- CUCS-2-77

{

Structure and Abstraction
in a System for

Conceptual Matching
David Elliot Shaw

August 1977

Abstract

The notion of a conceptual matching task is introduced as a model for a number of important
practical problems in which systematically structured entities are paired on the basis of selected
significant characteristics of their structures. A particular task paradigm involving the interactive
description of matchable entities and their subsequent pairing by computer is specified, along with
the essential characteristics of a structured system which distinguish such a task as a conceprual
matching problem. In particular, the perception of characteristic elements, properties and
relationships which emerge in the context of different structural and abstractive viewpoints is seen to
be critical to this sort of task. The representational and organizational framework of a proposed
system for conceptual matching is outlined. This system uses a uniform schematic formalism for
representing both objects and processes, including those processes from which the procedural
component of the system itself is built. The operation of our system centers on an active memory of
limited size which serves as the site of conceptual integration, and which is distinguished from the
archival memory by the availability of descriptive access mechanisms for manipulating its contents.
The use of these descriptive mechanisms in elaborating and specializing high-level guiding
frameworks, as required in both the descriptive and matching subtasks, is illustrated.

Acknowledgements

The author is especially indebted to Terry Winograd and Ed Parker, of Stanford University, and to
Alan Borning, of the Xerox Palo Alto Research Center, for suggesting many of the ideas which
have been incorporated in this paper, and for providing much of the feedback which made possible
their expression.

STANFORD SYSTEMS CORPORATION

I

.- i
X -

TECHNICAL MEMO SSC-1R-7702-01

Structure and Abstraction
in a System for
Conceptual Matching

David Elliot Shaw

August 1977

Suite 1020 525 University Avenue Palo Alto, California 94301 (415) 321-8111

Secticn 1
Introduction to Conceptual Matching

Many information processing tasks performed by men and machines alike involve the process we
call matching, by which a correspondence is assigned between members of two sets of entities. T he
criteria for certain sorts of matches are quite simple to describe. Letters are routinely matched with
mailboxes, for example, and Congressmen with constituents, according to straightforward algorithms
based on simple, single properties of the entities in question. In this paper, though, we will consider
certain essential aspects of a more interesting class of tasks which will be referred to as conceptual
matching problems. This more demanding sort of task, which is nonetheless a common part of our
cognitive experience, involves the assignment of a correspondence between entities which humans
perceive as being highly and systematically structured, based on selected significant characteristics of
those structures.

Cur central interest is in the isolation of mechanisms essential to the implementation of
computer-based systems for the successful execution of conceptual matching tasks. In Section 2, we
thus define a two-phase functional task paradigm involving interactive description-building and
subsequent computerized matching for use as a vehicle to explore those issues of knowledge
representation and manipulation most critical to the problems of conceptual matching. Numerous
information processing tasks of considerable social and economic import may be regarded as
instances of our conceptual matching paradigm. One of the most important current examples is the
problem of bibliographic search, in which the matchable entities are the current information needs
of a reader, on the one hand, and individual publications, on the other. Although information
retrieval is currently enjoying both extensive attention in research and widespread practical
application, an incapacity for understanding the content of the indexed materials imposes a critical
limitation on the utility of computer-based document retrieval,

The present limitations of manual and computer-based systems for bibliographic search stand in
evidence of the apparent difficulty of explicitly modeling this sort of understanding. While we will
not attempt a systematic review of the performance of the various document retrieval schemes
currently in use, an anecdotal illustration of the pitfalls of one superficially plausible method for
locating relevant published material is provided by the problems experienced by this author in a
recent manual literature search. Using a permuted keyword index, in which the corpus of
publications was indexed by combinations of significant words appearing in the title, we attempted
to locate all articles dealing with the application of computers to job placement, and with those
aspects of "job analysis” which might be relevant to the representation of occupational informarion
in a computer.

While it is difficult to estimate the number of relevan: articles wiich were not retrieved using the
keyword method, nearly all of the papers which were located using this scheme were found, on
examination of their full titles, to be irrelevant to the intended focus of the search. One promising
prospect indexed with the key words job, analysis, computer and system led to the full title
“Preliminary Job Analysis of Computer Programmer and Systems Analyst”, in which the conceptual
elements of our intended target class are combined to indicate a very different subject area. Zven
more divergent {rom the search goal was a paper entitled "Employment of a Computer System ior
Acquisition and Processing of Measuring Data in Nuclear Physics Experimenis in ZFK
Rossendorf”, located through the conjunction of the keywords computer, system, and employment.
Our most cherished find, though, was a second publication located using the terms job and enalysis:
"A Behavioristic Analysis of the Boaok of Jab".

These examples, of course, are not advanced as a serious argument against the adequacy of all

existing bibliographic search mechanisms. In the context of a discussion of the nature of human
matching in the process of document retrieval, though, it is interesting to observe that even biblical
knowledge may useful in eliminating candidates in the course of a search for articles discussing the
application of computers to job placement. Clearly, the effective retrieval of user-relevant literature
from among a large body of published material constitutes a matching task which would intuitively
be considered conceptual in nature. The characteristics of this sort of matching process, whether
manifested in a human or computational host, will form a central focus of this paper.

A second important instance of the conceptual matching paradigm discussed in the current paper is
suggested by the intended target of our permuted keyword search: the problem of finding
employment for a large set of job-seekers. The appearance of numerous human economic agents in
both the public and private sectors who specialize in just this matching task suggests that the
process is a nontrivial one which may require the application of the human conceptual abilities in
which we are interested. One might conceive of a very straightforward method by which the skills
of each job-seeker, along with the requirements of each available position, would be classified
according to a fixed, common classificatory scheme and the two sets compared to yield lists of exact
matches. Unhappily, though, experience has shown such procedures to yield a large number of
“unsatisfactory” pairings, and to fail to discover many "appropriate” matches, by comparison with a
human empioyment agent.

To gain some feeling for the complexity of the job-matching task, one need only examine the kinds
of judgements made by a skilled employment agent or personnel director in the course of his work.
In contrast to the simple scheme just outlined, an effective human job-matcher can not deal with a
job as if it were an indistinguishable member of a single occupational category, but must make use
of various characteristics of the position in the context of different potential matches. In the course
of finding a new position for an engineer having extensive sales experience, for example, a different
set of occupational skills may become salient depending on the potential positions for which he is
being considered. In assessing his suitability for a position as marketing manager, we may wish to
regard the job-seeker as a former salesman; for the position of director of research and development,
sales experience may still be relevant, but we are likely to think of his previous job primarily as a
technical position.

Indeed, the single-category matching model might be extended to allow our engineer membership in
two or more occupational classes so that both his technical and marketing skills might be considered
in effecting his placement. In actual experience, though, even such multiple classification schemes
fail to capture enough of the meaning of the jobs they describe to emulate the performance of a
human matcher. Let us, for example, construct two hypothetical positions which might both be
classified as requiring experience in the areas of "air pollution” and “electronics”. The first involves
the development of electronic devices for monitoring air poilutants; the second deals with the control
of emitted byproducts in the semiconductor manufacturing industry. Clearly, the job skills salient to
the performance of these two jobs are quite different, and we would expect any comperent
occupational counseior to distinguish between the sorts of experience relevant to each. The human
employment agent does not regard ihe required background for a position as an unstructured list of
experience categories, but can perceive the essential relationships between several areas of
prerequisite experience within the context of a functional understanding of the particular job.

Another characteristic feature of conceptual matching processes is the ease with which novel
matching situations are accomodated through the appropriate application of experience in relazed
areas. In 1970, for example, a job such as microprocessor systems assembly line manager did not
exist. With the advent of microcomputer technology, the data processing employment agent did not
simply assign a new and unrelated conceptual pidgeon-hole to this emerging position, but instead
was able to make use of his previous xnowledge of a number of related occupational areas io
distinguish salient criteria for matching workers to jobs involving microprocessors.

A surprising degree of commonality is evident among the critical problems involved in diverse
applications of conceptual matching. The analysis of these problems which is outlined in Section 2 is
based on an examination of the distinctive qualities of those entities which must be matched in a
“conceptual" manner, and of the criteria upon which the appropriateness of such matches is
evaluated. In particular, the notions of structural and abstractive levels will be introduced as
dimensions for characterizing the perspective from which a structured entity may be viewed in the
context of a matching task. These two constructs will then be used to formulate a model of
conceptual marching based on the iterative specialization and elaboration of conceptual structures. In
Section 3, the central mechanisms of this model are incorporated in a proposed organizational
framework for schematic, description-based system which builds and matches conceptual
descriptions.

| Section 2
The Conceptual Matching Problem

In this section, we will define and examine the central problems of a class of conceptual matching
tasks which might be executed by a man-machine system involving one or more human users and
an "intelligent” computer-based subsystem. In the first subsection, the mechanics of the chosen task
paradigm are outlined in a straightforward functionali problem specification. Those special
properties of the matchable entities and of the criteria for justifying derived pairings which
distinguish our iask as a problem in conceptual matching are then introduced in Subsection 2.2. The
section ends with a discussion of the description and matching subtasks in light of these special
properties.

2.1 Functional Task Specification

The conceptual matching task to be realized by our proposed thesis system involves the pairing by
computer of members of two distinct march sets of structured entities on the basis of
machine-readable descriptions of those entities previously constructed in an interaciive manner. We
may thus divide the task into two temporally independent subtasks, the first involving the
interactive description of the members of each set, and the second consisting of the aciual matcaing
process. (In the remainder of this proposal, we will generally use the term "matching” to refer
specifically to the latter of these two subtasks. Use of the term in reference to the conceptual
matching task as a whole should be obvious from context.) We are thus interested in the problem of
matching entities based on static machine-readable descriptions -- symbolic representations of
significant aspects of the elements of one match set which are prepared before the identity of those
elements of the other set with which they will be matched is known.

The possible interactive modes which might be considered as candidate frameworks for the
description-building process may be characterized according to their position on a spectrum
extending from machine-guided to user-guided interaction. Toward the user-guided end of this
spectrum would be a system allowing unrestricted description of the significant characteristics of an
entity by the user in a natural language such as English. The computer-guided end of the spectrum
might be exemplified by a mode in which a description is incrementally formulated based on the
answers to a fixed sequence of multiple-choice questions presented to the user. On the one hand, we
would like a conceptual matching system to accept input felt by the user to express distinctive
characteristics in a direct manner, thus obviating the need for numerous queries from the system
which may be inapplicable to the entity in question. At the same time, it will generally be important
to allow the machine to guide the description-building process toward information relevant to
anticipated matching sessions on the basis of a conceptual model of the subject domain, and to
solicit such amplifying or clarifying information as may be useful.

The particular description-building paradigm chasen for our current investigations involves the
solicitation of user responses in a tightly constrained form and a dynamic ‘ocusing of the query
sequence on the basis of these responses. Specifically, the selection of multiple-choice items from a
fixed "menu”, or the provision of single-word or fixed-phrase responses recognized directly by the
system are input mechanisms consistent with our description-building paradigm. In order to simplify
the “front end” of our system, allowing particular focus on our central research interests, we will not
attempt the interpretation of unresiricted natural language responses or expressions in a formal
language of sufficient expressive power that involved parsing or pattern-matching techniques are
required for their assimilation. Like a human participant in a game of "tweniy questions”, though,

the incremental description-building process will use previous responses o direct further queries in
such a way that the system converges rapidly on the essential characteristics of an entity. Qur
paradigm thus provides for the integration of user-provided and system-provided guidance in an
interactive description-building process.

Let us now consider the functional framework of the matching subtask itself. In specifying the
external behavior of the matching process, one of the two match sets is distinguished as the selective
set, while the other is termed selectable. For each member of the selective set (called selective entities),
the matching process returns a list of selected entities from the selectable set which match the given
selective entity according to criteria which we will discuss shortly. To be useful, of course, this list
should contain significantly fewer members than the selectable set itself. Because our primary
concern is with the conceptual mechanisms involved in the match process, our matching system will
also provide an explanation in some form of the basis on which the selective entity was paired with
each selected entity in the output list. The form and significance of these symbolic mazch
Justifications will be clearer following our discussion of the conceptual aspects of the match process.
Upon completion of the pairing process for each entity in the selective set, the matching process is
terminated, yielding a list of plausible pairings along with the conceptual arguments used to justify
them. In a realistic application, the output list could be reviewed by a human agent, who might
prune the set of selected entities using judgemental mechanisms still unattainable in a
computer-based system.

The criteria used o evaluate the appropriateness of a potential pairing are best understood in the
context of the concerns of Subsections 2.2 and 2.3. For now, it should be mentioned that these
criteria may highly specific to the particular selective or seleciable entity under consideration, or to
the interaction of properties of each. Thus, it may in general be difficult to make explicit in the
match criteria applied to a particular matching task apart from the context of a specific candidate
pair. In one extreme case which is nonetheless consistent with the constraints of our general
matching paradigm, the criteria for matching each selective entity with an appropriate partner may
be ideosyncratic tests having little in common with those corresponding to other elements of the
selective set. The match criteria for a particular task may also be closely tied to individual seleczable
entities, to the possible relationships between selective and selectable entities, to very general
considerations applied in a more or less uniform way to all matchable entities, or to specific areas of
derailed world knowledge embedded in the matching system but not explicit the descriptions of the
matchable entities, Thus, we must view the notion of a criterion for the evaluation of match
appropriateness in exceedingly general terms.

2.2 Essential Characteristics of Structured Systems

The most interesting aspects of conceptual matching are related to the fact that both the matchable
entities and the match criteria exhibit a rich conceptual structure. It is the perception of this
conceptual structuring which makes possible the sort of guidance offered by the system in the
process of description-building, and which provides the conceptual basis for evaluating the
appropriateness of potential pairings in the match process itself. In this subsection, we will examine
those distinguishing aspects of structured systems which lend a conceptual flavor to the class of
matching tasks with which we are concerned. In the course of this discussion, we will introduce the
notion of structural level, which reflects the scope and grain of a particular observation of some
structured entity. The range of possible levels of perceived detail will be conceived of as a strucrural
Aierarchy (related to constructs discussed by Simon (196<n>] and in a collection edited by Partree
{197<n>)) in which a distinctive set of emergent properties are made evicdent at each higher level
through the imposition of constraints on the configuration of lower-level elements. We will .then
discuss the notion of structured abstraction, by which sets of systems are perceived as systematically
related in different ways according to the nature and restrictiveness of these constraints. The

properties of structural constraints will be used in Subsection 2.3 to interrelate the characteristics of
structural detail with the principles of abstraction in a manner which will be useful in examining
the important problems of conceptual description-building and matching.

Loosely speaking, a system may be considered structured whenever it can be fruitfully examined at
more than one level of conceptual detail, with different properties of the system becoming salient to
the observer depending on the chosen “grain” of observation. An automobile company, for example,
may be observed at any of several levels of detail, each associated with different sorts of
characteristics. Viewed at a detailed structural level, the activities of each automotive worker may be
described in terms of such basic physical activities as hand and arm movements, the production of
phonemic strings, and primitive acts of personal locomotion. With the addition of a detailed
mechanical description of each machine found in each manufacturing plant, we might imagine the
possibility of providing a very accurate description of the detailed functioning of the firm over some
period of time. Such a description, though, would have little value in coherently expressing those
aspects of these operations which would be considered most important t0 a productive business
enterprise. While a detailed analysis at this level would be essential for the solution of certain
problems, it is unlikely that a consumer comparing the advantages of various makes and models, for
example, or an investor considering the purchase of stock in the company, would be interested in
considering the detailed behavior of each machine and employee in the firm.

Ascending the structural hierarchy to a level of derail corresponding to the corperation as a whole,
though, a very different set of characteristics emerges from the same physical entity. At this new
structural level, we might observe such features as a product, a board of directors, and such abstract
notions as capital assets. Each of these is in fact made up of components observed at lower levels,
but the observation of characteristic elements and inter-element relationships makes it possible to
view these same phenomena at a "higher” structural level which is likely to be of greater use to an
investor. A historical analysis of industrial production during the Second World War or an
investigation of current unemployment patterns would probably involve a still higher structural level
corresponding to the automobile industry taken as an aggregated whole. The level in the structural
hierarchy which is chosen for observation is thus highly dependent on the particular purpose of
that observation.

It is significant that not all possible interacting combinations of people, equipment and actions can
be usefully observed in terms of the characteristic features of automobile firms. Rather, it is the
introduction of a characteristic set of constraints on the detailed configuration of this system which
leads to the emergence of conceptually. useful properties at the corporate level of the structural
hierarchy. Most important, the perception of “similarly” constrained systems may allow an observer
to profitably apply a common interpretive framework to related sets of configurations. When our
potential investor asks his broker about the management of a particular automobile firm, for
example, the broker need not explain the function of a corporate president in terms of low-level
human behavioral primitives. Perceived commonalities in the sorts of constraints observed in all
corporations allow the broker to assume that his client is generally familiar with such emergent
elements as the general role of a corporate president.

Emergent properties, then, may be associated with similarly constrained sets of lower-level
configurations. Clearly, though, a given configuration may be regarded as a member of any number
of conceivable configuration sets depending on the particular constraints chosen for use in the
partitioning process. The set of properties which emerges with a transition to a higher structural
level is thus dependent on the particular set of configurations whose characteristic constraints are
considered "similar” in the context of current requirements. One degree of freedom is relared to the
size of the set of conceivable systems which are grouped together for purposes of factoring out
common emergent properties. At a given structural level, certain emergent characteristics m:.y be

-Sh d b . . A . .
ared 5y a large number of particular detailed configurations, while others may be applicable only

to some proper subset of these configurations.

Some of the characteristics of our example system which emerge at the level of the automobile firm,
for instance, are in fact features of organizations in general. (Most organizations can be assumed to
have members, for example, along with some form of leadership and a purpose for existence). Other
characteristics which emerge at the same structural level are particular only to corporaticns -- the
existence of a stockholders, products and a board of directors, for example. When the same system is
viewed as a member of a another set of configurations whose detailed components are even more
tightly constrained, a third set of properties, relevant only to automobile corporations, emerges.
Furthermore, different properties may emerge at this structural level depending on the particular
subset which is chosen. A political party, for example, may, like a corporation, be viewed as a
specific kind of organization. While lacking stockholders, products and directors, this specialized
type of organization reveals such emergent properties as candidates, conventions and Central
Committees.

Furthermore, most configurations may be usefully regarded as members of several non-nested
configuration sets, each associated with its own set of emergent characteristics. Beer, for example,
may be viewed as a special case of either a beverage or an intoxicant, depending on the
characteristics salient to the particular conceptual task at hand. Not all beverages qualify as
intoxicants, nor are all intoxicants ingested in liquid form, but a number of the salient properties of
beer are in fact general characteristics of beverages or intoxicants in general. The salience of
alternative sets of constraints thus introduces further possibilities for the choice of properties to be
considered emergent at a given structural level

We have seen that the particular set of characteristics which emerge from a different observational
viewpoint is dependent not only on the level of detail chosen for observation, but on the set of
“similar” configurations of which the observed system is considered a member. It may thus be useful
to consider a second parameter, distinct from the choice of a structural level, as a determinant of the
particular emergent interpretive framework which is salient in a given situation. This parameter,
reflecting the extent and dimension of structural constraint, and influencing the specificity and
selection of emergent properties, is the basis of the notion of abstraction. As in the case of structural
detail, it will sometimes be meaningful to speak of abstractive levels ranging from specialized to
general, each denoting a progressively less restrictive set of structural constraints. It should be noted,
though, that the property of abstractive level, unlike that of structural level, imposes only partial
ordering on the possible interpretations of a given system -- only those emergent frameworks which
correspond to nested configuration sets may be compared as mdre or less abstract. The incidence of
multiple category membership thus precludes the use of a strict tree-structured interpretation of
abstractive relationships, suggesting instead the model of a more general non-cyclic graph.

As we shall see in Section 3, the “factoring” of emergent characteristics at appropriate gbstractive as
well as structural levels is critical to the organization of our proposed system for computer-based
conceptual matching. Part of the significance of the notion of abstractive levels in naturally and
artificially intelligent systems is based on on the inAeritance by specialized configuration sets of ;he
emergent properties of a more general abstractive “parent”. Certain properties of an abstractive
“child" are specific to the more tightly constained system, and are unrelated to any properties of the
parent. The notion of a product, for example, is meaningful in the context of a corperation, but has
no analogue in the more abstract case of a general organization. The officers ana directors EI' 1?
' ' ' izali of the notion of leadership whic
corporation, on the other hand, may be viewed as specializations P

' f izations in general.
we listed as one of the important features of organizations in gen

1] o con
f the relationship between a parent and_chlla 1'n :he-habssse:ec:l:;al
ude information about abstractive connections between the essel s
g details or even special exceptions o the

i i 0
detailed characrerization
. thus often {nei

N\ T (g the addiian aof elaboratin
LT

i e
Tl

general information associated with the parent. It is this sort of relationship between the structures of
Eont‘iguranons viewed at various abstractive levels which is reflected in models of srrw:ru‘red
abstraction (Brian Smith, personal communication]. In our later discussion of the possible
approaches to the implemention of a computer system capable of conceptual manipqlazio‘.n of thﬁ
emergent properties of structured systems, structured connections between abstractive ‘siblings
(whose configuration sets intersect, but fail to nest) will be found useful as well. This extended form
of structured correspondence is related to the notion of mapping (Moore and Newell, 1973] and to
mechanisms proposed as components of "frame systems” (Minsky, 1975].

2.3 Description and Matching of Structured Entities

For pedagogical reasons, we have chosen to introduce the notions of structural and abstractive levels
separately, emphasizing the distinction between the choice of a level of derail and that of a level of
generality from which to view a given structured system. In discussing the construction a
conceptually useful description of a structured matchable entity, though, or the matching of such
entities according to criterial systems which may themseives be regarded as highly structured, it will
be useful to consider certain interesting relationships between the chasen level of abstraction and the
accessible level of structural detail. It is the notion of structural constraint which links the roles of
abstraction and detail in the conceptual matching task.

Within a single structural level, we have noted that both general and specific characteristics may be
salient to a given matching task. The more restrictive constraints associated with relatively
specialized interpretive frameworks, though, may have a distinctive role in understanding: the
provision of a conceptual bridge between structural levels. Notice, for example, that while certain
features of an automobile firm are associated with all organizations, most of these features are
expressed at a fairly high level of structural detail. There is very little which can be said at the
abstractive level common to all organizations which specifies the detailed activities of the workers,
the machinery they are likely to use, the products they produce, etc. In the context of that abstractive
level corresponding to automobile firms in particular, though, information as detailed as the physical
activities of test drivers and the properties of welding arcs may become meaningful.

In general, the range of structural levels at which observation is meaningful deepens when a more
restrictive set of constraints is known to characterize the entity being observed. The knowledge that
the corporation in question is more specifically an automabile firm allows meaningful elaboration at
the level of the particular models of cars produced. Further specification to a particular
manufacturer introduces a framework for examination of even a detailed mechanical subassembly
characteristic of that make of automobile. It should be noted that the imposition of restrictive
constraints highlights a very select set of low-level details which become meaningful within a
higher-level framework. The abstractive refinement of a high-level framework thus allows the
conceptual integr;ation of significant low-level details. The high-level organizing framework can be
seen as a sort of cognitive anchor” though which a number of lower-level features may be accessed,
each of which may in turn anchor a collection of still lower-level details.

Our_ conceptual matching task, like most interesting cognitive tasks, will
E:I?ns:derat;on of characteristics observable from a variety of abstractive and st
di??eriﬁmﬁtiizfaﬁsimed in Se;non I of an engineer with sales experience illustraces the salience of
entities under ccr:l_r\i;eri?::;ﬁec'?:es dEPendmg S sl o s particufar sel b
- T'he level of structural detajl at Which such iri ke
. 3 pairing must be justifjeq

is also dependent on th
available Fos:fion;, ;ym

"hile i m’

in general require
ructural viewpoints.

integration of general and specialized information f{rom multiple structural levels into an
interconnected “"conceptual web” of structural elements and relationships. This hypothetical web is
unified by structured connections among the various abstractive views corresponding !0 a given
structural level, on the one hand, and on the other by connections between structural levels which are
tied largely to the more specific abstractive viewpoints within each structural level. Thus, the
relationship between abstractive and struciural levels of interpretation is at the core of our model of
conceptual matching.

At the beginning of a description-building subtask, only a very general set of high-level siructural
characteristics would typically be assumed by the machine to be consistent with the entity o be
described. In particular, the system can assume the applicability of an abstract conceptual framework
commaon o the description of any element which might be expected as a member of the matchable
set. The expectations embodied in this framework would be used by the machine 0 guide the
interrogative process toward details useful in verifying and elaborating the general set of
assumptions. While the choice of queries in our description-building paradigm is determined by the
machine, though, the acceptance of independent, low-level information, possibly not of immediate
use in specializing the high-level framework but ultimartely essential to the construction of an
integrated description, is one of the properties which distinguishes our conceptual system from a
simpie categorical descriptive scheme. In a system accepting descriptive input in a relatively free
format, as constrained by our general paradigm, (e.g, user-provided phrases), low-level derails might
include unexpected words or word combinations. In a more tightly machine-guided mode of
interaction, responses elicited from the user in the course of a directed inquiry could later be urilized
for different with much the same effect as in the case where these details were actively provided by
the user in a freer description mode.

In our model, the detection of particular elements and relationships in the user responses, whether or
not they have already been integrated into the unifying top-level structure, may serve as clues to the
presence of a set of constraints characterizing some conceptual framework. If the role of these
elements within the top-level framework is already clear, characteristic occurrences, co-occurrences
and interrelationships of such elements may indicate the applicability of a more specific unifying
framework. In the case of as-yet-unintegrated information, the recognition of characreristic
relationships may suggest a basis for organizing these details within either the top-level structure or
a framework of intermediate structural level. Details from the lower structural levels, then, may serve
to suggest new higher-level organizing structures or to specialize structures already involved in the
emerging description. These new and specialized structural frameworks, of course, may then be
employed to guide the elicitation of further details from the user, lending an iterative quality to the
process of description-building (see Norman and Bobrow [1975]). Description-building thus involves
an interaction between the elicitation and integration of low-level details under the guidance of
high-level expectation frameworks and the postulation of new or specialized high-level frameworks
on the basis of observed low-level characteristics. These functions are the basis for the processes of
elaboration and specialization, which are central to the system proposed in Seciion 3. Iceally, the
ongoing collection of relevant details and the progressive tightening of perceived constraints at each
successively lower structural level (possibly in more than one abstractive dimension) should allow the
construction of a unified inter-level conceptual description embodying a great deal of information of
relevant to anticipated matching problems.

The maiching subtask itself may also be viewed as an iterative process involving “top-down”
guidance toward the elaborative details and the "bottom-up” postulation and specialization of
unifying frameworks. Initially, the only organizing structure available to the system s a very
abstract, high-level framework expressive of the match criteria and any general expectations as to
the form of the matchable entities. The low-level details available to the maicning process are
derived from the distinctive characteristics of the particular matchable entities. As in the case of
description-building, the goal of the matching process is the integration of these low-level details

within an interconnected network of systemic struciures, anchored at the highest siructural level by
one or more specialized versions of the original top-level framework.

In the case of the matching subtask, though, the top-level framework must be specialized in such
abstractive dimensions as will indicate, in conjunciion with its hierarchically interconnected web of
details, the appropriateness of the match, along with a justification for or argument agains: the
candidate pairing. In the domain of information retrieval, for example, the matching of a selective
description representing "books dealing with kidnaping” with a selectable cescription respresenting
"a nonfiction book by Steven Weed" might specialize a general document-matching framework to
yield an integrated network which justified the pairing as a presumed example of a book written
about a newsworthy acquaintence of the author, whose fame was in this case based on her
abduction. The processes of specialization and elaboration are thus central to the matching subtask
as well as to the construction of the descriptions which are matched. In the nex: section, we wiil
outline a particular proposed system for conceptual macching which is based on these praocesses.

Section 3
A System for Conceptual Matching

In this section, we will describe the organization and central mechanisms of a proposed system for
conceptual matching. Our system is based on a uniform schematic formalism, intreduced in
Subsection 3.1, for representing both ob jects and processes, including those processes from which the
procedural part of the system itself is built. Our schematic system base is closely related to the
proposed elements of "frame systems” [Minsky, 1975]), and in particular o the language KRL
(Bobrow and Winograd, 1976], but embodies certain design decisions which reflect substantive
additional assumptions regarding the important requirements of the conceptual matching task.
These distinguishing aspects of the system base are central to the {acilitation of flexible mechanisms
for conceptual integration, on which the description-building and matching mechanisms are based.
In Subsection 3.2, the structure and function of these mechanisms is exemplified in the context of a
description-building problem from the job placement domain.

3.1 The System Base

The automation of a specific conceptual matching task within our proposed sysiem {ramework
involves the incremental construction by the system architect of modular conceptual schemata
representing various objects and processes related to the matchable entities, match criteria, and
particular task domain, using the elements of a uniform, domain-independent "system base”. The
implementor of a system for the placement of computer programmers, for example, might compose a
set of schemata representing such items as languages, machines, and perhaps special qualification
tests relevant to certain kinds of programming positions. The system base includes a
description-based schematic language for the representation of structural and absiractive
relationships and a procedural framework for their manipulation. Consistent with our primary
intent, this paper will not describe a detailed and comprehensive system base rich enough in
primitive operations and data objects to constitute a powerful tool in the hands of an actual
implementor. Instead, we will present a parsimonious outline of the essential features of a system
base, including a small set of basic declarative forms and a general outline of the proposed
pracedural organization, which should be adequate for describing the significant aspects of our
proposed conceptual matching system.

The declarative component of this hypothetical system base is built from forms which may be
regarded as simplified versions of KRL data types, and which are described here using some of the
terminclogy and an adapted version of the syntax of a subset of KRL-8 [Bobrow and Winograd,
1976). The basic declarative form in our "knowledge base” is a frame-like (Minsky, 19758] structure
which we call a schema. (Similar structures have been proposed by Bobrow [1973), Bobrow and
Norman [1975], Schank [19753], and Shaw (1975, 1875(a)l) A schema may be regarded as the
representation of a structured system (an ob ject, process, relationship, absiract concept, etc.) regarded
at a given siruciural level and from a given abstractive viewpoint, and corresponds generally o a
KRL unit whose "descriptive” and "meta-descriptive” elements are not "syniac:ically” distinguished.
(This distinction, while it raises several interesting questions, will not be the discussed in the current
paper.)

Formally, a schema is a defined as a collection of named slofs. In each schema, one slot,
distinguished with the name SELF, serves to describe the entity reoresented by the schema, possibly
from more than one viewpoint. The remaining slots, each named uniquely within the given schema,
describe parrigl resirictions associated with cAaracteristic elements which emerge when the referent

entity is viewed at the given structural and abstractive level. Zach slot, including the SELF slot, is a
named description expressing certain partial constraints, which may have the form of relational
constraints involving other slots. Slots may in general be made up of more than one descriptor, each
characterizing its potential filler in one of three different ways.

The first form, called an abstractive descriptor, characterizes its referent as a member of some more
general set of structured configurations, optionally imposing supplementary struciural consiraints on
the characteristic elements of this absiractive parent. The second form is called a component
descriptor, and describes its referent as a characteristic element of some other entity, viewed from a
particular structural and abstractive viewpoint. The final form of descriptor is a direct reference to
some particular structured system from an explicitly known viewpoint. These descriptive forms
correspond to the KRL-8 perspective, specification and direct pointer, respectively, and have been
renamed only to suggest their abstractive and structural roles within our model and (o avoid a
misleading possible interpretation of the term “specification”. The syntax of the three descriptor
types, based on those of the corresponding descriptive forms in KRL-3, is specified in Figure 3.1 as
part of a syntactic definition of the simple declarative base which we will use in our exposition.
Lower case is used to indicate syntactic classes, while upper case words are elements of the
descriptive language itseif. Arrows, vertical bars, square brackets and asterisks are meta-linguistic
symbols indicating class definition, disjunctive choice and repetition of zero or more instances, while
parentheses, braces, angle brackets and equal signs are actual linguistic symbols.

We have indicated that schemata may be used to describe the structure of processes along with such
"static” structured entities as ob jects, relations and abstract concepts. While such schemata may be
quite useful in representing "external” pracesses, such as the mounting of an automobile tire, one of
their most important applications is in describing the procedural component of the system itseif.
Each of the numerous procedures from which our proposed system is built is in fact represented by
a schematic description, and can be manipulated by the system as a data object. The content of these
"internal” process descriptions is closely related to the executive mechanisms of the sysiem, and will
thus be discussed after our proposed functional system organization has been outlined.

The operation of our system is centered around an active memory, which at any given time holds
pointers to a limited number of tokens. (The capacity of this active memory is a fixed parameter of
the system, but may be envisioned as a small constant, perhaps on the order of ten.) The xnowledge
base of our system consists of an archival memory containing an unlimited number of schemara,
which is distinguished from the active memaory principally by the more resiricted methods available
for accessing and manipulating its contents. A token represents a "conceptual instance” of cne or
more template schemata in the archival memory, and may regarded as a schema which has no slots
of its own, deriving its distinctive characteristics instead from the further restriction of slots
inherited from its various templates and the specification of its interrelationships with other tokens.
Specifically, a token may be described as a degenerate case of the schematic form introcuced above
whose properties are manifested entirely in its SELF description. Such a description may include
abstraciive descriptors characterizing the token as an instance of various templates (although in a
somewhat different sense than in the case of an archival schema), possibly constrained by additicnal
slot restrictions, along with component descriptors describing the schema as a slot-filler from some
other token. A syntactic description of the token data type is included in Figure 3.1.

Active memory is most significant as the site of the conceptual integration process. Briefly, this
process involves the specialization of certain tokens to the point where their descriptors include
direct references to other :okens, thus "linking” conceptual instances of high-level and low-level
schemata. In the following subsection. we will examine the application of this process to those aspects
of the conceptual matching task introduced in Subsection 2.3. An imgortant inzerne! application of
this process which will be discussed shortly involves the iniegration in aciive memory of process
tokens (those having procedural schemata as their temolates) which represent executabie system

schema -
schema-name
<SELF description>

[<siot-name description>]’

token =
token-name descriptor®

description -
descriptor

| { [descriptor]® }

descriptor =
(A schema-name WITH

(slot-name = description]’)
| (THE sliot-name FROM description YIEWED-AS schema-nanme)
| schema-name
slot-name +» identifier

schemg-name -» identifier

Figure 3.1
Syntax of the Declarative System Bazse

procedures. An examination of the latter application will illustrate one of the distinctive aspects of
our proposed system design: a close relationship between the mechanisms for "focusing attention”
and for scheduling the execution of multiple execuzable tokens.

As we have suggested, the ultimate distinciion between archival and aciive memory is based on the
different mechanisms by which their contents may be accessed. Specifically, independent access to
archived schemata is restricted to direct reference, requiring the availability of an actual pointer o
the schema being referenced, or equivalently, of a globally unique schema name which allows its
retrieval without searching any part of the archival memory. Tokens, while never resident in the
archival memory, may be accessed by description whenever they are either resident in active memory
or linked in a describabie relationship to some other active token. Tokens accessible in either way
are termed descriptively accessible through active memory, as are the templates of descriptively
accessible tokens and any schemata which are descriptively linked to these templates. Certain simple
active memory references (those involving the retrieval of any active (oken having some specified
template, for exampie, or filling a given slot in an active token having some specified template) will
involve the straightforward execution of system primitives. As we shall see, though, access to
descriptively accessible tokens and schemata may at the other extreme involve the execution of an
integrated routine built from highly specialized procedural tokens which were themselves assembled
in active memory. In either case, descriptive access capabilities provide for the retrieval of tokens on
the basis of partial specifications which are interpreted in an active context expressing the current
“attentive focus” of the system, and for selective access to the templates and other archival schemata
on which the characteristics of these tokens are based.

Al actual activity within our system is directly or indirectly initiated by an executive capable of
interpreting a restricted set of system primitives. Code built from these primitives is associated with a
subset of the internal process schemata stored in archival memory, and may reference certain slots of
these schemata which serve the functions of formal parameters, including procedural parameters
which may be bound to appropriate process tokens. A token which has a code-bearing schema as
one of its templates is distinguished as executable, and may, through the imposition of supplementary
slot restrictions on the code-bearing template, be used to bind these parameter slots for execution.
Following the possible binding of some (though not necessarily all) of the parameter slots, one of
several mechanisms, described shortly, may cause the execution of a descriptively accassible
executable token using the code of a specified one of its templates and the (often incomplete) set of
bindings. While it will not be possible in the current paper to detail a full set of system primitives
by which executable tokens ulimately manifest their effects, it would be well to consider at this point
the basic categories of executable primitives necessary (0o support the sort of sysiem we are
describing.

Our proposed system, like most typed symbolic programming languages, includes type-specific
primitives for the construction, access, and comparison of its data structures. Schematic access
primitives include an operation which returns an archived schema speciried by a direct pointer or
unique name. The system also includes primitives for returning and successively selecting ¢!/ tokens
currently resident in active memory. As suggested earlier, though, most contex:tual access processes of
interest involve more complex routines built from the system primiiives, often through the
specialization of high-level tokens representing conceptual instances of general access frameworks
and their elaboration using lower-level procedural tokens. Access primitives which return the
description associated with a particular named slot of some given schema are aiso incluced in the
system base. Other primitives are provided for enumerating the constituent descriptors of a given
description. Type-specific comparison primitives allow the executive to perform simple equality
comparisons between basic data elements of identical type. As in the case of access, though, the mos:t
"visible" comparison processes typically involve correspondences between sysiemic siructures, which
may introduce the full complexity of a subsidiary conceptual matching task. Finally, the system
inciudes primitives for consiructing the two types of descriptors, for constructing and amplifying

named descriptions using these descriptors, and for assembling these descriptions to form tokens and
schemata.

In addition to these type-specific mechanisms for manipulating elements of the ceclaralive base, the
systern provides a set of basic control primitives, such as might be found in a typical LISP system,
along with standard operations for inputr and ouzpus. Two additional ciasses of {unc:ions, particular
to the special characteristics of our system, are included as primitives. First, the system provides
primitives for the activation and deactivation of (procedural and non-procedural) tokens. Second, an
execution primitive, applicable only to an executable token, is included to allow interprezation of the
direct code associated with one or its code-bearing templates. This primitive specifies not only a
particular descriptively accessible token, but a specific member of the set of code-bearing templates
whose code is to be executed, thus permitting the association of more than one routine with the same
executable token. As indicated earlier, the evaluation of code associated with a template of an
executable token may be initiated in several ways. One method involves the issuance of an explicit
command by the user, typically at the point of task initiation. Most of the actual processing in our
propased system, though, is generally carried out by tokens whose execution has been initiated
through the evaluation of execution primitives from within otAer currently executing tokens.

Unlike the execution of an ordinary LISP program, our system supports the (conceptually, if nct
physically) concurrent execution of more than one token under a possibly heterarchical (Minsky,
1973] control regime. In the case where one executing token activates, and subsequently initiates
execution of, a second executable token, the system base imposes no fixed protocol for the return of
either descriptive “results”, residence in active memory, or executive control to the calling token.
Applications such as the common use of a token which is being jointly specialized and elaborated by
two co-routines, or the interpolation of special error-handling routines to handle exceptional
conditions, are supported by this non-hierarchical control discipline.

Among the user-initiated executable tokens is generally a high-level “supervisor” (distinct from the
system executive, which is capabie of evaluating only "directly executable” code built from system
primitives) which oversees this execution process on the basis of information associated with various
executable and non-executable tokens currently accessible by description. Among the typical
functions of such a supervisor are the allocation of processing and aciive memory resources (using
the execution, activation, and deallocation primitives) and the activation of procedural and
non-procedural tokens relevant to the solution of such processing irregularities as looping, deadlocks
and recognizable system "bugs”. Structural information relevant to such a supervisory process may
be associated with the executable tokens themseives, with their, code-bearing and non-code-bearing
templates, and with various procedural and non-procedural tokens with which they are descriptively
linked. The user-initiated supervisor (or, as we shall see, any other independent or subsidiary
executable token) may thus serve as a sort of meta-processor, capable of examining the structural and
abstractive properties of executable, and even executing, processes and altering the current state of
the system accordingly. Such alterations may be effecced by modifying either the sec of tokens which
are descriptively accessible (the active tokens, along with those tokens which are descriptively linked
to some aciive token), the "agenda” of active tokens which are currently executing or awaiting
execution, or the contents of the descriptively accessible tokens themselves.

With the exception of the special relationship between a user-initiated supervisor and the very
general ciass of tokens whose execution it may initiate, we have thus far spoken of the executable
component of the system base as if it were a collection of indivisable routines associated with the
templates of executable tokens. As we have suggesied, though, the schematic part of these templazes
(by contrast with their associated directly executable code) may in general include slots which
describe other internal processes. One (although not the only) important function of this sort of
procedural slot is the decomposition of a process into a number of constituent suborocasses which,
unlike an ordinary subroutine, may be identified by description rather than direct reference. Other

elements of the invocation of a constituent procedure, such as the identity of the "parametcrs” with
which the process is to be called, may also be partially rather than totally constrained in the process
tempiate.

This capability allows the construction of routines composed of a number of descriptively linked
procedures, which may consequently be quite general, calling (or being called by) a number of
procedures which, while related, are not structurally isomorphic. The use of descriptive process
linkage is closely related to the notion of "loosely coupled computation” (Winograd, semipubiic
communication). The exact procedure and calling convention employed for some particular
descriptive linkage may thus be determined contextually, based on the structural properiies of those
process tokens which are currently descriptively accessible. This mechanism also {acilitates a
“"graceful degradation” of the specificity of descriptive procedural linkages, allowing the execution of
highly appropriate specialized tokens whenever such tokens are descriptively accessible while still
permitting the activation and execution of more generally applicable processes when no specialized
token is descriptively accessible. The access characteristics of active memory thus permit the
employment of flexible calling and binding criteria suggestive of the use of “preference semantics”
(Wilks, 1973]) in natural language comprehension.

It should also be noted that the independence of the activation and execution processes, along with
the association of process tokens embodying descriptions at more than one level of generality with all
executable code, allows the use of executable tokens and their descriptively accessible relatives for
such "meta-procedural” functions as problem decomposition, the planning of cognitive strategies, and
reasoning about what is known. Internal processes, like objects, can be represented at various
abstractive levels, allowing the utilization of schemata which describe different procedural constructs
at several levels of generality. Specific execution sequences, for example, may be relaxed in a
schematic description to describe partial constraints on the execution order of varicus process
modules. As indicated earlier, the task of specializing and elaborating procedural tokens to form
integrated routines applicable to particular situations itself involves problems which may be
interpreted within the conceptual matching framework. The mechanisms described in the following
subsection are thus applicable not only to the external application task, but to the internal
subproblems of a conceptual matching sysiem as well.

3.2 Mechanisms for Conceptual Integration

As we saw in Section 2, both the description-building and matching components of a conceptual
matching task must in general effect the integration of "high-level” guiding conceptual frameworks
and “low-level” user-provided details through the discovery of structural and absiractive links. In
Subsection 2.3, a sketch of the functional dynamics of conceptual integration was presented which
involved the interaction of a “top-down” process for specializing and elaborating guiding
frameworks, and a "bottom-up” process for generalizing and interconnecting observed details. This
section will illustrate certain important mechanisms invoived in the proposed implementation of
these two processes within our proposed system. To exemplily these mechanisms, we will outline of a
typical sequence of steps by which an integrated description of a matchable entity might be
constructed, using several sample schemata from the job placement domain, outlined in Figure 3.2.
Ass indicated earlier, similar processes would be invoived in a typical pairing task.

In the context of the job placement task, the Worker schema which is (partially) sketched in Figure
3.2, describing certain expected elements associated with professions of any sor:, might typically be
available to guide the description of the occupation of a job-seeking user. The matching session
might thus begin with the activation of a Job-Seeker-T token having Worker as its sole templace:

Job-Seeker-T
{(a Worker)

Worker
<SELF (a Personl)>
<Equipment (a HMachinel>
<Qutput { (3 Good-or-Servicel>
(the Product from
(the Current-Employer from Worker)
viewed-as Manufacturer) } >
<Current-Employer (a Company)>

Profaessional-Progranmer
<SELF { (a Person)
{a Worker) 1}
<Principal-Language (a Programming-Language)>
<Last-System-]Impiemented
{a System uith
Implementor = (the SELF from Professional-Programmer) } >

System
<SELF (a Thing)>
<Implementor (g Person)>
<Data-Objects (a Program-Constructl>
<Application (an Application)>
<User (a8 Possibly-Fictitious-Personl>

Business-Systenm
<SELF { (a Thing)
{a System Wwith Application = (a Business-Application)) } >

Internal-Business-Systam
<SELF { (a System uith
User = (the Employer

from (the Implementor
from Internal-Business-System
viesed-as System)

viewad-as Worker))

(a Business-System) } >

Computer
<SELF { (a Thing)
(a Machine) 1 >

Program
<SELF { (a Thing)
{the Output
from (a Professional-Programmer)
viewed-as Worker) } >

coBOL
<SELF (a Programming-Language)>

Inventory-Control-Application
<SELF (an Application)>
<Inventory-Items { (a Things)
(a Widgets) | >

Figure 3.2
Selected Example Schemata

Manufacturer
<SELF (a Companyl>
<Product (a Good—or—Service)>

J-C-Whitney
<SELF { (a Company)
{a Manufacturer With
Product = f(an Auto-Parts))} 1 >

Auto-Parts
<SELF { (a Thing)
(a Widgets) 1 >

Figure 3.2, continued
Selected Example Schemata

(By convention, tokens will be distinguished with a "-T" sufiix appended to their names.) Upon
initiating the execution of an appropriate domain-specific supervisor, a sequence of initial queries
would attempt to fill the slots of the template of this token. Let us assume that the system first tries
to determine the principal tool used by the job-seeker in his profession, t0 which the user answers
"computer” (perhaps as a single-word response), allowing the elaboration of Job-Seeker-T by
constraining the Equipment sloc from its Worker template. In its next query, the sysiem might
inquire about the characteristic output associaied with job-seeker's occupation, receiving :he word
"program” in reply and elaborating the Qutput slot accordingly. In a similar manner, the system
might find that the job-seeker is currently employed by J. C. Whitney, Inc., filling another siot
of the Worker schema. Additionally, though, the domain-specific supervisor might judge it useful to
make any information associated with the employer more immediately accessible to descriptive access
(by various subsidiary processes) through the activation of a token representing a conceptual
instance of the firm. After making explicit several characieristics of this newly activated :oken,
active memory would have the following form:
Job-Seeker-T
(a Worker uWith
Equipment = (a Computer)
OQutput = (a Praogram)
Current-Employer = { J-C-Whitney-T
(a J-C-Uhitney) |}
J-C-Uhitney-T
{a J-C-Uhitney-T)
(a Manufacturer With
Product = (An Auto-Parts})
{(the Current-Employer from Job-Seekar-T
viewed-as Worker)
It should be noted that our illustrations of the contents of active memory include only a sample of
those tokens which would typically be activated. In particular, we have not attempted to represent
the executable tokens which would in fact be invelved in the description-building sequence which we
are outlining. It is also worth noting the bi-directional linkage between the two tokens which are
currently active in the above illustration, although such two-way connections will not always be
observed.

The particular constraints now imposed -on the Equipment and Output slots suggest a
specialization of the general Worker framework: the Professional-Programmer. Taken
separately, these elaborating details might not constitute strong evidence that the job-seeker was in
fact a programmer. A librarian might use the same tool, for example, but to produce an information
service, and not a program. A data processing manager, on the other hand, might be said to produce
programs as output, but without actually using a computer. In our example, though, the co-cccurrence
of these slot fillers leads to the evocation of a more specific high-level framework. The system thus
adds a second, more specialized desriptor to the Job-Seeker-T token. This
Professionai-Programmer descriptor is now elaborated on the basis of responses to questions
suggested by its emergent elements. The Principal-Language slot is filled in much :he same
manner as the more general Worker slots. In the case of Last-System-Implemented, additional
structural detail is added -- a direct reference 10 Auto-Part-0Objects-T, a newly constructed token
describing certain constituent elements of the system. Further, our example assumes that the
supervisor has chosen to activate and elaborate this token, yielding the following aciive memory
configuration:
Job-Seeker-T
(3 Worker with

Equipment = (a Computer)

Qutput = (a3 Program)

Current-Employer =

{ J-C-Whitney-T
{a J-C-Uhitney) })
{a Professional-Prograamer with

Principal-Languags = {a C0SQL)
Last-System-Implemented =
{(a System uith
Implementor = Job-Seeker-T
Data-Objects = Auto-Part-Objects-T)})
J-C-UWhitney-T
(a J-C-Whitney)
{a Nanufacturer with
Product = (An Auto-Parts))
{(the Current-Employer from Job-Seeker-T
viewed-as Worker)
Auto-Part-Objects-T
{an Auto-Parts)
(a widgets)
{the Data-Objects
from (the Last-System-Implemented from
Job-Seeker-T
viewed-as Professional-Programmer)
viewed-as System)
Although the J-C-Whitney-T and Auto-Part-Objects-T tokens are constructed and activated
in the course of a directed inquiry sequence, they are not immediately useful in specializing the
top-level framework, and are introduced instead to facilitate the "bottom-up” component of the
description-building task. It is the descriptively "shallow” accessibility of cerain relevant information
which now permits our hypothetical system to detect a potentially useful conceptual connection
between selected elements associated with the currently active tokens. Specifically, the system notices
at this point that the token which was activated upon its elicitation as the Data-Objects of our
programmer's last completed system is, independently, descriptively accessible as the product
manufactured by the same programmer's employer. This observation leads to the goal of
interconnecting the Auto-Part-Objects-T and J-C-Whitney-T tokens within a higher-level
token which express the their relationship in a form likely to be useful to the conceptual integration
task. Such a relationship would be established, for example, if the last completed system were found
to be a structural engineering program used to analyze the effects of stresses on the manufaciurer’s
products. This explanation, though, might be judged unlikely by the system on the basis of a
previously elicited "derail” -- scientific applications of this sort are not typically the domain of a
COBOL programmer. Direct user queries might also rule out as well the possibility of a market
analysis program which reported sales of different auto parts in various geographical areas,
revealing instead an inventory control application inveolving the maintenance of appropriate stocks
of the various products sold by the firm. The system is thus able to consiruct and ac:ivate the token
Inventory-Control-Application-T, which provides a higher-level conneciion between the
program application area and the product manufactured by the firm which employed its
implementor (which are each viewed in this coniext as low-level details). At this point, active
memory may be illustrated with the following “"snapshot™
Job-Seeker-T
{a Worker with
Equipment = (3 Computer)
Output = (a Program)
Current-Employer =
{ J-C-Whitney-T
{a J-C-Whitney) 1)
(3 Professional-Programmer with
Principal-Language = (a CCBOL)
Last-System-Implemented =
{(a System wWith
Implementor = Job-seeker-T
Data-0Objects = Auto-Part-Objects-T)
Application =
{ {(an Application]
Inventory-Control-Application-T 1))

Inventory-Control-Application-T
{(an Application with
User = J-C-Whitney-T)
{an Inventory-Control-Application with
Inventory-Items =
(the Product
from J-C-Whitney-T
viewed-as Manufacturer))

The introduction of this connecting token also initiates an atiempt on the part of the system to better
characterize the programmer's funciion in his current firm by describing the business purpcse for
which the software in question was developed by his employer. To this end, the
Inventory-Control-Application-T token is generalized, permitting the addition of a
Business-Application descriptor within the Application slot of
Last-System-Impiemented. A computer system designed for a business application is in turr
recognized as a particular kind of system described by the Business-System schema, which is
added as a second template of the Last-System-Implemented token. Procedures {actored with
this more general token are then executed to find the company for which the system was
implemented, which is assumed (possibly subject to user confirmation) to be the filler of the user
slot associated with the more general descriptor based on the System schema. The subsequent
description of this user, J-C-Whi tney, as the current employer of the system's implementor, leads to
the more specific description of Last-System-Implemented as an Internal-Business-Systen,
a category which we will assume to be particularly salient to the current conceptual matching task.
At this point, the Inventory-Control-Application-T token, having already served its purpose,
may be deactivated, leaving the following active memory configuration:
Job-seeker-T
(a Worker with
Equipment = (a Computer)
Qutput = (a Progranm)
Current-Employer =
{ J-C-Whitney-T
(a J-C~Hhitney) })
{a Professiona!-Progranmer dith
Principal-Language = (a CCOBOL)
Last-System-Implemented =
{(a System wWith
Implementor = Job-seeker-T
User = { J-C-UWhitney-T
(the Currant-Employer
from Job-Seeker-T
vieHed-as Worker) }
Data-0Objects = Auto-Part-Objects-T)
Application =
{ (an Application)
{a Business-Application)
Inventary-Control!-Application-T })
(s Business-System)
(an Internal-Business-System)
While space does not permit us to trace the further elaboration and specialization of this description,
it is not difficult to imagine an In-House-Business-Systems-Programmer schema which might
be introduced at this point as a more specific template of the top-level Job-Seeker-T token, and
whose emergent features could be used in building a very derailed description of {urther
characteristics salient to the matching applicauon.

References

Bobrow, D. G., "Dimensions of Representation’, in Representation and Understanding: Studies in
Cognitive Science, San Francisco, Academic Press, 1975, .

Bobrow, D. G, and Norman, D. A, "Some principles of memory schemata”, in Bobrow and Collins
(eds.), Representation and Understanding: Studies in Cognitive Science, San Francisco, Academic
Press, 1975.

Bobrow, D. G, and Winograd, T., "An Overview of KRL, a Knowledge Representation Language”,
Stanford Artificial Intelligence Laboratory Memo AIM-293, 1975.

Minsky, M. L., "A framework for representing knowledge”, in Winston (ed.), The Psycaology of
Computer Vision, New York, McGraw-Hill, [975.

Moore, J., and Newell, A, "How can MERLIN Understand?”, in Gregg (ed.), Knowledge and A
Cognition, Baltimore, Lawrence Eribaum Associates, 1973.

Norman, D. A.. and Bobrow, D. G, "On data-limited and resource-limited processes”, Cognitive
Psychology, 1975, 7, 44-64.

Pattee, (ed.) Hierarchy Theory, 197<n>

Schank, R. C., “The structure of episodes in memory”, in Bobrow and Collins (eds.), Representation
and Understanding: Studies in Cognitive Science, San Francisco, Academic Press, 1975.

Schank, R. C,, and the Yale Al Project, "Sam ~ A story understander”, Yale University Computer
Science Research Report =43, August, 1975 (a) Simon, H. A., Science of the Artificial, 19<nn>

Shaw, D. E, "A Computational Modei Of Mass Media Unders:anding", Proceedings of the
Conference on Structural Learning, Philadelphia, 1975,

Shaw, D. E., "A Strategy for Making Computers Understand”, Proceedings of the IEEE Conference
on Systems, Man and Cybernetics, San Francisco, 1975(a).

Wilks, Yorick, "Preference Semantics”, Stanford Artificial Intelligence Laboratory Memo AIM-2C8,
July 1973

Winograd, T., "Frames and the declarative-procedural controversy”, in Bobrow and Coilins (eds.),
Representation and Understanding: Studies in Cognitive Science, San Francisco, Acacemic Press,
1975.

