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ABSTRACT

This is the second of three papers in which we study global convergence
of iterations using linear information for the solution of nonlinear equatioms.
In Wasilkowski [78] we proved that for the class of all analytic scalar complex
functions having only simple zeros there exists no globally comvergent statiomary

iteration using linear information. Here we exhibit a nomstatiomary iteratiom

using linear information which 1is globally convergent even for the multivariate
and abstract cases. This demonstrates the strength of nonstationary iteratiom.
In Wasilkowski [79] we shall prove that any globally convergent iteration using
linear information has infinite complexity even for the class of scalar complex

polynomials having ounly simple zeros.
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1. INTRODUCTION

We deal with the iterative solution of a nonlinear operator equation F = 0
where F is an analytic multivariate or abstract function having only simple
zeros, Most iterations are only locally convergent, i.e., the sequence {xi}
generated by an iteration 1is convergent to a zero « assuming that the starting
points are "sufficiently close' to «. In practice it is very hard to verify this
assumption and one therefore wants to use globally convergent iterations. All
known globally convergent stationary iterations for the class of analytic operators
use nonlinear information. Since most iteratiomns of practical interest use linear
information, we would like to know whether there exist globally convergent itera-
tions using linear information. From Wasilkowski [78], we know that no statiomary
iteration using linear information can be globally convergent even for the scalar

case, In this paper we pose and affirmatively answer the following problem:

Do there exist nonstationary iterations using linear information which

are globally convergent?

We construct a globally convergent nonstationary iteration which is an
interpolatory iteration., The i-th step of this iteration requires the computa-

tion of F(xo),F'(xo),...,F(i-l)

(xo) and the solution of a polynomial equation
of degree i-l. Since, in practice, we cannot solve exactly a polynomial equa-
tion this iteratiom is primarily of theoretical interest, It establishes the
power of nonstationary over stationmary iteratiom.

In a forthcoming paper, Wasilkowski (79],we shall prove that any iteratiom

using linear information has complexity equal to infinity. More precisely,

we shall prove that for any such iteration there exists a scalar polynomial




1.2

having only simple zeros such that the cost of computing a better approxima-
tion than the starting ome is arbitrarily large. This exhibits the impor-
tant difference between the concepts of convergance and complexity. The
class of linear information operators supplies enough knowledge to find a
globally convergent iteration but its cost can be arbitrarily high. Hence
from a practical point of view, the class of linear information operators is
too "weak' for the solution of nonlihear equations. Therefore we have to
use stronger (i.e., some nonlinear) information in order to guiiantee global
convergence and finite complexity.

We summarize the contents of this paper. For the reader's convenience,
in Sections 2 and 3 we deal only with {terations without memory. The exten-
sion to the case with memory is given in Section 4. In Section 2 we give a
very general definition of information and iteration without memory. We
recall the definition of globally convergent iterations and define the con-
staant of global convergence. In Section 3 we prove that for the class 31
of all analytic operators having simple zeros, the constant of global con-
vergence is no larger than 1/2 for any iteration. Furthermore we proved
that only "one-point'" iterations can be globally convergent. We also exhibit
an iteration which is globally convergent with the constant of global conver-
gence no less than 1/3, which means this iteration has a "large' domain of
convergence. In the Appendix we prove global convergence of all iteratioms

we exhibit in Sections 3 and 4.
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2. [INFORMATION AND ITERATIONS

In this section we introduce a very general definition of information
and iteration. We also discuss very briefly the definition of globally

convergent iterations (for more detailed discussion see Wasilkowski [78])

and define the constant of global convergence. For the reader's convenience,

Sections 2 and 3 deal with iterations without memory. Iterations with memory
are considered in Section 4.

Let B,,B, be two Banach spaces over the complex field C wvhich have
dimension

N = dim B, = dim B 1l SN<+=,

1 2

Let B be the class of all operators F :DF<: B1 - 82
be a subset of H which consists of operators having only simple zeros. Let

analytic in DF and let 9

S(F) be the set of all zeros of F. Consider the nonlinear equation
(2.1) F(x) =0, F €8,

To motivate our definition of an iteration consider first Newton itera-

tion for a scalar case.

Example 2.1

Let B1 = 82 = ., For a given approximation x, of a solutiom of F(x) = 0

0
we construct the sequence of approximations [xi} by the formula

(2.2) x| = ¥(x Flx),F (x) = x, = F'(x) " Fxp).

This means that Xiel requires the information [F(xi),F'(xi)]. Denote

UE,x) = [F(x),F'(x)] and iF(x) = y(x; M(F,x)). Thus X, depends on Xy
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(2.3) xi - 'F(xi'l) - 'F(‘F(xi-Z)) " e ® 'F o 'F o e e ° *P(xo)l

and on the information

(2.4) R (F,x4) = (F(xgy),F' (xg) »F (x{) ,F' (%) 9o e Flxy )0F' (x, )]

We denote (2.3) and (2.4) as

(2.5) x; = @, (x43 R @rxy)) e s

We define an iteration by generalizing the information 511 in (2.4) and

the function P in (2.5) as follows. Let Lj :DL CHX 31 - T be & func-
J

tional which is linear with respect to the first argument, i.e.,

j(c1F1+c2F2,x) =cy J(?l,x) + ¢, J(I'z,x) whenever x € D A DI? . We assume

that LJ(‘F ,X) is undefined for x g D'E Then a linear infomtion operator 1,

R'DmCHXB ~¢ , 1s defined as

1

(2.6) R(F,xo) = [LI(F’ZI)’LZ(F’ZZ)""’Ln(F’zn)]’ wF € H, ¥x, € DF’

where z, = x4 and 24 " Ck-o-l(zl; LI(F,zl),Lz(F,zz),...,Lk(F,zk)) for some
functions Cj’ j=1,2,...,0. Let T - {!Ri] be a sequence of linear informa-
tion operators, R, : D, < H X B, =~ C L for {1 = 1,2,... . Let x_ be an

i 'ﬁi 1 0
approximation of a solution of (2.1). We construct a sequence of approxima-

tions [xi] by the formula

n
where P, ¢ D(p c 81 x € L. B1 are operators. Then the sequence E - {q:i} is
i

called an iteration using the information sequence M. Let 3(M be the class

of all such iteratcions.
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Let T =_{ﬂi} be information and let ¢ = {mi} € 3(M be an iteration.

We shall say 3 is a one-point iteratiom iff for any { = 1,2,..., the points

zl,zz,...,zn given by (2.6) are equal to Xge We prove in Theorem 3.2 that
i

any globally convergent {teration is a ome-point iteration. We shall say

; is a stationary iteration iff there exist a linear informatiom operator T

and an operator @ such that
'-"i(F,xo) = 'R(F,xi_l), X "9, &5 R (Foxy)) = (x5 UEHx, 1)), ¥Lo=1,2,...,

for any F € § and X, € DF' We shall say @ is nonstationary iff ® is not a

stationary iteratiom.
In most papers iterations are defined in a way that exhibits the depen-

dence of X; on some previously computed xj, j < i. For example, see Traub
[64], Ortega and Rheinboldt [70],and Traub and Wozniakowski [78]. Our defini-
tion of an iteration generalizes these definitions. 1In Wasilkowski [79] we
shall establish a negative result for even this very gemeral class of itera-
tions. |

We are now ready to define glﬁbal convergence of an iteration. Let

J(a,R) ¢ {x € B, : H x~«|| < R} denote the ball of center @ and radius R.

For any F, F € 3, and any o € S(F) define

RF(ogaDF) = inf H 1-xH

anDFv

as the distance of « to the boundary BDF of the domain DF' Let

B(b,F) = U J(a,bRF(a))
a€S (F) )

where b > 0. Let.B e'E(Eb be an iteration. Let A be the set of real numbers

a such that for any F € 3 and any x, € B(a,F) the sequence (x; 1, %y = 2, (g3 R F o))
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is well-defined and lim x, € S(F). We shall say ¢ = ¢(3,) is the constant

1=

of global convergence of @ for the class § iff

sSup A Lf A B,

0 otherwise.

Note that if there exists F from 3 with finite Rr(ao then c65,3) €[0,1).
1f RF(a) =+« for any F € 3, then c(9,Y is zero or infinity (with the con-
vention 0-® = 0), The set B(c,F) is a convergence domain of ; for F since

taking any starting point from B(c,F) we get convergence of [xi} to a solution

of F =0,

Definition 2.1

We shall say that an iteration ; is globally convergent for the class g
834
c(e, P > 0. |




3. GLOBALLY CONVERGENT ITERATION

In this section we study global convergence of iterations for the class
31 of all analytic operators F from H having only simple zeros. We prove
some general properties of globally convergent iterations and we also exhibit
an iteration which is globally comvergent.

Recall that N, N < + =, 1is the dimension of the spaces B, and B,. (See

1 2

also Remark 3.1.) Let {ai,l’ai,z’“"ai,N} be a basis for By» i=1,2.

N
Lett*an . We begin with

31,3

j=1

Theorem 3.1
For any ilteration 5
c(®,3) s 1/2. .

Proof

Suppose on the contrary that there exists an ® and a @ € -5(31) with

c = c(-q-),sl) > 1/2. Llet

N
—— }:
F(t) (t:1 1.)32’l + tjaz,j'
j=2
Then P i3 an entire operator having only simple zeros, o = al,l and %, = ’al,l'
Consider two operators
F(t) for || :-ai“ < 2| al,l” )

Fi(t) =
undefined otherwise,

{ = 1,2. Then F;,F, €3, S(F) = {o} and R}-,i(o@ = 2| al’lH, i=1,2.
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Since ¢ > 1/2, then Xg = Yy =0 € B(c,F) n B(c,F,). Let x = o (xp; B (F %))
am.:l y, = ® 7y R (F,s7)). Then {xi] and [yi} are well-defined and tend to

a,, and -a, ., respectively. Thus, there exists an index i_ such that v, - x

11 11 0 i
for 1 = 0,1,...,1, and y"o“' p x10+1. Since '}tio+1 (Fioxy) = mi°+1 (Fz,yo) wve
get y10+1 = xio_'_1 which is a contradiction. [

We now give a necessary condition on an iteration to be globally conver-

gent for the class 31

Theorem 3.2
1f ; is a globally convergent iteration for the class 31 then ; is a

ocne-point iteration. B

oof

The proof of Theorem 3.2 i3 similar to the proof of Theorem 4.1 in
Wasilkowski [78]. Therefore we only sketch the proof.
Suppose on the contrary that there exists T = {mi} and 9 = {cni] € 3(M

which is globally convergent for 31 and is not one-point. Let

N

L

F(t) = F(Z cs‘l,s) = (cl-l)az,l + Z‘ tsaz,s'
s=] g=2

Then F is an entire function from 31 having only one zero o = a Let

1,1°
X = 0. Since &F(a) = + ®, there exist integers k and jo, jo € [l,n.k] such

that z- = 0 for any 1 < k and j -kl,...,ni, and z% # 0. (The points z5 are

3 3o 3
defined by Sti and F.) Let m = N Z ng. For YyoVgse oo Yo € C define
i=1
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o1
a N r
ws(t) aZ’SL‘ Vrts’ ) 1,2,.-.,N-
r=l1

N

T

Let W(t) = W (t). Then there exist V1s¥gseeesYp ;s such that W # 0 and
i=l

:‘li(}‘w,p) = '.‘li(F,O) for { = 1,2,...,k. For ¢ > 0, define

F(O) + () for [ ef[ < |¥ [,
Jo

Fc'( t) =
undefined otherwise.

Of course, Fg € 31 for sufficiently small 0. Furthermore, Fc(t) =-a,  +

. 1
Z 2 SL 3 Z y ef ] has a zero which tends to zeroc as o goes to zero.
gm2 r=1 .

Thus,. for sufficiently small e, Xy = 0 € B(c(a,f}l) ’Fo> which means that

vy = cni(O; Uti(Fc,O)) are well-defined for any i = 1,2,... . Since ‘.'Ii(Fc_,O) =

Tsi(F,O), z? 4 DF . This means that Y is undefined which is a contradiction. @8
0 g

We now exhibit a globally convergent nonstationary iteration for the
class 31. Let

(n-1)

0 F>xg) = [F(xg),F'(%3) ... F (x4) 1+

Thus 'Rn is a linear information operator. Let ?‘10 = {'.'tn 0}. For given Xg»

X, € DF’ define

(n=1) n-1

(3.1) Wn’o(x) - wn'o(x,xo) = F(xo) + F! (xo) (x—xo) + eee F (xo) (x-xo) .

(n l)'

Let S(Wu 0) be the set of all zeros of W Similarly to Traub and Wozniakowski
?

n,0°
(76] we define the interpolatory iterationm EO = {I ] Iu O(xo,. O(F xo)) =

x €3S O) with some criterion of the choice of a zero X . Thus, for different
n,

i lowin
criteria we obtain different interpolatory iterations. We propose the following

. Let
criterion for the choice of a zero xn of wn,O
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dist(xo,S(Wn'o)) if S(Vn’o) o

(3.2) d_ (x,) =
0,00 +® otherwise.

Define

1
(3.3) 6 o(xp) = {z €507 )¢ | z-x4 || = d) 0(%g) + v%}.

N
Let 31 - un{;l,az,...,gu}. For any x € Bl' x = Z tj‘j’ cj € C, ve define
X € RZN as =1

X= [tt(cl).in(§1).re(=2).im(tz).---.re(tN).im(cn)]-

Let < be the lexical order om RzN, t.e., for any b,, bz € RZN, by | bz,

b b ), we write bl < b, Lff there exists an integer

g = By 1oy geeeesBy oy 2

< a
k € (1,2N] such that bl,k bz,k and bl,i b2,i for 1 < k. Then we can define

an order om Bl' Naxmely,

o~

(3.4) x, < x, 1833 x, < x,.

*

* *
If S(Vn) is nonempty then Gn,o("o) has a minimal element z , z = z (n,xo,mn’o(}',xo))

in the sense of order <. We define

z*(n,xoymu’o(}.)xo)) if s(wn 0) f ﬁ’

I A(xq3 R (F,x,)) =
2,00 2,0 0 0 otherwise.

Then T, = {In,o} is a nonstationary interpolatory iteration and -iO € -5(7."!0).
Theorem 3.3
Iteration I0 is globally convergent for the class 31 and

(3.5) c&y%)zé.
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Proof
See Appendix. . [ |
We do not know whether (3.5) is sharp. We also do not know what is the

maximal comstant of global convergence of iterations for the class 31 From

Theorem 3.1 and (3.5) we can only conclude

Corollary 3.1

1 -— 1
3 Ssup _sup_ c(9,}) <. 8
ER P N ) <3

Remark 3.1

1 and 82 are finite

dimensional. We need this assumption in order to assure that '.'tn o(]:-',x) =
(n-1)

In this section we have assumed that the spaces B
[F(x),F'"(X),...,F (x)] 1s representable by a finite number of linear funmec-
tionals. For the infinite dimension case, dim Bl = dim BZ = 4 o, 'Rn o(].?,x)

]
is representable by infinite number of linear functionals. Defining the
iteration EO analogously to (3.1)-(3.4), it is possible to verify that Theorem

3.3 seill holds. a




4. ITERATIONS WITH MEMORY

In this section we extend all previous results to iterations with memory.
Since we do not know any globally convergent iteration with memory for the
multivariate case we assume in this section that 51 = 32 - G:, i.e., N= 1,
We present two globally comvergent iterations for different classes. The
first of these is the generalizatiom of -fD' it is globally convergent for the
class 31. The second is based on increasing the size of wemory; it is
globablly convergent for the class of all entire functions from 31.

let m, m > 0, be an integer. Let I.-1 be a functional defined as in Sec-

tion 2. A linear informatiom operator with memory R, T: Dy =5 B0 I (1
is defined as

Mlﬂcn
5

%.1) ﬂ't('F,xO,x_l,...,x_m) = [LI(F’ZI)’li(F’zn)"“’Ln(F’zn)]’ ¥F € H,

VXO,I_I,-..,‘K-“ E DF
where z, = X5, Z, ® X_5,005Z;, * X and z . = Ck+1(zl’22"“’zm+1;
Llal’zl)’LZ(P’zz)"'T'Lka?'zk)) for some functions gj, j=m+2,m+3,...,0.
Let

M= [‘Ri}

|
be a sequence of linear information operators with memory, 0 CHX ¢m+1 - &

£+ %,
Let XgsX_yseeerX be distinct approximations of a solutiom of (2.1), We con-

struct a sequence of approximations [xi} by the formula

(4.2) x, = Py (XRgaX_p5eeenx_ E‘ti(?,xo,x_l,,,,,x-m))

o140,

wh $ S ©
ere o Dq’i cC T are functionals. . Then g = [CPi} is called an

lteration with memory using information sequence M

Let § (M) be the
of all such iterations, . -




o
[\S)

We now extend the definition of global convergence. For any iteration
;, o € Sm(a)’ let A be the set of all real numbers a such that for any F € g
and any distinct points XgrX_paeeerX o satisfying X € B(a,F) and

Ix_J—xol < ¢ dist(x,,S(F)), the sequence [xi}, LT YL ICERRRTE

'.‘li(F,xo,x_l,...,x_m)), is well-defined and lim xi~€ S(F). We shall say
i~

c = c(5,3) 1s a constant of global convergence of @ for the class Y iff

sup A 1if A # 0,

0 otherwise.

Definition 4.1

We shall say that an iteratiom 5 is globally convergent for the class 3

1ff
c(9,y > 0. ]

For this case it can also be showm that for the class 31 defined in

Section 3,

¢@®3) 53, P Er®.

An example of globally convergent iteration for the class 31 is provided

by the generalization of EO iteration. Namely, let

(n-1)

‘Rn,m(F,xo,x_l, ceesx ) = [F(xg),F' (x5) 50 ,F (xo) SF(x_)LF" (x] Poreees

PO (i Flx ) 0F (k) O )]

(= [‘Rn(f,xo) ,'ﬁn(F,x_l) yeae !nn(F)x_m) ]) .

Thus S'tn o’ D"t CH X Q:NI - ¢r+1 where

? “n,m

(4.3) r=r(a,m) = n(m+l)-1.
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Let now ﬁm - {7 } . For distinct xo.x_l,..,.,x_‘n let wn,m = wn,m('; xo,x_l,.

n,m'n

be an interpolatory polynomial of degree at most T satisfying

(%)

(k) - » - - .o .
% .4) wn,m(x-J) F (x_j) for x = 0,1,...,0-1 and } 0,1,...,8

Let S(Vn’m) be the set of all zeros of wn n and let

’

%.5) dn,m(xo) - di’t("o's("’n,m))'

Define

(%.6) Gn,m(xo) - {z € S(Wn’m) : |z-x0| < dn’m(xo) +—,._;1 }

* *
and let z=2 (n,n,xo,ﬂn'm(‘l’,xo,x_l,...,x_m)) be the minimal element from

Gn m(xo) in the sense of the order relation <. Then
3

*

2 ifsMy ) F B

af
1 (XpsX_qseeesX__5 R (FyXnsX qseeesX_)) =
n,m"0""-1 o B, 0*"-1 n 0 otherwise,

is a functiomal, I_ ¢M1+t+1 - and

4

is an iteration with memory, I_ € 3m(?!) .

Theorem 4.1

For any m, m 2 1, iteratiom ?'m is globally convergent for the class 3" and

- 1
c(Im’sl) 2 z-
Proof

See Appendix.

ce ’:vm)
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We now present a globally convergent iteratiom for the class 32 of all

entire functions. For fixed n, n 2 2, let

(n-1) (n-1) (n-1)

ﬂi(}?,xo) = [F(xa)....,F (xo),F(xl),...,F (xl) ""’F(xi-l)""’F

Define
X, = q:i’n(xo,ﬁli(F,xo)) = Iu,i-l(xi-l’xi-Z’“"xO; '."li(F,xo)).

Then iteration an’ ;n = {q’i,n}i’ requires the computation of F(x, ;),

(n-1)

F'(xi_l),...,I-' ) per step.

(=1

Theorem 4.2
For any n, n 2 2, the iteration ;n is globally convergent for the class
3, of all encire functions from 9,, i.e., c(En,sz) = 4, [
This theorem can be proven analogously to Theorem 3.3 and therefore its

proof is omitted.

(xi' 1) ]‘
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APPENDIX

We prove Theorems 3.3 and 4.l. We begin with the scalar case, i.e.,

B, = 32 = C,N=1., LetF € ’31 and n,m (m 2 0) be integers. Let

1

(A- 1.) Rn,n(X) - Rn,m(x; xo;x-l; ...,x_m) o F(x)"wn’m(X)-

Then

. t %y By
(.2) R, (x) = jq,(x-x_j) H I FOHD e ) (x-xp+on bt (xox_))de dt

L ] .dto L
where

r=r(n,m = a(ml)-1,

For any F € 31 and o € S(F) define

(%)
(A.3) A (D) = A (T,e,F) = sup ¥ (@~ ! ET(ﬁl for k = 2,354
er(G,l-) >

Let q € (0,1) and XX 2o eaX € J(a,) be distinct. Following the proof

technique of Theorem 2.1 of Traub and WoZniakowski [76] we prove

Lemma A.l

If

r+l
A (D)™

(A.4) AZ(I')ql‘ + = &1

then the polynomial Wn 5 has a zero z = z(xo,x_l,...,x_m) such that

(A.5) ]z-rr| Sq]xo-a|. ) ]

Proof

We can assume X, A a. Since F(x) = F' (&) (x=a) + R2 O(X,' @) and

F(x) = Wn,m(x) - Rn,m(x) we get




A.z

\ -1 - daf , -1 .
(A.6) x=F'(a) "W _(x) = H(X) a+ F'(a) {Rn,m(x) - Ry (x5 )}
Thus wn 2 has a zero in J(a,qlxo-a]) 1ff there exists a fixed point of
?

(A.7) x = H(x), x € J(a,qlxo-orl).

We first verify that H(Xa,q|xy-a|) < J(aq|xy-a|). Let |x-af < q|xg-al.

From (A.2) and (A.3) we get

m m
|eB(x)| S AH_I(D po|x-x_1 |n+A2(1') lx—a|2 S Al._<‘_].(1")-1|‘._!)(lx-crl-!-lc:-:l:_:l I)n+A2(I°) Ix-alz

m
<A_ (D@ ,xo-a|+|xo-al)ngjo(ql'ﬂ')n«o-Az(l")q 'xo-alqr

-1
< qfxgal t, (D (Lr™r™ DT L 4 nqr)

AL (D (1) Tz
= qlxo'al n q

+ Az(f')ql'} < q]xo-al.

';hus H(J(a,q]xo-al) c J(a,qlxo-al). From the Brouwer fixed point theorem,

see e.g., Ortt;.ga and Rheinboldt [70, p. 161], it follows that there exists

a zero of the polynomial Wn,m in J(a,qlxo-a|). This proves (A.5). |
Let DF be the domain of F, F € J, such that DF » C. Then for any

g €S(F), R = B.F(a) is finite. From Cauchy's formula there exists a comstant

M = M(F,qa) such that
F(k)gaz M

@a.7 | = |‘_k" k = 0,1,...
: R

Traub and Wozniakowski [76] established
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Lemma A.2
(o)
Let [ <=5 Then there exists u, such that (A.s) holds for every
o 2 By with
Rp (9 ~
q= m and © = n(m+l)-1. 8
For fixed L,a,F define
(A.8) v(a,m,K) *® sup sup IF(C)'V,,,,,(C; xo,x_l,...,x-m)l.

xOEJ(a,L) Cox_qseer ,x_meJ(xo,K)

lemna A.3
(a)
(1) 1fm =0 and L < 3 then
(a)
lim y(n,O,—E—) = 0.
n..ﬂ
(@)
i Ifm 21 and L <—7 then
(a)
lim y(n,m,—T—) = 0. 8

e

let m = 0. Denote R * B.F(a). From (A.2) we get

(n) (m)
Y(n.O,%) s (%)n sup sup Ir—;ml < (-g-‘)n sup |z-;,-(9-|
xg€3(a, 1) ce.I(xo,%) - CéJ(a,u—%') :

From Traub and Wozniakowski (76] we know that

(n)
L] < X L
‘ R /[ -
(1-Lszel)

which implies



AL

M n R o
@A.9) y@,0,d s——— & S
3 Rn ( 3 R) 2R-3L 2R-3L
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Since R/ (2R-3L) < 1, the right-hand side of (A.9) temds to zero. Heace (i)
is proven.

Form 2 1, it can be similarly shown that y(n,m,R/A) = 0((5%)“).
Since R/ (2R=4L) < 1, we get (ii). This completes the proof. |

Lemma A.3 states that the polynomials wn o uniformly approximate F. It

is also easy to show that wz'1 o tends to F'. Since o is a simple zero of F,

3

k]
then either re P'(x) or imF'(x) is distinct from zero in a ball J(a, ) for

* % *
some ' ,T =T (a,F) > 0. Without loss of gemerality we can assume that

re F' > 0. Then for sufficiently large n, re wl; m(_x) also does not vanish in
+ ’

r
J = J(a,é—-). Thus, re wn xn(x) has at most one solution in J. From this and

2

Lemma A.2 we conclude that wn o has exactly one zero in y. This is summarized

in

Lemma A.4
* % *
There exists I' , ' = [ (¢,F) .> 0, and an integer B,, o, =.n2(a,F), such

*
the polynomial W has exactly ome zero in J(a,l /2). BB

2
that for any n a, n,m

Proof of Theorem 3.3 for N = 1

Consider first P € §, with D # C, i.e., Re(@) <+, Yo €5(F). Let

x, € B(%',F). Define S(F,xy) = {a EsP) : lx -a| = disc(xo,sa‘))} {o %> 1,...,515}

where ), is the minimal element from S(F,x ) in the sense of (3.4). Of course,
(o)
Ixo- aol < —m— RF —=—, We prove that the sequence {xu} generated by I0 tends to ao.
*
Let € be a positive mumber such that ¢ 5-2]: win{l (a,F) : a € S(F,xo)}.

From Lemmas A.l, A.2 and A.4 there exists 0y, 0y = nl(e) such that foran 2 o,



where

and the polynomial Wn o(x; xo) has zeros zt; which satisfy
?

(A.10) lz‘;-ajl <qlxgapl S ¢ for 37 Ol

vurthermore z‘; {s the only zero of wn 0(x; xo) which belongs to J(aj; e). Let
?

(@ )
B(xo) & J(xys D? —_—) \ U J(a,¢)
o€ (T, x)

and
o= a(e) = inf{[£(x)| : x € s(xo)}.
0f course ¢ > 0. From Lemma A.3 we get

R?(xo)
sup{lf(x)-wn’o(x; xo)l :x € J(xg—3— —_—1 s-

for sufficiently large m, o Zn, = n,(¢). Note that |W_ 0(:n:)| 2
b

) -4
|Fx)| = ]F(x)-wn’o(x)l z7 > 0. Thus W, g does not have a zero in B(xy).

Let n. = max{n,,n,}. Form 2 n,, X € U J(a,¢). Note that
3 1’72 3 n €3 (F)

n & dise(x,,S(F) \ sF,xy)) > |x0-ao| Then for an arbitrary ¢ € (O,Z(h-|x0-

we get

e U 1o

a oS (F,xp)

for sufficiently large n. Therefore 1if S(‘F,xo) = {ao} i3 a singleton set

then |xn-a0| $ ¢ which implies that 11!-12 x, = a

GOU)



Suppose now S(F,xo) = [ab,al,...,as] is not a singleton. Then for

sufficiently large n,

Gy, 0(%g) SsM, o N J(xo,(l-i-qn)lxo-aol) - 0,21,...,2 ™1
where
n n n
Izj-aj] < qnlxo-aol and zj < z for j = 1,2,..

Define n0 as an integer such that
(A.1D q <—17 .
0 ZIXO-QOI‘ 0
Since [xo-ajl - Iaj-ztjl| < Iz!;-xol < lxo-ajl + |zl;-ajl for 3 = 0,1,...,s, then

o 1
|l2g=xq| = 4y o(xp) = 24, [%y] Y~

n o
for large n, n > 2,. Thus z, € Gn,O(xo)’ see (3.3), which means that X 24

Hence lim xn a ®, which completes the proof for the case DF A C.

bl
Consider now an entire functiomn F € 31, i.e., DF 2 C. Let agbe an
element from S(f). Define
F(x) 1f x € J(a,4|o~xol),

f(x) =
undefined otherwise.

F F € B, F)
Then F € J,,Dz 2 C, aesF Since x, € B(3,

then the sequence [yn}, Vo = In,O(xo; ﬂh’O(F,xO)), is convergent and

= 5 = = d therefore
limy_ € S() CS@. Since R ((Foxg) = R, (Fuxgds v, = % 22

T:: x € S(F). This completes the proof of Theorem 3.3 for the case N = 1.
1

% e




A.7

Proof of Theorem 4.1

Following the proof of Theorem 3.3 for N = 1 and applying Lemma A.3(1i1)
instead of (i), we esasily get the proof of Theorem 4.1. [ ]
To prove Theorem 3.3 for the case N $ 1, consider an analytic operator

F, F € 31. Then for

(A.12) R ,(x) & Rn’o(x; xy) & F(x) - wn’o(x; xy)

a,
we have
L n -t
(A.13) R () = { P (xgre(xxg)) (x-x) " =Egse— dt,

see e.g., Rall (69, p. 124]. Define

A= swp |[F(at %@Il :
x€Xa, 1) )
It . is obvious that Lemmas A.l to A.4 also hold for this case with the modulus
replaced by the norm || - ||. The detailed proofs of Lemmas A.l and A.2 for
m =0 can be found in Traub and Wozniakowski [76].
Following the proof of Theorem 3.3 for N = 1l with the modulus replaced

by || « ||, we easily get the complete proof of Theorem 3.3.
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