
On decision trees, influences, and learning monotone decision

trees

Ryan O’Donnell∗

School of Mathematics

Institute for Advanced Study

Princeton, NJ

odonnell@ias.edu

Rocco Servedio

Dept. of Computer Science

Columbia University

New York, NY

rocco@cs.columbia.edu

May 26, 2004

Abstract

In this note we prove that a monotone boolean function computable by a decision
tree of size s has average sensitivity at most

√

log
2
s. As a consequence we show that

monotone functions are learnable to constant accuracy under the uniform distribution in
time polynomial in their decision tree size.

1 Decision trees

Let f : {−1, 1}n → {−1, 1} be a boolean function.

Fourier notions: Throughout this paper we view {−1, 1}n as a probability space under the
uniform distribution. Recall f ’s Fourier expansion,

f(x) =
∑

S⊆[n]

f̂(S)χS(x),

where χS(x) =
∏

i∈S xi and f̂(S) = Ex[f(x)χS(x)]. We also recall the notions of influence

and average sensitivity: The influence of i on f is Inf i(f) = Prx[f(x) 6= f(x(i))], where x(i)

denotes x with the ith bit flipped; if f is a monotone function then Inf i(f) = f̂({i}). We shall
henceforth write f̂(i) in place of f̂({i}). The average sensitivity of f is I(f) =

∑n
i=1 Infi(f).

Decision trees: Suppose we have a decision tree computing f : {−1, 1}n → {−1, 1}; we will
always assume (without loss of generality) that no variable appears more than once on any
path of the tree. Note that picking a uniformly random input x ∈ {−1, 1}n is equivalent to the
following two-step procedure: First, pick a uniformly random path P in the tree by starting
at the root and assigning to the variables encountered uniformly at random until a leaf is

∗This material is based upon work supported by the National Science Foundation under agreement No.

CCR-0324906. Any opinions, findings and conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the National Science Foundation.

1

reached. Second, assign uniformly at random to those variables as yet unset. Corresponding
to the first step of this process we define a collection of random variables P1, . . . , Pn as follows:

Pi =







1 if the variable i is encountered on the random path and xi is chosen to be 1,
−1 if the variable i is encountered on the random path and xi is chosen to be −1,

0 if the variable i is not encountered on the random path.

For each i we have E[Pi] = 0; a slight amount of reflection reveals that also E[Pi | Pj] = 0 for
all i 6= j. Hence while Pi and Pj are not independent we do have E[PiPj] = 0 for all i 6= j.
We write ΣP for

∑n
i=1 Pi, the sum of the bit assignments made along the random path P ,

and we also write len(P) for the length of the random path P ; another way of expressing
len(P) is

∑n
i=1(Pi)

2.
Consider the two-step procedure for choosing x ∈ {−1, 1}n at random: first choose P at

random, assigning randomly to the variables on the path; then choose the remaining unset
variables uniformly at random. Since the value of f(x) is fixed after the first step in the
procedure, we may denote this value by f(P).

Proposition 1 Let f : {−1, 1}n → {−1, 1} be computed by a decision tree with paths P .
Then

n
∑

i=1
f̂(i) = E

P
[f(P) · ΣP].

Proof:

n
∑

i=1
f̂(i) =

n
∑

i=1
E

x∈{−1,1}n

[f(x)xi]

= E
x∈{−1,1}n

[

f(x)
n
∑

i=1
xi

]

= E
P ; xj : Pj=0

[

f(P)

(

∑

i: Pi 6=0

xi +
∑

j: Pj=0
xj

)]

= E
P

[

f(P)
(

ΣP + E
xj : Pj=0

[

∑

j: Pj=0

xj

])]

= E
P

[f(P) · ΣP].

The final equality holds since E[xj |Pj = 0] = 0 for each j. 2

Theorem 1 Let f : {−1, 1}n → {−1, 1}.

1. If f is computed by a decision tree of size1 s then
∑n

i=1 f̂(i) ≤
√

log2 s.

2. If f is computed by a decision tree of depth d then
∑n

i=1 f̂(i) ≤ I(Majd) ∼
√

2
π

√
d ≤

√
d.

If f is monotone we can replace
∑n

i=1 f̂(i) by I(f).

Proof: Since f is ±1-valued, from the Proposition it is clear that

n
∑

i=1
f̂(i) ≤ E

P
[|ΣP |]

1Number of leaves.

2

with equality iff f computes the majority of the bits along each of its decision tree paths —
i.e., sgn(ΣP) (f may output anything if the bits split evenly.)

In case (1), we proceed as follows:

E
P

[|ΣP |] ≤
√

E
P

[|ΣP |2] =

√

E
P

[n
∑

i,j=1
PiPj

]

=
√

E
P

[len(P)] +
∑

i6=j

E
P

[PiPj] =
√

E
P

[len(P)].

(At this point we have proved the upper bound of
√

d in case (2).) It remains to show that
EP [len(P)] ≤ log2 s; we use induction on s. The result is obvious when s = 2; for larger s,
suppose we have a size-s tree in which the left subtree of the root has size s1 and the right
subtree of the root has size s2, with s = s1 + s2. The expected length of a random path in
such a tree is 1 plus half the expected length in the left subtree plus half the expected length
in the right subtree. By induction this is at most 1 + 1

2 log2 s1 + 1
2 log2 s2 = log2(2

√
s1s2) ≤

log2(s1 + s2) = log2 s where we have used the AM-GM inequality.
In case (2), we instead note in upper-bounding EP [|ΣP |] it doesn’t hurt to assume that

the tree is a full depth-d tree; this is because if we have a path of depth less than d, we can
extend it redundantly, querying an irrelevant variable — if ΣP for the path was nonzero then
EP [|ΣP |] is unchanged, if ΣP for the path was zero then EP [|ΣP |] will increase. Now note
that EP [|ΣP |] does not depend on the names of the variables labeling the nodes of the tree;
hence we may assume that all nodes at level ` read x`, for ` = 1 . . . d. But now equality in
∑n

i=1 f̂(i) ≤ EP [|ΣP |] occurs if the decision tree computes Majd, as claimed. The asymptotic

formula I(Majd) = (1 + o(1))
√

2
π

√
d is well known. 2

Remarks:

1. In the case of monotone functions with depth-d decision trees, Theorem 1 generalizes
the well-known edge-isoperimetric inequality on the discrete n-cube, which says that
for monotone f : {−1, 1}n → {−1, 1}, I(f) ≤ I(Majn).

2. We conjecture that if s = s(d) is the minimal size of a decision tree computing Majd, then

every function f computable by a decision tree of size s has
∑n

i=1 f̂(i) ≤∑n
i=1 M̂ajd(i).

2 Learning monotone decision trees

The following result is immediate from inspecting the proof of Friedgut’s ’98 theorem about
functions with low average sensitivity [Fri98]:

Theorem 2 Let f : {−1, 1}n → {−1, 1}, ε > 0, t = 2I(f)/ε, and J = {i : Inf i(f) ≥ t3−t}.
Then |J | ≤ 3t, and furthermore

∑

S: S⊆J, |S|≤t

f̂(S)2 ≥ 1 − ε.

Combining Theorems 1 and 2 with the idea behind the monotone DNF learning algorithm
of [Ser01], we get the following uniform distribution algorithm for learning monotone functions
in time polynomial in their decision tree size:

Theorem 3 The class of monotone functions can be learned under the uniform distribution
to accuracy ε (with confidence 1 − δ) in time sO(1/ε2) · poly(n) · log(1/δ), where s represents
decision tree size.

3

Proof: Let f be the unknown monotone function to be learned. We may assume that the
algorithm knows s, the decision tree size of f , by a standard doubling argument. From
Theorem 1 we know that I(f) ≤

√

log2 s; let t = 2
√

log2 s/ε. Since f is monotone, its
influences are equal to its degree-one Fourier coefficients and thus can be accurately estimated
from uniformly random samples. The algorithm first determines the set J = {i : Inf i(f) ≥
t3−t}. It then estimates all Fourier coefficients f̂(S) such that |S| ≤ t and S ⊆ J . By
Theorem 2 this gives the algorithm all but ε of f ’s spectrum; it is well known that this is
sufficient for learning f to accuracy ε. To conclude we note that up to the poly(n) · log(1/δ)
the running time is dominated by the number of Fourier coefficients estimated, which is at
most |J |t = 3t2 = sO(1/ε2). 2

References

[Fri98] E. Friedgut. Boolean functions with low average sensitivity depend on few coordi-
nates. Combinatorica, 18(1):474–483, 1998.

[Ser01] R. Servedio. On learning monotone DNF under product distributions. 14th Ann.
Conference on Comp. Learning Theory, 558–573, 2001.

4

