On decision trees, influences, and learning monotone decision
 trees

Ryan O'Donnell*
School of Mathematics
Institute for Advanced Study
Princeton, NJ
odonnell@ias.edu

Rocco Servedio
Dept. of Computer Science
Columbia University
New York, NY
rocco@cs.columbia.edu

May 26, 2004

Abstract

In this note we prove that a monotone boolean function computable by a decision tree of size s has average sensitivity at most $\sqrt{\log _{2} s}$. As a consequence we show that monotone functions are learnable to constant accuracy under the uniform distribution in time polynomial in their decision tree size.

1 Decision trees

Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a boolean function.
Fourier notions: Throughout this paper we view $\{-1,1\}^{n}$ as a probability space under the uniform distribution. Recall f's Fourier expansion,

$$
f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}(x)
$$

where $\chi_{S}(x)=\prod_{i \in S} x_{i}$ and $\hat{f}(S)=\mathbf{E}_{x}\left[f(x) \chi_{S}(x)\right]$. We also recall the notions of influence and average sensitivity: The influence of i on f is $\operatorname{Inf}_{i}(f)=\operatorname{Pr}_{x}\left[f(x) \neq f\left(x^{(i)}\right)\right]$, where $x^{(i)}$ denotes x with the i th bit flipped; if f is a monotone function then $\operatorname{Inf}_{i}(f)=\hat{f}(\{i\})$. We shall henceforth write $\hat{f}(i)$ in place of $\hat{f}(\{i\})$. The average sensitivity of f is $\mathrm{I}(f)=\sum_{i=1}^{n} \operatorname{Inf}_{i}(f)$.

Decision trees: Suppose we have a decision tree computing $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$; we will always assume (without loss of generality) that no variable appears more than once on any path of the tree. Note that picking a uniformly random input $x \in\{-1,1\}^{n}$ is equivalent to the following two-step procedure: First, pick a uniformly random path P in the tree by starting at the root and assigning to the variables encountered uniformly at random until a leaf is

[^0]reached. Second, assign uniformly at random to those variables as yet unset. Corresponding to the first step of this process we define a collection of random variables P_{1}, \ldots, P_{n} as follows:

$P_{i}=\left\{\begin{aligned} 1 & \text { if the variable } i \text { is encountered on the random path and } x_{i} \text { is chosen to be } 1, \\ -1 & \text { if the variable } i \text { is encountered on the random path and } x_{i} \text { is chosen to be }-1, \\ 0 & \text { if the variable } i \text { is not encountered on the random path. }\end{aligned}\right.$
For each i we have $\mathbf{E}\left[P_{i}\right]=0$; a slight amount of reflection reveals that also $\mathbf{E}\left[P_{i} \mid P_{j}\right]=0$ for all $i \neq j$. Hence while P_{i} and P_{j} are not independent we do have $\mathbf{E}\left[P_{i} P_{j}\right]=0$ for all $i \neq j$. We write ΣP for $\sum_{i=1}^{n} P_{i}$, the sum of the bit assignments made along the random path P, and we also write len (P) for the length of the random path P; another way of expressing $\operatorname{len}(P)$ is $\sum_{i=1}^{n}\left(P_{i}\right)^{2}$.

Consider the two-step procedure for choosing $x \in\{-1,1\}^{n}$ at random: first choose P at random, assigning randomly to the variables on the path; then choose the remaining unset variables uniformly at random. Since the value of $f(x)$ is fixed after the first step in the procedure, we may denote this value by $f(P)$.

Proposition 1 Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be computed by a decision tree with paths P. Then

$$
\sum_{i=1}^{n} \hat{f}(i)=\underset{P}{\mathbf{E}}[f(P) \cdot \Sigma P] .
$$

Proof:

$$
\begin{aligned}
\sum_{i=1}^{n} \hat{f}(i) & =\sum_{i=1}^{n} \underset{x \in\{-1,1\}^{n}}{\mathbf{E}}\left[f(x) x_{i}\right] \\
& =\underset{x \in\{-1,1\}^{n}}{\mathbf{E}}\left[f(x) \sum_{i=1}^{n} x_{i}\right] \\
& =\underset{P ; x_{j}: P_{j}=0}{\mathbf{E}}\left[f(P)\left(\sum_{i: P_{i} \neq 0} x_{i}+\sum_{j: P_{j}=0} x_{j}\right)\right] \\
& =\underset{P}{\mathbf{E}}\left[f(P)\left(\Sigma P+\underset{x_{j}: P_{j}=0}{\mathbf{E}}\left[\sum_{j: P_{j}=0} x_{j}\right]\right)\right] \\
& =\underset{P}{\mathbf{E}}[f(P) \cdot \Sigma P] .
\end{aligned}
$$

The final equality holds since $\mathbf{E}\left[x_{j} \mid P_{j}=0\right]=0$ for each j.
Theorem 1 Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$.

1. If f is computed by a decision tree of size $e^{1} s$ then $\sum_{i=1}^{n} \hat{f}(i) \leq \sqrt{\log _{2} s}$.
2. If f is computed by a decision tree of depth d then $\sum_{i=1}^{n} \hat{f}(i) \leq \mathrm{I}\left(\mathrm{Maj}_{d}\right) \sim \sqrt{\frac{2}{\pi}} \sqrt{d} \leq \sqrt{d}$.

If f is monotone we can replace $\sum_{i=1}^{n} \hat{f}(i)$ by $\mathrm{I}(f)$.
Proof: Since f is ± 1-valued, from the Proposition it is clear that

$$
\sum_{i=1}^{n} \hat{f}(i) \leq \underset{P}{\mathbf{E}}[|\Sigma P|]
$$

[^1]with equality iff f computes the majority of the bits along each of its decision tree paths i.e., $\operatorname{sgn}(\Sigma P)$ (f may output anything if the bits split evenly.)

In case (1), we proceed as follows:

$$
\underset{P}{\mathbf{E}}[|\Sigma P|] \leq \sqrt{\underset{P}{\mathbf{E}\left[|\Sigma P|^{2}\right]}}=\sqrt{\underset{P}{\mathbf{E}\left[\sum_{i, j=1}^{n} P_{i} P_{j}\right]}}=\sqrt{\underset{P}{\mathbf{E}[\operatorname{len}(P)]+\sum_{i \neq j} \underset{P}{\mathbf{E}}\left[P_{i} P_{j}\right]}}=\sqrt{\underset{P}{\mathbf{E}[\operatorname{len}(P)]}} .
$$

(At this point we have proved the upper bound of \sqrt{d} in case (2).) It remains to show that $\mathbf{E}_{P}[\operatorname{len}(P)] \leq \log _{2} s$; we use induction on s. The result is obvious when $s=2$; for larger s, suppose we have a size- s tree in which the left subtree of the root has size s_{1} and the right subtree of the root has size s_{2}, with $s=s_{1}+s_{2}$. The expected length of a random path in such a tree is 1 plus half the expected length in the left subtree plus half the expected length in the right subtree. By induction this is at most $1+\frac{1}{2} \log _{2} s_{1}+\frac{1}{2} \log _{2} s_{2}=\log _{2}\left(2 \sqrt{s_{1} s_{2}}\right) \leq$ $\log _{2}\left(s_{1}+s_{2}\right)=\log _{2} s$ where we have used the AM-GM inequality.

In case (2), we instead note in upper-bounding $\mathbf{E}_{P}[|\Sigma P|]$ it doesn't hurt to assume that the tree is a full depth-d tree; this is because if we have a path of depth less than d, we can extend it redundantly, querying an irrelevant variable - if ΣP for the path was nonzero then $\mathbf{E}_{P}[|\Sigma P|]$ is unchanged, if ΣP for the path was zero then $\mathbf{E}_{P}[|\Sigma P|]$ will increase. Now note that $\mathbf{E}_{P}[|\Sigma P|]$ does not depend on the names of the variables labeling the nodes of the tree; hence we may assume that all nodes at level ℓ read x_{ℓ}, for $\ell=1 \ldots d$. But now equality in $\sum_{i=1}^{n} \hat{f}(i) \leq \mathbf{E}_{P}[|\Sigma P|]$ occurs if the decision tree computes Maj_{d}, as claimed. The asymptotic formula $\mathrm{I}\left(\mathrm{Maj}_{d}\right)=(1+o(1)) \sqrt{\frac{2}{\pi}} \sqrt{d}$ is well known.

Remarks:

1. In the case of monotone functions with depth- d decision trees, Theorem 1 generalizes the well-known edge-isoperimetric inequality on the discrete n-cube, which says that for monotone $f:\{-1,1\}^{n} \rightarrow\{-1,1\}, \mathrm{I}(f) \leq \mathrm{I}\left(\mathrm{Maj}_{n}\right)$.
2. We conjecture that if $s=s(d)$ is the minimal size of a decision tree computing Maj_{d}, then every function f computable by a decision tree of size s has $\sum_{i=1}^{n} \hat{f}(i) \leq \sum_{i=1}^{n} \widehat{\mathrm{Maj}}_{d}(i)$.

2 Learning monotone decision trees

The following result is immediate from inspecting the proof of Friedgut's '98 theorem about functions with low average sensitivity [Fri98]:
Theorem 2 Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}, \epsilon>0, t=2 \mathrm{I}(f) / \epsilon$, and $J=\left\{i: \operatorname{Inf}_{i}(f) \geq t 3^{-t}\right\}$. Then $|J| \leq 3^{t}$, and furthermore

$$
\sum_{S: S \subseteq J,|S| \leq t} \hat{f}(S)^{2} \geq 1-\epsilon .
$$

Combining Theorems 1 and 2 with the idea behind the monotone DNF learning algorithm of [Ser01], we get the following uniform distribution algorithm for learning monotone functions in time polynomial in their decision tree size:

Theorem 3 The class of monotone functions can be learned under the uniform distribution to accuracy ϵ (with confidence $1-\delta$) in time $s^{O\left(1 / \epsilon^{2}\right)} \cdot \operatorname{poly}(n) \cdot \log (1 / \delta)$, where s represents decision tree size.

Proof: Let f be the unknown monotone function to be learned. We may assume that the algorithm knows s, the decision tree size of f, by a standard doubling argument. From Theorem 1 we know that $\mathrm{I}(f) \leq \sqrt{\log _{2} s}$; let $t=2 \sqrt{\log _{2} s} / \epsilon$. Since f is monotone, its influences are equal to its degree-one Fourier coefficients and thus can be accurately estimated from uniformly random samples. The algorithm first determines the set $J=\left\{i: \operatorname{Inf}_{i}(f) \geq\right.$ $\left.t 3^{-t}\right\}$. It then estimates all Fourier coefficients $\hat{f}(S)$ such that $|S| \leq t$ and $S \subseteq J$. By Theorem 2 this gives the algorithm all but ϵ of f 's spectrum; it is well known that this is sufficient for learning f to accuracy ϵ. To conclude we note that up to the poly $(n) \cdot \log (1 / \delta)$ the running time is dominated by the number of Fourier coefficients estimated, which is at most $|J|^{t}=3^{t^{2}}=s^{O\left(1 / \epsilon^{2}\right)}$.

References

[Fri98] E. Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Combinatorica, 18(1):474-483, 1998.
[Ser01] R. Servedio. On learning monotone DNF under product distributions. 14th Ann. Conference on Comp. Learning Theory, 558-573, 2001.

[^0]: *This material is based upon work supported by the National Science Foundation under agreement No. CCR-0324906. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

[^1]: ${ }^{1}$ Number of leaves.

