detail the complexity of the most time-critical aspects of the external operatioans,
which involve partitioning the argument relations into appropriate segments {or
transfer into primary storage. Our results are summarized in Section 8.

1

2. The relational algebraic primitives

We may define a relation of degree n as a set of tuples, where each tuple is an
element of the cartesian product of n (not necessarily distinct) sets—called the
underlying domains of the relation—of non-decomposable entities. Since relations
are sets, we may refer to the number of tuples in a relation as its cardinality.
Intuitively, relations may be thought of as “tables”, in which each “row” repre-
sents one tuple and each column represents one of the n (simple) attributes of
that relation. In some discussions, it is useful to consider several attributes (some
possibly repeated) as a single compound attribute.

In this paper, a list of primitive domain elements enclosed by angle brackets
(“(" and “)") will designate a new tuple containing the specified elements as the
values of its simple attributes, in the order listed. Futhermore, if r is a tuple of
some n-ary relation R, we will define r{j] to be the value of the j-th attribute
of r (1 < j < n). It will be convenient to extend this notation to allow expres-
sions such as r[A], where A is a compound attribute of R consisting of the m (not
necessarily distinct) simple attributes numbered i, j2,...,Jm, defined such that
(r[A]) represents the new tuple (r{51], r[sa], ..., 7{m]). Finally, if r is a tuple of a
relation R), having degree n;, and ry is a tuple of relation Ry, having degree no,
the concatenation (r|m) of r| and ry is defined to be the new (n; 4 ng)-tuple

(fl[l], ﬂ[2]) RRY) f1[ﬂ1], 72[1], 7‘2[2]) coey 7‘2[7‘2])

The projection of a relation R over the compound attribute A may be defined

as the set
{(r[A]):rer} .

The projection operator may be thought of as defining a sort of “vertical subset-
ting" operation, in which |

1. the “non-projected” attributes of each tuple in the argument relation are
eliminated,

2. the remaining attributes may be permuted and/or replicated, and

3. any duplicate tuples which result from the elimination of values which formerly
distinguished different tuples are then removed.

In most implementations on a von Neumann machine, the first two functions
can be implemented in a simple and computationally inexpensive manner. The
elimination of redundant tuples, on the other hand, may be surprisingly time-
consuming, particularly when the argument relation is large. One of the goals of
the architecture discussed in this paper is the minimization of the high cost of
redundant tuple elimination.

The equi-join of two relations R; and R3 over the compound attributes A;
and Aj, respectively (each assumed composed of the same number of simple at-
tributes, with corresponding simple attributes having underlying domains which
are comparable under the equality predicate) is defined as

{(n|r):rieRy A meRa A ri[A1] = A}

A; and Az are referred to as the (compound) join atéributes. The join operation may
be intuitively thought of as a process of filtering the extended cartesian product
of R; and Ry—the set of all possible concatenations of one tuple from R; with one
from Ry—by removing {rom the result all conjoined tuples whose respective join
attributes have different values. (The computational method suggested by this
interpretation, of course, would in general be impractically inefficient.)

The join operation may in general be extremely expensive on a conventional
von Neumann machine, since the tuples of R} and R, must be paired for equality
with respect to the join attributes before the extended cartesian product of each
group of “matching” tuples can be computed. In the absence of physical clustering

“with respect to the join attributes (whose identity may vary in different joins
over the same pair of relations), or the use of various techniques requiring a large
amount of redundant storage, joining is typically accomplished most efficiently on
a von Neumann machine by pre-sorting the two argument relations with respect

-to the join fields. The order of the tuples [ollowing the sort is actually gratuitous
information from the viewpoint of the join operation. From a strictly formal
perspective, the requirements of a join—that the tuples be paired in such a way
that the values of the join attribute match—are significantly weaker than those
of a sort, which requires that the resulting set be sequenced according to the those
values. The distinction is moot in the case of a von Neumann machine, where no
better general solution to this pairing problem than sorting is presently known.
One of the design goals of the architecture described in this paper, however, is to
make use of the weaker constraints involved in the definition of the join operation
to obviate the need [or either pre-sorting or the extravagant use of redundant
storage.

3. Associative processors and database machines

Most proposals for specialized database machines have involved the use of associa-
tive processing hardware. While the distribution of intelligence among memory
elements is central to the operation of all associative processors, the degree of that
distribution—more specifically, the number of storage elements associated with
each comparison logic unit—varies widely among the various classes of associative

3

devices. The greatest degree of distribution is found in the fully parallel associa-
tive processors, including word organized and distributed logic designs, in which
comparison logic is associated with every bit of storage. A somewhat less extensive
distribution of intelligence is found in the bit-serial associative processors, in which
one “bit slice” extending through all words is accessible for parallel processing
at any given time. Another family of less-than-fully-parallel content-addressable
devices is populated by the word-serial associative processors, in which all bits of a
. single word are compared in parallel, but the set of words is examined sequentially.

At the low end of the associative logic distribution spectrum is the class of
block-oriented associative devices, in which search and modification logic unit is
associated with each head of a head-per-track rotating storage device (or its non-
inertial equivalent), permitting one associative operation to be performed on each
revolution. The reader is referred to a survey by Yau and Fung [1977], or to an
outstanding book by Foster [1976], for a more complete taxonomy and discussion
of associative processing devices.

Although small scale associative processing devices characterized by com-
paratively extensive logic distribution were employed in some early experimental
investigations of the potential applicability of associative processors to database
management applications (see DeFiore and Berra [1973|, for example), the large
amount of data involved in most such applications has given the class of block-
oriented associative devices a prominent place in most database machine designs.
Moulder [1973] has described an architecture for hierarchical database applications
which uses a head-per-track disk drive in combination with the STARAN machine
(Rudolph, 1972}, which supports both bit-slice (for associative processing) and
ordinary word slice (for input and output) access capabilities. One of the first
large-scale research efforts directed toward the development of a specialized system
containing many of the features critical to database management is represented by
the CASSM project, active at the University of Florida since 1972. The CASSM
system [Su, Copeland and Lipovski, 1973] is a block-oriented design providing a
direct hardware implementation of hierarchical data structures, but supporting
the relational and network data models as well. CASSM includes special features
for searching complex data structures such as sets, ordered sets, trees, variable
length character strings and directed graphs.

The best-known database machine designed specifically for efficient support of
the relational model of data is probably RAP (for Relational Associative Processor),
developed at the University of Toronto [Ozkarahan, Schuster and Smith, 1974].
Like CASSM, RAP is based on a block-oriented associative processor, and is in-
tended to serve as a backend database processor for a general purpose computer.
Advantages in speed ranging between one and three orders of magnitude over
conventional systems have been obtained for many relational database operations,

4

although certain operations of considerable practical importance, such as the equi-
join of two large relations, are still quite computationally expensive [Ozkarahan,
Schuster and Sevcik, 1977]. Another architecture specifically oriented toward the
relational database model is embodied in a proposed database machine called
RARES [Lin and Smith, 1975). RARES differs from the design of RAP primarily
in its adoption of an orthogonal storage layout, in which individual tuples are
distributed across (and not along) the tracks of the parallel head-per-track secon-
dary storage device, offering the possibility of a decrease in the incidence of output
contention and a reduction in buffer storage requirements.

At Ohio State University, a very-large-scale architecture called DBC (for
Database Computer) has been proposed which is based on the use of a number of
interconnected subsystems specialized for various aspects of database management
[Baum and Hsiao, 1976]. One of the components is a mass memory, based on a
number of moving-head disk drives, each modified to provide for simultaneous
associative operations on all tracks in a given cylinder. Information which is
used to locate the relevant cylinders to search is stored in another block-oriented
associative unit called the structure memory. The design of DBC was strongly
influenced by several kinds of data protection concerns, and includes specialized
mechanisms [or the imposition of related constraints. Another organization, called
DIRECT [DeWitt, 1979, is oriented toward the problem of achieving intra- and
inter-query concurrency and database integrity in a multiple-process relational
database environment.

4. The proposed architecture

Our proposed architecture is configured as a hierarchy of associative storage devices
under the control of a general purpose processor. At the top of this hierarchy is
the primary associative memory (PAM), a (airly fast content-addressable memory
of relatively limited capacity. (For concreteness, the reader might imagine a PAM
containing between 10K and IM bytes, and requiring somewhere between 100
nanoseconds and 10 microseconds per associative probe.) PAM might be realized
with a large-scale distributed logic memory, or with one of several bit-serial or
word-serial designs. There is reason to believe that recent progress in distributed
logic architectures, device-level fault-tolerant designs and wafer-scale integration
could scon make such a memory unit feasible for wide application.

Two primitive PAM operations, each requiring a single associative probe, will
be involved in our analysis: mark all and retrieve and mark first. In both cases, all
tuples of a specified relation for which the value of a selected compound attribute
is found equal to a particular constant are associatively identified. The mark all
operation writes a one or zero in a specified flag bit of each such matching tuple

5

using a paralle]l hardware multiwrite. The retrieve and mark first operation sets a
specified flag bit within a single tuple chosen arbitrarily from among the responders
and copies the value of that tuple to storage external to PAM, but accessible to
the controlling processor.

The secondary associative memory (SAM) is a block-oriented associative
device, considerably larger, but slower, than PAM. (A capacity of between 1 and
100M bytes and an associative operation time of between 1 and 100 milliseconds
should adequately exemplify our design.) As in the CASSM, RAP and RARES
designs, SAM might be realized using a parallel head-per-track disk or a non-
inertial circulating storage device constructed using CCD or bubble memory tech-
nology; in either case, a modest amount of logic is assumed associated with each
storage loop. While the analysis presented in this paper assumes a fixed time for
an associative probe of the entire contents of SAM, the algorithms themselves are
also applicable to the kind of modified moving-head disk devices employed in the
DBC design, thus supporting very large data base applications.

The following capabilities are assumed for the “per-track” logic associated
with each head (or its functional equivalent) of the SAM device. First, it must be
possible to examine an arbitrary compound attribute in each tuple which “passes
under” the associated head. As in the case of most of the database machines which
we have discussed, our proposed secondary associative device is able to collect
all such matching tuples for output; the SAM device, however, is also assumed
capable of sequentially computing a hashing function on the compound attribute
in question, and of outputting all tuples for which the resulting hashed value falls
within a specified range. Because the algorithm described in Section 7 does not
require the ability for a dynamic choice of the range of the hash function, this
requirement for real-time hashing is well within the capabilities of the sort of simple
and inexpensive hardware which would be required in a practical per-track logical
unit. One implementation, for example, would combine the entire compound at-
tribute into a single, fixed length “signature word” (of, say, 16 bits), by computing
the exclusive or of each two-byte segment with the current accumulated signature
word as it passes under the head.

In addition to the two associative devices involved in our design, we assume the
existence of a general purpose processor serving as a controller for the evaluation
process, and responsible for the performance or delegation to other specialized units
of all collateral functions (input language translation, input/output control, etc.)
which would be involved in a practical implementation. Adequate buffering would
also be required at several points within the design we are proposing. Although we
will give little explicit attention to such issues in the present paper, it should be
acknowledged that the detailed design of a useful realization of the architecture we
propose would require careful consideration of the nature and capacities of these

8

resources.

5. Notation

The following notation will be used in our analysis of the algorithms for the internal
and external evaluation of the project and join operators:

Fixed system parameters:

P Size in bytes of the primary associative memory (PAM)

S Size in bytes of the secondary associative memory (SAM)

Ty Time for an associative probe (returning one matching tuple) in PAM
T, Time for one revolution of SAM

Functions of the argument relation(s):

c(R) cardinality of the relation R

t(R) (fixed) size of the tuples of R in bytes

d(A,R) number of distinct values of the (compound) attribute A in R
r cardinality of the result relation

Because the quantity P/t(R) (roughly speaking, the ‘tuple capacity’ of PAM)
plays an important role in our analysis, we will also define a derived function a(R)
with this value. '

While we have chosen to treat the size of the result relation as an independent
variable in our analysis, it should be noted that the value of r is in fact determined
~ by the composition of the argument relations.

When there is no danger of confusion, we will sometimes omit the relation
argument R.

8. Internal evaluation

Our algorithms for internal evaluation of the project and join operators will be
expressed in a hypothetical parallel programming language having a Pascal-like
format, but extended to include three high-level associative processing primitives.
The first is the parallel set command, used to set a specified flag to true in each
tuple satisfying certain conditions; all lags are set in parallel using a single mark
all operation, requiring one associative probe. This command has the form

parallel set (flag) in all (tuple variable) of (relation) with (conditions)

where (conditions) is a Boolean combination of predicates involving the variable
(tuple variable). The format of the parallel clear command is identical to that of
parallel set, but sets the specified flags to false.

7

procedure project(R, A);
for each t of R
with not flag do (r + 1 probes)

begin (r times)

output ¢[A];

parallel set flag (r probes)
in all ¢ of R
with ¢[4] = ¢[A];

end;

Algorithm 1. Internal Project

The third associative processing primitive is the for each control structure,
which has the form

for each (tuple variable) with (conditions) set (flag) and do (statement) |,

where the “set ... and” clause is optional. Unlike the parallel set and parallel clear
statements, execution of a for each loop is sequential (although each iteration of the
loop involves the performance of paralle] associative probes). During each itera-
tion, a single retrieve and mark first operation is performed, during which (tuple
variable) is instantiated with an arbitrarily chosen tuple satisfying (conditions).
If a “set ... and” clause is specified, the appropriate (flag) is set within this tuple;
(statement), which may be either a simple statement or a “begin ... end" block,
and which may set flags affecting the value of (conditions), is then executed with
the current binding of (tuple variable). Iteration terminates when no further tuples
of the specified relation satisfy (conditions).

The procedure for internally projecting a relation R over a compound attribute
A is detailed in Algorithm 1.

From the execution counts, it can be seen that internal projection requires
time

(@2r 4 1)T,

in addition to the time required to extract the projected compound attribute of,
and output, each of the r result tuples, both non-associative functions which could
be overlapped with the following associative probe. The utility of the proposed
architecture for the evaluation of the relational project operator lies not only in
the fact that it requires time independent of the size of the the argument relation
(being proporticnal only to the cardinality of the result relation, which can never

8

proced"u"Q J.O‘in(Rl,Rg,Al,Ag);
for each ¢, of R
with not flag
set flag and do
begin
distribute(t;, Ra, A1, A2);
for each t| of R,
with ¢][A;] = 4[A)]
and not flag
set flag and do
distribtdc(t'l,Rz,Al,Az);
end;

procedure distribute(t;, Ra, A1, Az);
begin
for each ¢y of B3
with {[Aq] = ¢1[A))
and not flag
set flag and do
output (¢1[A1] | t2[As]);
parallel clear flag
in all {7 of Ry
with 4[Aq] = ¢;[A}];

end;

(d(A1,R;) + 1 probes)
(d(A;,R;) times)

(c{R1) probes)
(c{(R1) — d(A1,R;) times)

(c{R1) times)

(r =+ c{Ry) probes)

(c{R,) probes)

Algorithm 2. Internal Join

be larger, and is often much smaller), but also that it implicitly eliminates the
possibility of tuple duplication, obviating the need for sorting, for example, to
remove redundant result tuples.
Algorithm 2 computes the equi-join of of relations R; and R; over the com-
pound attributes A; and As, respectively.

Excluding the time required for concatenation and output,

(r 3c(1;21) +d{A,R) 4+ 1)T,

S

is required for internal evaluation of the join operator. Note that this algorithm
sets the tuples of the two relations in correspondence using a procedure of lower
computational complexity than sorting, yielding a joining time which is linear

in the cardinality of the smaller argument relation, the number of distinct join
attribute values in this relation, and the size of the result relation. As we shall see
in the following section, linear complexity is preserved in the external algorithm
for equi-join as well. It is also worth noting that the asymmetry of this algorithm
with respect to the roles played by the two argument relations permits a (possibly
quite significant) increase in efficiency in the case where the relative sizes of the
two argument relations is known or inexpensively computable.

Lest these results be misinterpreted, it should be emphasized the worst case
behavior of our join algorithm (or indeed, of any algorithm involving sequential
output, regardless of the underlying architecture) may still be quite bad when the
result relation is very large. Specifically, if for all {jeR; and {3¢eRy,

LAl = HlAg] = ¢,

for some single constant tuple ¢, the cardinality of the result relation will be equal
to the product of the cardinalities of the two input relations. Given recasonable
assumptions reflecting the typical useof the join operation, however, the architec-
ture and algorithm which we have described offer a very significant increase in
efficiency.

7. External evaluation

In this section, we will describe the algorithms for evaluating the project and join
operators in the case where the argument relations exceed the capacity of PAM.
Both algorithms involve the partitioning of the argument relation or relations into
key-disjoint buckets. Typically, one such bucket (which, in the case of the join
operator, will in general include tuples from both argument relations) is transferred
into PAM during each successive revolution of SAM, and an internal projection
or join is performed. In each case, partitioning is accomplished by associatively
examining the values of some compound attribute of the argument relations(s)—in
the first case, the compound projected attribute, and in the second, the compound
join attribute.

In the case of projection, the buckets are non-intersecting subsets of tuples
chosen from the single argument relation. A set of buckets will be called key-
disjoint under projection if no bucket contains any tuple whose compound projected
attribute is the same as that of some tuple belonging to a different bucket. In
most cases, the partitioning and transfer procedure described below will tend to
produce buckets no larger than the capacity of PAM; the external evaluation al-
gorithm is, however, designed to accomodate the case of PAM overflow, in which
a bucket exceeds the capacity of PAM, without significant degradation of overall
performance.

10

In the absence of PAM overflow, external projection is effected by reading
each bucket into PAM in succession and using the fast associative capabilities of
PAM to project the tuples over the key. It is assumed that the relative speeds
of PAM and SAM are such that each bucket may be transferred in the course
of a single SAM revolution. It is instructive to observe that, except in the case
of PAM overflow, each tuple of the argument relation is processed only once in
primary storage, in contrast with the best currently known general techniques for
the external projection, which are based on external sorting. The algorithm for
external evaluation is complicated somewhat by the case of PAM overflow; as we
shall see, however, the aggregate effect of such overflows on the efficiency of the
external evaluation algorithms can be shown to be statistically negligible under
most practical circumstances.

To illustrate the notion of key-disjoint partitioning and transfer, let us con-
sider a projection over the second attribute of the following binary, integer-valued
relation, which we will assume to be stored on SAM:

(3]

— =
— —

RS
I

(8

(9 3
3 2
(4 1)
2 3

Extracting the second attribute without removing duplications yields two
instances of the value 1, one of the value 2, two of the value 3 and three of the
value 7. Supposing (unrealistically, of course) that PAM has a capacity of five such
two-attribute tuples, we might bring all tuples having a projected attribute value
of either 1 or 7 into PAM during a single cycle. It is significant that the values
represented in a given PAM load need not be contiguous; indeed, the values 1 and
7 are non-contiguous within the projected domain of our example. It is required
only that if any tuples having the key 1 are brought into PAM on some given
cycle, then all such tuples are in fact collected on the same cycle {disregarding for
the moment the case of bucket overflow.)

Let us now consider the mechanism by which the argument relation is parti-
tioned for transfer from SAM to PAM in the course of external projection. Note
that if the values of the compound projected attribute were uniformly distributed,
the argument relation could simply be partitioned into buckets representing con-
tiguous, equal-sized ranges of values, each just large enough to fill PAM with

11

argument tuples. Our partitioning algorithm accomodates the problem of non-
uniform distribution of the compound projected attribute values by assigning
tuples to PAM-sized buckets using a hashing function computed associatively by
the per-track hardware. In the discussion which [ollows, we assume that all keys
are mapped onto a range [0, Hp,4). In the first step of the algorithm for projective
partitioning, the range of the hash function is divided into A equal hash intervals,

where 1~ W
b= [‘_‘“_)l

a

W (for “waste factor”) is a fixed system parameter, ordinarily much smaller than
one. The number of hash intervals is thus chosen to be slightly larger than the size
of the relation in “PAM-fulls". (We assume that the size in bytes of each stored
relation is immediately available or easily determinable, so that this operation
requires negligible time.) During each SAM revolution, all tuples whose keys hash
to a value within a single hash interval are transferred into PAM, providing their
combined size does not exceed the capacity of PAM.

Let us now consider the case of PAM overflow, which occurs when a single
disjoint bucket exceeds the capacity of PAM. The simplest (and by far the most
common) case is that of a bucket which exceeds the size of PAM by less than 50%,
and can thus be divided into three sub-buckets A, B and C, any two of which can
fit into PAM at a given time. During one SAM revolution, sub-buckets A and B are
transierred into PAM and the internal evaluation in question is performed. During
the next SAM revolution, the tuples of sub-bucket B are replaced in PAM by those
of sub-bucket C, and following another internal evaluation phase, those of sub-
bucket A are replaced by those of sub-bucket B. In this manner, all possible pairs
of sub-buckets, and hence, all possible pairs of tuples, are submitted to internal
evaluation in PAM at some point. Generalizing this procedure to the case where
z tuples are assigned to a given bucket (z > a), a total of

n(n—1)
2

SAM revolutions are found to be required, where

n=[2j] (6 <z <o)

In the worst case (corresponding to the situation where all projected attribute
values fall within a given segment, and must thus be assigned to the same bucket),
the partitioning and transfer process has a complexity of O(n?) (albeit with small

12

constants). Assuming that the distribution of hash values is reasonably close to
uniform over the range [1, Hnax|, however, it will be shown that PAM overflow
makes only a linear contribution to the average case complexity of the partioning
and transfer algorithm on our proposed machine.

In the absence of overflows, exactly h SAM revolutions, requiring time AT, are
necessary to transfer all buckets of the argumeant relation(s) into PAM. Whenever
z, the number of tuples assigned to the current bucket, is greater than (c/h) by a
factor of more than W, however, an overflow occurs, resulting in the expenditure
of more than one SAM revolution for the bucket in question; the exact number of
revolutions depends on the ratio of z to (¢/h). In the general case where an average
of v extra “overflow revolutions” are required per bucket, the time required is

exactly
(14 v)AT,

The central concern of our analysis is the derivation of an upper bound on the
average case value of v.

To this end, it is convenient to view the collection of a particular bucket full of
tuples as a set of ¢ independent Bernoulli trials, one for each tuple in the relation,
with each trial defined as successful if the tuple in question falls within the curfent
hash interval, and as unsuccessful otherwise. The number of tuples which will
be assigned to any given bucket is thus a binomially distributed random variable
whose probability of being equal to some particular value k is exactly

HOICH

Unless there is a very small number of tuples per PAM load, this function is well
approximated by the Gaussian distribution

(1) - L

having mean

B |
I
P ol o

and variance

()

Furthermore, both 1 and o2 approach

1+ W

as ¢ grows large, and are thus asymptotically independent of the size of the argu-

ment relations.
Note that this approximation differs from the one most commonly employed

in analyzing hash coding behavior in database management applications (sce
Wiederhold [1977], for example). In the more common analysis of hashing, the
expected value of z is typically quite small, so that the corresponding function is
better approximated by a Poisson distribution. When the n is reasonably large,
however, a normal distribution provides a better approximation. As a practical
rule of thumb, the Gaussian approximation, which is justified in the limit by the
DeMoivre-Laplace theorem, is very good whenever the quantity

-

is less than about 0.1, which should be true for our application in most conceivable

practical cases.
The expected number of overflow revolutions may thus be estimated by

_ = i+ 1) /(.'+1)a/2_ z—n
”_Z 5 o/ ¢(=)dz

For purposes of obtaining a simple upper bound, the discrete summation may
be eliminated by substituting 2z/a for s within each term, so that a constant
expression equal to the lower limit of integration is replaced by the variable of
integration within that range, which must necessarily be larger. This yields

u<[¢m§(§+§)¢(’:”)d:
- (%)2{(202 +n(2n +a))(1 — @(‘:/; ;’)) + (2n+ 3a)¢(°$;’)} ,

where

2

o(z) = $ly)dy

-0

which has no closed form solution, but whose values for specific z are available in
tabular form.

14

v is thus independent of the size of the argument relations, and since A varies
linearly with argument size, the time

(1 + v)hT,

for partitioning and transfer is of linear complexity in the size of the argument
relations. (Since the algorithm for internal projection is also linear, the correspond-
ing external algorithms are linear.) The time required is, however, inversely related
to W, the waste factor, and directly related to a, the capacity in tuples of PAM.
Calculations using a range of typical ¢, {, P and h values suggest that a very
modest W (say, on the order of 0.1) should generally suffice to make the cost of
overflow recovery negligible by compariscn with the complexity component due
to the transfer of non-overflowing buckets.

The algorithm [or external join is analogous to that for external projection.
In the case of the join operator, each bucket is in general composed of tuples from
both of the two argument relations whose hashed compound join attribute values
fall within the range corresponding to that bucket. A set of join buckets is called
key-disjoint if no bucket contains any tuple whose compound join attribute is the
same as that of some tuple belonging to a different bucket. In the case of join
partitioning, the number of hash intervals, h, is set equal to

v= SR+ 5]

As in the case of projection, external evaluation of the join operator involves the
transfer of buckets into PAM for internal evaluation, and in contrast to sorting-
based methods, requires that each argument tuple be processed only once in PAM,
except in the (infrequent) event of PAM overflow.

The procedure for recovery from PAM overflows, on the other hand, is some-
what different from that employed in external projection. The algorithm divides
both R; and R; into sub-buckets, each no larger than half the capacity of PAM;
each pair of sub-buckets, one chosen from R; and one from Rj, is then transferred
into PAM in succession. If z; tuples from R; and z; tuples from R; are assigned
to the bucket in question (z; + z3 > a), this recovery procedure requires exactly
ning SAM revolutions, where

n = [2z]

a(Fy)

and) -
| 2z

"7)

15

Proof of the linear contribution of overflow recovery to the external join algorithm
is similar to that presented above for projection.

In practice, the time required {or evaluation of both join and project should
ordinarily be quite close to the sum of

1. the time required for a number of SAM revolutions equal to the size of the
argument relation (or in the case of category two, the combined size of the two
argument relations) in “PAM-fulls", and

2. the time required for internal evaluation of the operator in question.

In the case where the argument relation(s) are large, this may represent a
very substantial improvement on the results attainable using a database machine
based on an associative secondary storage device alone, as in the RAP, CASSM

and RARES designs.

8. Summary

The architecture and algorithms which we have described are designed to support
the efficient execution of relational algebraic operations in the context of applica-
tions in which the argument relations may be quite large. In particular, the time
required for the projection, and equi-join operators is roughly that required for
a number of SAM revolutions equal to the combined size of the argument rela-
tions in “PAM-[ulls", plus the (also linear) time required for internal evaluation.
This represents an O(log n) improvement over the best presently known general
methods on a von Neumann machine. In the case where the argument relations are
both large, the proposed architecture should also permit a significant improvement
(by a factor roughly proportional to the capacity of PAM) over the performance
of previously implemented or proposed database machine architectures based on
associative secondary storage devices.

It must be acknowledged, however, that we have left many details unspecified,
have made a number of assumptions which ought to be carefully examined, and
have not yet performed the sorts of detailed comparisons that would justify a
confident claim that the architecture we have described is in fact more suitable
for practical application than those already proposed in the literature. It is hoped
that readers of this paper will contribute to the process of critical review necessary
to adequately assess the merit of the approach we have suggested.

16

References

Baum, Richard I. and Hsiao, David K., “Data base computers—a step towards data
utilities”, [EEE Trans. Computers, v. C-25, December, 1978,

Codd, E. F., “A Data Base Sublanguage Founded on the Relational Calculus”, Proceedings
of the 1971 ACM SIGFIDET Workshop on Data Description, Access and Control, 1971.

DeFiore, Casper R. and Berra, P. Bruce, “A data management system utilizing an as-
sociative memory”, Proc. AFIPS National Computer Conference, v. 42, 1973.

DeWitt, David J., “DIRECT—A multiprocessor organization for supporting relational
database management systems”, [EEE Trans. Computers, v. ¢c-28, no. 8, June, 197S.

Foster, Caxton C., Content Addressable Parallel Processors, New York, Yan Nostrand
Reinhold, 1976.

Lin, Chyuan Shiun, and Smith, Diane C. P., “The design of a rotating associative ar-
ray memory for a relational data base management application”, Proc. International
Conference on Very Large Data Bases, v. 1, no. 1, September., 1975.

Moulder, Richard, “An implementation of a data ﬁmagmmt system on an associative
processor”, Proc. AFIPS National Computer Conference, 1973.

Ozkarahan, Esen A., Schuster, Stewart A., and Sevik, K. C., “Performance evaluation
of a relational associative processor”, ACM Transactions on Database Systems, v. 2, pp.
175-195, June, 1977.

Ozkarahan, Esen A., Schuster, Stewart A., and Smith, Keaneth C., “A data base proces-
sor”, Technical Report CSRG-43, Computer Systems Research Group, Univ. Toronto,
Sept. 1974,

Rudolph, J. A., “A production implementation of an associative array processor: STARAN”,
Proc. AFIPS Fall Joint Computer Conference, v. 41, pt. 1, AFIPS Press, Montvale, NJ,
pp. 229-241, 1972.

Shaw, David Elliot, “A hierarchical associative architecture for the parallel evaluation
of relational algebraic database primitives”, to appear as Computer Science Department
Report, Stanford University, 1979.

Su, Stanley Y. U., Copeland, George P., and Lipovski, G. J., “Retrieval operations and
data representations in a content-addressed disc system”, Proc. International Conference
on Very Large Data Bases, Framingham, MA, September, 1973.

Wiederhold, Gio, Database Design, McGraw-Hill, pp. 292-294, 1977.

Yau, S. S., and Fung, H. S., “Assodative processor architecture—a survey”, Computing
Surveys, v. 9, no. 1, March, 1977.

