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Peer to Peer (P2P) systems that utilize Distributed Hash Tables (DHTs) provide a scalable
means to distribute the handling of lookups. However, this scalability comes at the expense of
increased vulnerability to specific types of attacks. In this paper, we focus on insider denial of
service (DoS) attacks on such systems. In these attacks, nodes that are part of the DHT system are
compromised and used to flood other nodes in the DHT with excessive request traffic.

We devise a distributed lightweight protocol that detects such attacks, implemented solely
within nodes that participate in the DHT. Our approach exploits inherent structural invariants of
DHTs to ferret out attacking nodes whose request patterns deviate from “normal” behavior. We
evaluate our protocol’s ability to detect attackers via simulation within a Chord network. The re-
sults show that our system can detect a simple attacker whose attack traffic deviates by as little as
5% from a normal request traffic. We also demonstrate the resiliency of our protocol to coordi-
nated attacks by up to as many as 25% of nodes. Our work shows that DHTs can protect themselves
from insider flooding attacks, eliminating an important roadblock to their deployment and use in
untrusted environments.

1 Introduction

Peer to Peer (P2P) systems are a novel and powerful way to create decentralized services for
various applications. Due to their flexibility they are used for content distribution and multimedia
streaming [9, 14, 4, 23] ,network storage [8, 19, 13], , resilience [3] and DoS protection [12, 11, 15].
Current P2P systems can be categorized into two distinctive groups unstructured and structured
peer to peer systems.

Unstructured Peer to peer systems with randomized searches such as Gnutella [1], Kazaa [2]
Freenet[6] became increasingly popular due to their content distribution abilities. These systems
manage to operate fairly well and maintain robustness even under extreme uncooperative environ-
ments and flash crowds [20, 21]. This is one of the main reasons that these systems are currently
used for content distribution.



On the other hand, advances in the Distributed Hash Table(DHT) construction techniques [10]
led to the formulation of structured peer to peer overlay networks like CHORD [7], CAN [17],
PASTRY [18] and TAPESTRY [24]. Structured P2P systems do not flood the network with search
requests since they provide a small upper bound to the number of hops per search request. In
addition they provide load balancing [16] and reliability. All of the above come at the cost of
maintaining a network structure by using a well defined routing table at each node.

One of the advantages of structured Peer to Peer (P2P) systems is the homogeneity of the task
that is assigned to each node. By design, every node plays an identical role: it is responsible
for knowing the location, or storing its fair share of content, maintaining its fair share of neigh-
bor nodes to which it can forward requests, and handling its ‘air share of routing traffic. Here,
‘fair share” means that, statistically speaking, the utilization of a node’s memory, processing, and
network bandwidth in a well balanced system will be the same for all participants.

There is a stark contrast between the homogeneity of the players in a structured P2P system
and the Internet environment upon which these systems operate. For example, artifacts of the
network topology can cause two otherwise identical routers to experience very different traffic
loads. Routers closer to the center of the network act as a transits for numerous flows heading in
all directions (interfaces), while routers closer to the network edges may experience traffic flows
heavily weighted in particular directions.

The homogeneity experienced in structured P2P systems allows for a certain predictability of
the system behavior. Previous work [22, 17] reveals that, with high probability, there is a natural
load-balancing phenomenon: in a large system, every node can expect to play essentially the same
role. We posit that it is the homogeneity and the predictability of these systems that are what makes
the abstraction so powerful.

However, this homogeneity and predictability is also the P2P systems’ Achilles Heel: it is
expected to behave in this fair and equitable manner, but this need not be the case. In particular,
there are three phenomena that P2P designers must concern themselves with:

1. The content stored within the system can have varying popularities, creating imbalanced
demand.

2. With low probability, there may occur an “unlucky” configuration that violates the desired
homogeneity.

3. A deliberate attack on the system geared toward inhibiting normal operations will violate the
desired homogeneity

While the first item above has been addressed by [16], to our knowledge no solution has been
proposed for the other two problems. In this paper, we investigate methods to handle the imbal-
ance that can arise due to statistical misfortune or deliberate attack. Our methods are applied on
aggregate flows [5] but taking into consideration the structure of P2P systems.

We posit that in P2P systems, there are distributed techniques which, by exploiting the assump-
tion that these homogeneities should exist in the system, can infer when the P2P system is behaving
erratically. We demonstrate our position on the Chord system, where we identify certain invariants
that traffic in a well balanced, homogeneous Chord system should exhibit, and derive distributed
protocols that nodes in the Chord system can use to infer whether in fact the system satisfies these
invariants.



We evaluate the effectiveness of these distributed protocols in detecting a distributed denial
of service (DDoS) attack. The attacks we consider are mounted from within the P2P network:
a set of compromised nodes target a particular node with excessive traffic. Other work [12, 15]
has examined the use of structured (DHT) systems to prevent DoS attacks from outsiders; here,
we consider attacks from insiders. These attackers can be identified not because of the increase
in the load with which they inject traffic, but because their distribution of requests is unnaturally
biased (with respect to uncompromised nodes) toward the target of the attack. We show that, in
a well balanced system, there are certain invariants among the rates of traffic arriving to a node
from different neighbors, heading toward the same destination. A node can identify an attack (or
a significant imbalance) when it compares a neighbor’s forwarded traffic that contains an attack to
another neighbor’s forwarded traffic that does not contain an attack.

The detection mechanism is based on distributed statistical analysis that compares rates of
traffic arriving from different neighbors. It provides a variable margin of false-positive error in
detection of excessive rates. In addition, we can produce a detection threshold above which our
method will detect the attacker(s) with high probability. This detection threshold depends on the
percentage of compromised nodes and their injected traffic relative to normal traffic. In our attack
scenarios we vary the both the fraction of P2P participants compromised and the intensity of the
attack against an object of the P2P system. Our simulation results show that we can efficiently
detect and mark excessive flows even when 25% of the total participants of the P2P network had
been compromised for all attack intensities exceeding a specified threshold. Moreover we can
detect small fraction of attackers (even one) even when the attack intensity is relatively low. The
false positive error is very low: 1%, and can be modified to lower values by changing one of the
parameters in the detection algorithm. The detection method uses ���������
	�����
�
 amount of memory
per node where � is the number of nodes participating in the overlay network. This result shows
that our approach can fit easily within the memory constraints of participating Chord nodes.

The novelty of our approach lies in the exploitation of the structure inherent in these P2P
systems with inference-based techniques. In the underlying Internet, inference-based techniques
are used to identify, map, and learn about certain properties of the environment. In a structured
P2P system, the properties that should hold are known a priori, and the inference techniques are
used to detect anomalous, undesirable conditions.

Paper Organization Section 2.2 gives a description of the different attack models we con-
sider. In section 2.3 we present the various invariants of DHT systems. Distributed algorithms
for the statistical estimation of aggregate flow rates are analyzed in section 3. These methods in
conjunction with the invariants presented in section 2.3 to detect excessive flows in a chord system
in section 4. Our experimental results for one and multiple attackers where we vary the attack
intensity and the fraction of nodes compromised are discussed in section 5. Section 6 concludes
the paper and gives some pointer for future work.



2 Structured P2P Model Description

2.1 Introduction

All structured (DHT) P2P systems consist of a set of keys ������� , a set of nodes � and a distributed
routing algorithm that all nodes use to select the neighbor to route their requests to, inside the
P2P system. In most systems, there exist algorithms that maintain the routing integrity of the P2P
system when nodes join or leave. For the purposes of our analysis, we assume that the P2P system
always maintains its routing integrity.

The main function of the P2P system is to store and retrieve objects that are hashed in par-
ticipating nodes, typically using a fixed-size hash function common to all nodes. Each node is
assigned a set of keys, meaning that the node either stores in its local database all the objects that
hash to these keys or knows their location inside the P2P system. If a node � wants to locate and
retrieve an object from the system, it first has to create the objects hash value � . For the remainder
of this paper, we will call this hash value � the object’s key. Node � uses the object’s key � and the
routing algorithm to reach the node responsible for this key.

To continue, we have to define the notion of a flow of search requests. A flow is characterized
by the pair �	��
�� 
 , identifying all the search requests that are generated by node � for an object that
hashes to a key � . We can easily extend the notion of a search request flow to an aggregate flow
of search requests. We denote by �	
�
�� 
 to be the aggregate flow of search requests from a set of
nodes 
 to a set of keys � .

In addition, for each of these search request flows �	��
�� 
 , we define ����� � to be the rate at which
these search requests are injected into the P2P network. The popularity of an object � is measured
by the aggregate rate of search requests ����� � that the object receives from all the nodes � of the
P2P system. By dividing the popularity ����� � with the total number of nodes � , we get the average
popularity � ������ that only depends on the popularity of object � :

� �������� ����� �
�

In our model, we assume that objects stored in the P2P system may have different popularities.
Initially, we also assume that for a fixed a object � , the popularity of this object is the same among
the participants of the P2P network:

� �!� � � � ������ 
�"�#%$ �&
��'$(�)�����
Of course, it is unlikely that individual members of the P2P network will exhibit similar pop-

ularity behavior. In our analysis, we relax this assumption by requiring only aggregates of large,
randomly selected sets of P2P nodes to have the same popularity for the same object. Our assump-
tion is justified by the application of the law of large numbers coupled with the fact that the nodes
forming the groups are randomly selected.

2.2 DoS Attackers & Attack Scenarios

We now give a precise definition of what we consider a DoS attack in a P2P network environment.
We shall only consider DoS attacks against a specific object (or set of objects) stored in the P2P



network. These attacks are mounted by nodes inside the P2P network. We assume that a malicious
insider uses the P2P infrastructure to mount this attack by injecting excessive search requests.
Later we shall justify this assumption by showing that this can be achieved by allowing traffic only
from incoming neighbors to be routed or served.

We define an attacker to be a node (or a set of nodes) inside the P2P network which tries
to create a starvation of network or computational resources to the node servicing the attacked
objects. This denial of service is achieved by injecting excessive search requests for that objects
into the P2P network.

Under ’normal’ P2P network operation, we expect that the rate of a search request flow ��� � �
from a fairly large, randomly selected group of nodes 
 towards a set of keys � , will be equal to
the popularity of that object � ������ .

To quantify an attack, we give the definition of a misbehaving flow of search requests: we
characterize a flow �	��
�� 
 as “misbehaving” if the rate of search requests originating from a node
� toward a set of keys � , ����� � exceeds the average rate � ������ by a factor of

��� ���	� . We set this rate
threshold to be � �
 �	� :

����� �
� ��������
�� � ������ � � �
 �	�
where � represents how many times bigger must the rate of a flow be, compared to the average
search request rate, before we declare it as “misbehaving”. The previous notion can be extended
to a set of nodes 
 :

��� � �
��� 
 � � ��������
�� � ������ � � 
 � � � �
 ���
Note that for a set of nodes, the maximum rate allowed before we declare the aggregate flow

as misbehaving depends on the size of the set.
The selection of � is a measure of the variance in popularity that we allow between different

nodes (or groups of nodes) in the P2P system before declaring that a flow is “misbehaving”. If we
assume a totally homogeneous system, then

��� ���	� ��� — i.e., no deviations from the average rate
(popularity) are allowed. A small � allows little variance on the popularity towards a set of keys
� . Larger values allow more variance on the popularity, but also give an attacker more freedom to
deviate from the average rate and avoid detection. Typically, we select � ����� � which means that
we detect flows that send ten percent more than the average rate of a set of keys � .

We consider the cases where there is either one attacker or a set of attack nodes that are par-
ticipating in a denial of service attack against the object(s) stored at a specific node, � . The attack
is easy enough to mount for an attacker that has infiltrated the DHT network: the attacker simply
identifies an object that hashes to the particular node1 and sends an inordinate number of queries
toward that object. To simplify our analysis, we assume that in a distributed denial of service at-
tack, the attack effort is distributed evenly among the attacking nodes. For each of the attackers, we
define � to be the proportion by which the attacker increases its traffic toward � above the normal
popularity of the objects. In other words, if a “normal” node transmits queries to � at a rate of � ������ ,
the attacker transmits queries to � at a rate of � �!����
�� � ������ .

If � � is the number of attacking nodes, the total amount of excessive search requests injected
into the system by the attackers is � �"� � � � ������ . Let # � � �%$ � be the fraction of nodes compro-

1Even easier, the attacker may be interested in attacking a particular object.



mised; we define the attack intensity, � � # , to be the increase in the popularity of the target object
caused by the attackers’ excessive search requests:

� � # � � � � ��������� �����
	�� � ������
� ������

This definition of traffic intensity is based on the fact that the contribution of the attack traffic
to the overall popularity of the object is � � # . For example, if � � # � � , the node that stores the
object under attack has to serve twice as many search requests for that object. For the attackers’
queries to be harmful to the target node, � � # must be large. If an attacker only controls a limited
number of nodes, their only choice is to increase � . A large � and small # means that there will
be a relatively small number of attack flows, and that these attack flows inject significantly more
traffic toward � (high � ).

In the experimental section, we shall examine the following scenarios to evaluate our detection
tests in different adverse environments:

1. A Single Node attacks the network launching excessive search requests toward a set of keys.

2. Multiple Nodes (Uncoordinated) attack the network using excessive search requests toward
a single key. The nodes attack do not know of each other. This is the case of different
unrelated nodes trying to attack the network.

3. Multiple Nodes (Coordinated) attack a single key. The nodes know of the other attackers’
position on the network, but do not have a complete map of the P2P topology.

2.3 Invariants of Structured DHT systems

In a DHT P2P network, each flow � ��
�� 
 is associated with one or more vectors of nodes that define
a path, or a set of paths 
�� � 
�� 
 , from node � toward key � inside the P2P network. Since our
main analysis is focused on Chord [22], we will assume that each path 
 �	��
�� 
 is a unique vector
of nodes. Additionally, we define 
 � � � 
�� 
���
 �	��
�� 
 to be the subset of paths from node � toward
key � that pass through node � . Being part of a DHT network, each node � receives all the search
requests from only a small, well defined set of nodes, the incoming neighbors ��� � . We define ��� �
to be:

��� � ��� 
�� ��� � � 
���
�� 
 
�" � $ �&
 � $(�)�����
where


�� ��� �	��
���
�� 
 � � previous node id on path 
 � � ��
�� 
!
otherwise �

Node � looks for the key in its local database. If the lookup is unsuccessful, � forwards the
search request to another set of nodes, the outgoing neighbors, �#" � � , defined as:$&%�' �)(+*�,.-0/214365&768�9;:=<6>@?A>B-DCE(GFH>I<J/21K>I?L/NM �����.O



Each P2P network provides the mechanisms to discover both ��� � and �#" � � . These sets are
relatively small, e.g., � ����� � ��� 
 
 , compared to the total number of nodes � . Their size depends
only on the structure of the P2P network and node � ’s position, which is usually encoded in � ’s ID.
For some P2P systems (e.g, CAN), the set of incoming and outgoing neighbors are the same. To
elaborate, node � receives search requests for key � from a subset of its incoming neighbors ��� �
and forwards it to a subset of its outgoing neighbors �#" � � . Thus node � receives all the search
requests from the set of its incoming neighbors ��� � . Moreover � ’s outgoing neighbors serve or
forward all the search requests that node � generates for all the keys. The number of search request
flows �	��
�� 
 that node � forwards for key � to a subset of its outgoing neighbors �#" � � , depends
on how “close” node � is to the key � . Closeness is defined in terms of either hops or Euclidean
distance, depending on the P2P system.

We can estimate the rate of search requests that node � routes or serves under normal operation
for a key � , assuming that node � is on the path of this key. This is done by aggregating the rate
of all the search requests that � receives for that key � from all its incoming neighbors (incoming
fingers). This means that for any set of keys � , the requests for which pass through node � , we
can estimate its average search request rate (popularity). We can then compare the rate of search
requests node � receives from different incoming neighbors toward that set of keys � with node� ’s estimated popularity. More formally:

a) The ratio of the search request rates �
�
� � � , �

�
��� � � that a node � routes or serves for the set of

keys � from sets of sources 
�
%
 � is � � � 
�� 
�
�
�
 � 
 , where :

� � � 
�� 
�
�
�
 � 
 � �
�
� � �

�
�
��� � �

� �
�
� � �

��� � � �
� � 
 � � � ������

� 
 � � � � ������ �
� 
 �
� 
 � �

The above equation holds under the assumption that we have unique paths. In the general case
of a DHT system with non-unique paths, we will have to add a parameter denoting the fraction of
packets of flow �	��
�� 
 that are routed through � .

Thus, node � can aggregate and compare all the rates of flows of the form �	��
�� 
 
 � $ 
�
��'$(�
and � � 
 � 
�� $ 
 � 
��'$ � that it routes or serves. We typically select set 
 � to be the total number
of nodes that are allowed to be routed through node � for the set of keys � , and set 
 to be the
nodes that arrive through a specific neighbor of � .

Since the sets 
�
�
 � contain nodes that are randomly selected from different areas, when they
are large enough (in terms of the number of nodes that they contain) and of equal size, we have
that ��� � � � � � � � � (on the limit).

b) Another property of a structured P2P system involves estimating the ratio of request distri-
butions (popularity) of keys (or set of keys) using measurements of search request rates in a node:
node � compares the popularity of sets of keys ��� , � 	 by estimating the ratio of the average search
request rates that node � serves for these keys or set of keys. More formally:

� ��������
� �	������ �

�
�
� � � �
� 
 �
�
�
� � �	�
� 
 �

� �
�
� � ���

�
�
� � �	�

The above property can be used to dynamically estimate the load served by specific nodes,



and to employ load-balancing mechanisms to alleviate search request congestion due to increased
object popularity.

3 Statistical Estimation and Bounds of Flow Rates

In the previous section we presented some invariant properties about the relative rates of flows that
a node � should measure from different sources 
�
�
 � toward the set of keys � . We also presented
a definition of an excessive flow � 
�
�� 
 to a set of keys � based on its comparison to the average
flow rate towards � .

In this section we present a system that detects “misbehaving” aggregate flows and marks
their respective search requests. We will assume that each node in the P2P system has a unique
id given by the P2P system at random. The total number of flows in a P2P system is of the
order of ����� ��� 
 ,where � is the total number of nodes in the system and � the number of the
keys. Keeping track of each individual flow would require ����� � � 
 memory. In the case of a
fully distributed system, it would require (with high probability) a � � � 
 memory in each of the
� nodes. To avoid utilizing such a potentially huge amount of memory per node, we only keep
track of a small number � � � � � � � 
 
 of aggregate flows per node by exploiting the fact that, for
structured P2P systems, all the flows arriving at node � are coming from nodes belonging to the
set of incoming neighbors of this node ( ��� � ). In addition, the flows that are not served by node� are then forwarded to nodes in the set of outgoing neighbors ( �#" � � ) of � . Node � groups the
flows that arrive from the incoming neighbor # and are forwarded to the outgoing neighbor

�
of

node � , creating the aggregate flow � � � # 
 � 
 . As we mentioned in Section 2, both ��� � and �#" � �
are of small size � � � � � � � 
 
 , thus creating a total of ������� � 	�� � 
 
 aggregate flows per node, or� � � � # 
 � 
 � � ������� � 	 � � 
 . To implement this scheme, each node stores a table of search request
counters � � � � with #%$ ��� � 
 � $ ��"�� � of size ������� � 	 � � 
�
 .

The detection of a misbehaving flow is done by checking the aggregate flow that this flow
belongs to on different nodes along the path of the flow. Then, if a flow aggregate exceeds the
average rate of search requests for a set of keys on a node � , this means that one or more flows
of the aggregate flow are “misbehaving”, exceeding the average rate for that set of keys. When a
node detects that aggregate flow � 
�
�� 
 is exceeding the average rate for a set of keys, that node
starts marking the search requests that belong to that aggregate flow.

In general, node � groups the flows by first looking at the last node that forwarded the flow
�	��
�� 
 . This node must belong to the set of � � � incoming neighbors ��� � . Node � then looks at
the search request’s key and finds the outgoing neighbor that it will forward the request to. Node� checks if the flow is valid, meaning if � belongs to the path of the flow �	��
�� 
 . If the flow
is valid, we increase the counter � � � � , where # $ ��� � 
 � $ �#" � � are the IDs of incoming and
outgoing neighbors of � that flow � � 
�� 
 was received from and will be forwarded to respectively.
We define � � � 
 # 
�� � 
�� $ � 
 # $ ��� � to be the set of nodes that send search requests to
node � via its incoming neighbor # , independent of the key requested. Respectively, we define
� � � 
 � 
�� �)����� 
�� $ �&
 � $ �#" � � to be the set of keys that node � forwards requests to its outgoing
neighbor

�
.

Before forwarding the search request, node � examines if the aggregate flows are “misbehav-
ing”:



Test 1. Node � computes the rate of search requests that it receives from incoming neighbor #
towards outgoing neighbor

�
using the counter � �!� � . It then computes the total rate of search

requests � � that it receives from all incoming neighbors for the same outgoing neighbor
�
:

� � �
�
���������

� �!� �

In addition, the results from Section 2, node � calculates the proportion of the rate of search
requests that should arrive, when no attack is taking place, from incoming neighbor # towards the
outgoing neighbor

�
(or the sets of keys � � � 
 � 
 that � forwards to

�
):

	 : F >�MK>�
 >�
 � C
>IM ( $ : FH>
� C
>�
0(�� : FH>�� C
>�
 � ( *

 �������

�A: FH>��KC
Since

� � � 
�� 
�
�
�
 � 
 � �
�
� � �

�
�
��� � �

we get that, under no attack,

�
�
� � � � � � � 
�� 
�
�
�
 � 
�� �

�
��� � �

If we take into consideration the fact that we allow the aggregate rate �
�
� � � to be at most �

times more than the mean rate, the previous equation becomes:

�
�

 �	� � 
�
�� 
 � � � � � � 
�� 
�
�
�
 � 
�� �

�
��� � �

Node � is now in position to use the measured aggregate search requests ��� � � received from
incoming neighbor # along with the total search requests � � received from all the incoming fingers
toward the outgoing finger

�
to calculate if flows comming from # are “misbehaving”. To achive

this � sets up a binomial distribution, where a success is considered a request from # and a failure
is a request from all the other allowed fingers. The probality of success can be computed to be:

� �
� � �)( �
�
 �	� :�
 >�M0C: � � � � � ��� �
�
� � � C�� �

�
 ��� :�
I>�M C (
���! �#"�$�% � �'&)(*&#+,&#+�- ".$0/�12 -03 4� / 1 2 - 3 465 % � �
&7(8&#+9&#+ - "9$�/ 1 2 - 3 4 "  :���! �#".$�% � �'&#(8&#+,&7+ - "�$0/ 1 2 - 3 4

or

� ��� � �)( :0;<�>= C@? 	 : FH>�MN>�
 >�
;�BC
=��A;B? 	 : FH>�MN>�
 >�
;��C

The maximum allowed number of packets C � � DFE that finger # is allowed to send to finger
�

under
normal operation can be found by computing the reverse probability from:

G �0C)� � DFEIH � � � � 
KJML



where L is the confidence interval and C � � DFE is the random variable denoting the maximum allowed
search requests from incoming finger # given L . If the measured � � is bigger than the computed
value of C �!� DFE then � declares the aggregate flow as misbehaving with a confince � � L . For 99.9%
confidence, we choose L � ��� � � � . In practice we create a table that contains the maximum allowed
values C � � DFE for different values of � � and

G �
� � � .
For large values of � � � � , � � , the computation of the success probability becomes time intensive,

so we approximate it with a Poisson random variable C�� with rate:

� � � DFE � G �
� � � � � � � ��������
�� � � � 
�� 
�
�
�
 � 

� � � � � � � 
�� 
�
�
�
 � 
 � � �

and � � � � with unit time period
� � � �

Test 2. Another test that node � can perform is to compare the traffic that it receives from differ-
ent incoming neighbors for the same outgoing neighbor. Node � computes the number of search
requests routed toward outgoing neighbor

�
from its incoming neighbors # � , # 	 with counters � � � � �

and � � � � � respectively. Using the results from Section 2, node � can calculate the proportion of the
rate of search requests that come from incoming neighbors # � , # 	 toward the outgoing neighbor

�
.

	 : FH>�MN>�
 � � >�
 � � C
>�M ( $ : FH>
� C
>�
 � � (>� : FH>��
�
C
> 
 � � (>�A: F >��

	
C

Since we are trying to infer frequence of events, we use the binomial distribution with � �
� � � � � � � � � � � and probability of success:

� �
� � �)( :0;<�>= C@? � � ��� � � �
�
�
��� � � � � :0;<�>= C ? � � ��� � � � (:0; �>= C

=�� :0; ��= C@? � � ��� � � �
�
�
��� � � �

( :0; � = C
=�� :0;<�>= C ? 	 : FH>�MK>�
 � � >�
 � � C

Node � then checks if
G �0C � � � � � � � � � � � � � 
 J L , where L is the confidence interval and C � � � � � � �

is a binomial random variable with probability of success
G � , which counts the number of samples

from incoming finger # � when � samples have arrived from # � and # 	 . If
G ��C)� � � � � � � � � � � � � 
 is less

than L , we say that with ��� � L 
�� accuracy the flow is ”misbehaving” and we split it in smaller
flows. For 99% confidence we choose L � ��� � � .

For large values of � , we approximate this distribution by a Poisson distribution with ��� � � � � � � �
� � � G �
� � � , � � � � and � computes the probability

G ��C�� 
 � � � � � 
 J L , where C	� is a Poisson
random variable.

Our second test can detect differences in the rate of search requests coming from different
incoming neighbors toward the same set of keys that � forwards to a specific outgoing neighbor.
The first test detects differences between the rate of search requests from an incoming neighbor for
the sets of keys that � forwards to a specific outgoing neighbor, and the total rate of search requests
that node � receives from all incoming neighbors for the same set of keys.



4 Chord System

In this section we will apply the tests presented in the previous sections to detect and prevent
distributed denial of service attacks (DDOS) within a Chord ring. The chord model used in this
section is the chord model presented in original paper[].

4.1 Chord Model Definitions

A chord peer to peer system is consisted of a set nodes � that try to serve objects that are hashed
and stored in nodes using an � bit hash function. The key identifiers ������� are placed in circular
order creating a ring of length � � � � � � � � ��� 
 . To facilitate things all the calculus done from
this point on are modulo � .Each node is assigned an id from the key space ( � � �'����� ) thus
creating also a node ring. Since we have a circular placement we have for each node � a successor
node and a predecessor node. As we mentioned each node is assigned a set of keys meaning that
the node either stores in its local database all the objects that hash to these keys or knows their
location. Thus when a search request reach the node responsible for the key requested the search
stops and a reply to the originator of the request is issued either with the actual object or with the
object’s location.
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Figure 1: Percentage of excessive search requests detected and the detection distance when we
vary the distance of the attacker to the target in a 1024 Chord ring. Distance 0 shows the aggregate
attack requests detected for each distance.



4.2 Chord Invariant properties and Tests

Proposition 1. For a chord node � , � $ � , we can compute the rate of search requests it receives
from sets of nodes 
�� � 
�
�� � that pass through its fingers ( # � 
 # 	 $ ��� � ) respectively, for the set of
keys � � � � � 
 � 
 that node � forwards to its

�
outgoing finger with

� J �'# � � # � 
 # 	 
 . Then we use
the property 1 of section 2 to compute the expected relative rate of search requests � � � 
�� 
�
�� � 
�
�� � 

for a system with no “misbehaving” flows. More formally we have:

� � � 
�� 
�
�� � 
�
�� � 
 � �
�
��� � � �
�
�
��� � � �

� � ��� � � �
����� � � � (1)

� � � � � 
 � 
�
 
�� � � � � � 
 # � 
 
 
�� � � � � � 
 # 	 

For a full chord system with no attackers we are expecting to have:

� � � 
�� 
�
�� � 
�
�� � 
 �
� 
�� � �
� 
�� � �

� � � � � 
 # � 
 �
� � � � 
 # 	 
 � � �

� 
 � � � � � 	
� � 
 � � � � � 	 � � � � � � �

Proof. For this proof we will need the following lemma:

Lemma 1. In case of full chord the number of distinct node ids that come through the #
� �

incoming
neighbor (finger) of node � , or ( � � � � 
 # 
 � 
 
�� # � � ��� # � � � � � 
 to route their search requests to
the allowed key set � � � � ��� 
 � J # (not to terminate in node � ) are � � � � 
 # 
 � � �
	�� # 
 � � � 
 � � � � 	
independent of the selection of node � for all the allowed keys � .

Proof. We have that the number of nodes that can contact node � through its #
� �

incoming finger
include first of all the actual node with id 
�� � � � � � � � 	 
 � � � � � 
 . We also have to add all nodes
that corespond to the incoming fingers

�
with

� � # of node 
 � . Using this argument recursively
we obtain the total number of nodes �
	�� # 
 by the following formula :

��	�� # 
 � � � ��	 (i + 1) + ��	 (i + 2) + �%� � + ��	 (m - 1)
 ��� �
 � � � � 
 ��� # � � � � ��


In this formula # � � � � 
 � � and # � � 
 � � 
 " � � � � � because we now that for the maximum
finger in our input finger table we have only one node to count since there is no entry in any node’s
input finger table for distance greater than � � � ��
 . We see that:

��	�� # 
 � � �
��� 
 � ��
��� ��� �

��	�� ��
�
 ��	 � # ����
 � � �
��� 
 � ��
��� ��� 	

��	 ��� 


Let ��� � � �
��� 
 � ��
��� ��� �

��	���� 
 then � � � � � � � ����� � and � ��� � � � � � � � ��� 	
�

��� � � � � � � ��� 	 � � � ��� � ����� 	 
 � � � ��� � �	� � � � ������� 
 �
��� � � �

�
� �	� � ����� � 
 
 ��� � � � � � # � ��


��� � � � 
 � � � 	 	 �	� � � 
 � ��
 for
� � � � � # � ��
 �



Using the fact that:

� 
 � � � ��� 
 � ��
��� 
 � � ��	 ��� 
 � ��	 � � � ��
 � �

we get that:
��� � � � 
 � � � 	 	 ��� � ��
 � � � � � � 
 � � � � 	

and we know by definition that �
	�� # 
 � ��� 
 so ��	�� # 
 � � � 
 � � � � 	
Corollary 1. The total number of nodes that can route through node � using node’s � outgoing
finger � (without including � ) are:

�
� 	 	� ��� � 	 � � � 
 � � � � 	 � � �

independent of the selection of node � .
We now return to the proof of equation (1): From lemma (1) for two different input fingers # � 
 # 	

the number of distinct chord nodes and the coresponding flows �	
�
�� 
 and � 
�
�� 
 that pass through
them for a single key are:

��	�� # � 
 � � � 
 � � � � � 	 and ��	 � # 	 

� � � 
 � � � � � 	 � � � � 
 � 
�
�� � 
�
�� � 
 � � � � � � � � 	

for every key � . The ratio number of flows
� ��� � � � 	� ��� � � � 	 don’t depend on the selection of set of keys

� but rather on the ratio of the number nodes in the sets 
 � � and 
�� � . This happens because all
flows that pass through incoming fingers # � and # 	 for the set of keys � � � � � 
 � 
 are valid because� J �'# � � # � 
 # 	 
 and the set of keys � is common.

Proposition 2. Node � can compute the proportion of the rate of search requests it receives from
its #
� �
� incoming finger ( # ��$ ��� � ), with the total rate of search requests that � receives from all

allowed incoming fingers, for the set of keys � � ��� � 
 � 
 that node � forwards to its
�

outgoing
finger with

� J # � . Then we use the property 1 of section 2 to compute the expected relative rate of
search requests � � � 
�� 
�
�
�
 � 
 for a system with no “misbehaving” flows. More formally we have:

� � � 
�� 
�
�
�
 � 
 � �
�
� � �

�
�
� � � �

� � � � �
��� � � � (2)

� � � � � 
 � 
�
 
 � � � � 
 # � 
�
(
 � � �
��� ��� �#� ��� �

� � � 
 # 

For a full chord system with no attackers we are expecting to have:

� � � 
�� 
�
�
�
 � 
 � � 
 �
� 
 � � � � � � � 
 # � 
 �

�

��� ��� ��� ��� �
� � � � 
 # 
 � � � � 
 � � � � � 	

� � 
 � � � � 	 � �
� �
� � � � � � �

Proof. The proof for this test is easily derived by the use of the corrolary (1) Now using the
previous two properties and the generalized tests defined in the tests of the previous section we can
define the following tests:
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Figure 2: Distribution of the number of tags for the attack requests for one attacker in 1024 chord
ring. The different plots represent the attacker’s distance in hops from the target for a ��# � ��� � .

5 Simulation Results

5.1 Experiments Setup

To evaluate our detection algorithm we use an implementation of the Chord system. In this system
we randomly select a portion of the nodes to become the “attackers” and object from the set of
allowed keys. The node that stores that object (assigned by the hash function of the DHT) becomes
the “target”. The goal of the attackers is to overwhelm the “target” with search requests so the target
becomes unresponsive to legitimate search requests leading to a denial of service. In general the
attackers are be allowed to select multiple “targets” but this will only lower their attack intensity
since they will have to split their search request rate among different targets.

To quantify the ability of our algorithm to detect the attackers we introduced in section 2.2 the
notion of attack intensity � � � , to be the increase above the normal popularity of the target object
, � , caused by the attackers’ excessive search requests. In other words, if a “normal” node transmits
queries to � at a rate of � ������ , the attack search requests to � from all the compromises nodes in
the system have a rate of: � ��# � ��
 � ������ causing an increase in the popularity of the object that is
measured by:

� � # � � � � ��������� �����
	�� � ������
� ������
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Figure 3: Total excessive packets detected when we vary both the attack intensity ��# and the
fraction of nodes compromised for a 4096 participants chord ring. Notice that in some cases we
overestimate the number of excessive requests and that is why we have values above 100%.

Our attack detection method identifies aggregates that contain attackers by marking packets
within these aggregates whenever our estimates predict that the aggregate is sending at too high
of a rate. Our detection mechanism introduces a false positive source of error inherited form the
aggregate detection mechanism. This error can become arbitrarily small by selecting a higher con-
fidence interval. For our simulations we used a 0.999% confidence interval. Every nodes generated
2048 search requests on average with at total of approximately ��� � ��� per simulation. Each simula-
tion was repeated more that 20 times and the results we present are averages of these simulations.
Were our test is working perfectly, marking only excessive search requests, only a fraction

��� � �
��� � � � �

of packets in the attacking flow should be marked. Moreover our detection mechanism should
be able to detect the attack as close to the attacker as possible and the malicious search requests
should be marked as many times as possible along the path from the attacker to the target object. It
appears that both of these factors for the one attacker scenario are dependent on the attack intensity
and the attacker’s distance to the attacked object.

5.2 Single attacker scenarios

We first investigated the scenario where one of the nodes participating in the overlay has been
compromised and attacking a single object. Since we assume only one malicious node the attack
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these plots are the average of multiple experiments ( 100 for each plot), the average distance of the
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intensity becomes:

� � # � � � �
�

� �
#

In order for the single attacker to have impact on the search requests of the attacked object � � #
should be large. For example for � � # � � the single attacker has to inject search requests in the
system with rate � � � ������ or with a � � � . Someone can argue that this is too much of a rate but in
practice this depends on the popularity � ������ of the object attacked. If the object is highly popular
and � ������ is large compared to the rest of the object in the system the attacker will need to inject a
bigger amount of search requests to further increase its popularity.

For the first experiment in the one attacker scenario we placed the attacker in various distances
(in hops) away from the target node. Then we observed the percentage of the excessive search
requests our algorithm detected and their detection distance from the target. Distance zero denotes
the total percentage of the search requests we detected independent of the distance from the target.
Figure 1 shows our results. Notice that as the distance of the attacker from the target increases
the detection distance also increases. For example if we place the attacker at a distance 9 we
have that the bigger portion of its packers were detected its next hop neighbor on the path to
the target. Moreover when the attacker is very close, lets say distance 2, we detect 100% of the
excessive search requests. As the distance from the target increases we start over-marking the
attacker requests. This happens because as we move away from the target more flows generated by
attacker participate in the groups of flows we detect and thus marked. Moreover in this experiment
we used an attack intensity of � # ��� � � or a 10% increase in the popularity of the attacked object
which is a relatively small value. For larger values of � # we have minimal over-marking of the
attacker search requests since the excessive requests become a bigger portion of the total search
requests.

As we mentioned in our experiments each node tags all the flows of a group that appears to
be “misbehaving”. Figure 4 shows the distribution of the tags when we vary the distance of the
attacker to the target. We see that depending on the distance of the attacker we have a significant
portion of the excessive search requests with two or more tags from nodes along the path from the
attacker to the target. The number of tags increases as we increase the number of hops between the
attacker and the target.

Since our method detects and marks search requests on group of flows an inherent problem of
our method comes up: a group contains both misbehaving and legitimate flows so we maybe end
up marking legitimate flows along with the attacking ones. As figure 3 shows that is not the case.
Although we are marking flows belonging to the same “misbehaving” group we are punishing
mostly the attacker since he is the one sending the majority of the search requests through that
group. All the other flows are getting marked but only minimally, at least the majority of them, in
comparison both to the total number of requests they generate and in comparison with the attacker.
Of course blindly marking and dropping excessive requests from a misbehaving flow is a very
crude method prevent a denial of service but we can do it in cases that our resources are limited.

All the previous analysis was done to ensure that there is no attacker placement inside the
chord ring that our algorithm fails to detect. Now we are in position to present more realistic
results from simulations in which we have one attacker randomly placed in a chord ring of size
1024 (see figures 4,5). Figure 4 depicts the percentage of the attacker requests detected and their
corresponding detection distance from the target. It is easy to see that for attack intensity values
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larger than ��� ��� our method detects a significant portion of the excessive requests. As the intensity
of the attack diminishes our detection results become weaker. This is something we expected since
our algorithm detects excessive requests based on measurements done on groups of flows where
small variations in the intensity of one flow does not have significant impact on the aggregate flow.

On the other hand, the number of tags for the attack packets is an increasing function of both the
average attacker distance and of the attack intensity as shown in figure 5 although average attacker
distance seems to play a more prevalent role. This means that as the average distance between the
attacker and the target increases so does our ability to tag the attacker on multiple locations along
the attacker-target path. Thus our system works better as we increase the number of participants in
the DHT system since the average distance between two nodes in the system increases. For attack
intensities that are larger than ones shown in figure 4 we detect all of the attack search requests
and thus we have similar results with the ones for � # � � � . Finally for � # � ��� ��� we have an
over-marking of the attacker search requests which fades out when the attack intensity becomes
more significant. The reasons for this over-marking where discussed thoroughly in the previous
paragraph.

5.3 Multiple attacker scenarios
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Figure 6: Percentage of excessive packets detected when we vary both the attack intensity � # and
the fraction of nodes compromised for a 4096 participants chord ring.

In this section we simulate the behavior of our detection algorithm using a chord ring where we
vary both the fraction of nodes compromised and the attack intensity. In figure 6 we present our



simulation results for a 4096 chord ring with multiple attackers. It is clear that there is a dependence
between the excessive search requests detected and the attack intensity. Our results show that as
the attack becomes more severe our ability to detect excessive search requests increases; even
when 40% percent of our nodes are compromised we are able to detect around 50% of the excess
requests.

On the other hand, as the proportion of compromised nodes grows, there is a corresponding
drop in our ability to detect excessive search requests since the attack becomes more distributed on
the chord ring. Additionally the number of tags for the excessive requests are inversely proportional
to the fraction of nodes compromised. In figure 7for example, when the attackers constitute the
5% of all the participants a large portion of their excessive requests have 2 or more tags whereas
when the attackers become 40% of the total nodes only 14% of the excessive requests have 2 or
more tags.

Notice that in some cases we overestimate the attack packets generated from the attackers.
This happens because we detect groups of flows where, on average, the attacker participates with
multiple flows leading to over-marking of search requests generated from the attacker. This over-
marking can be used to weed out the misbehaving flow from the group of flows detected to be
misbehaving. To achieve this we can use sampling on the misbehaving flow or Bloom filters.
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6 Conclusion and Future Work

In this paper we identified a distributed and scalable method of detecting anomalous traffic flows
in DHT P2P networks. This technique can assist in responding to DoS attacks within these types
of networks.

Although our findings are preliminary, there is a wealth of challenging problems that need to
be addressed. Our investigation opens up an important new area in DHT P2P networks. Future
directions include application of our method in CAN/PASTRY, recursive detection of the attacker
(push back mechanisms), and ways of isolating individual “misbehaving” flows out of aggregates
flows.
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