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Abstract

Volumetric light transport effects are significant for manymaterials like skin, smoke, clouds
or water. In particular, one must consider the multiple scattering of light within the volume.
Recently, we presented a path integral-based approach to this problem which identifies the
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approach to derive useful expressions for the amount of spacial and angular blurring light
experiences as it travels through a medium.
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Abstract

Volumetric light transport effects are significant for many materi-
als like skin, smoke, clouds or water. In particular, one must consider
the multiple scattering of light within the volume. Recently, we pre-
sented a path integral-based approach to this problem which identifies
the most probable path light takes in the medium and approximates
energy transport over all paths by only those surrounding this most
probable one. In this report we use the same approach to derive use-
ful expressions for the amount of spacial and angular blurring light
experiences as it travels through a medium.

1 Introduction

Volumetric scattering effects are important for making realistic computer
graphics images of many materials like skin, fruits, milk, clouds, and smoke.
In these cases, we cannot make the common assumption that light propagates
without scattering in straight lines. Indeed, the multiple scattering of light in
participating media is important for many qualitative effects [4, 3] like glows
around light sources in foggy weather, or subsurface scattering in human
skin, or the spreading of a beam in a scattering medium.

Light transport, including multiple scattering in arbitrary scattering me-
dia, can be accurately computed by solving the radiative transfer equa-
tion [5, 8], the volumetric analogue to the rendering equation. Volumetric
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Monte Carlo and finite element techniques (volumetric ray tracing and ra-
diosity) have been used by many researchers in the past [17, 11, 12, 2, 14, 9].
However, volumetric multiple scattering effects are notoriously difficult to
simulate, even using the best Monte Carlo approaches, taking hours to days.
For this reason, these effects are not usually present in computer graphics
imagery, and certainly not in interactive systems. Thus, one must look for
simpler approximations and analytic models.

While it is possible to simulate such media using volumetric Monte Carlo
or finite element techniques, those methods are very computationally expen-
sive. On the other hand, simple analytic models have so far been limited to
homogeneous and/or optically dense media and cannot be easily extended to
include strongly directional effects and visibility in spatially varying volumes.
We would like to develop a simple practical approach for efficiently simulating
volumetric effects in general spatially varying inhomogeneous scattering me-
dia, taking directionally-varying lighting effects into account. We choose an
approach based on path integration framework [18] to achieve this goal. The
initial development was presented [16] but the resulting algorithm remained
rather complicated and we would like to to have something more practical.
We describe resulting algorithms the complete system elsewhere [15]. This
report concentrates on deriving the key expression for spacial width used by
our system. It also contains a derivation of analogous expression for angular
blurring which can be useful for future extensions of our approach. These
developments are presented in sections 5 and 6, respectively. Prior to this,
we present necessary preliminaries and a short outline of the path integral
approach. Readers familiar with the subject and especially with our related
work [16, 15] can go directly to section 5.

2 Effects of Multiple Scattering

If we shine a laser beam pulse into a scattering media, the pulse undergoes a
series of absorption and scattering events. The effects of multiple scattering
result in significant changes to the pulse illustrated by Figure 1:

1. Spatial spreading The pulse cross-section broadens as it propagates
through media. We incorporate this effect into our algorithm presented
in [15]



Figure 1: Beam spreading in scattering media due to multiple scattering.

2. Angular spreading The angular divergence of a narrow pulse gets
larger as it travels through the medium. We do not currently incorpo-
rate such effects into the algorithm but provide necessary mathematical
results for doing so with a procedure similar to that used for spatial
blurring.

3. Temporal spreading Scattered photons of the pulse stay behind the
original unscattered photons since they have to take longer paths. The
direct consequence is that pulse becomes longer as it travels through
the medium. While this effect is very important in many fields such as
remote sensing [22], it is of little interest for computer graphics which
deals with stationary solutions of light transport. We will, however, see
that explicit treatment of time (or distance) dependance is very useful
as an intermediate step.



a Absorption coefficient
b Scattering coefficient
c Extinction coefficient (a + b)
g Mean cosine of scattering angle
s variable corresponding to time
x offset from MPP
A Action
G Green’s propagator
L Radiance
P Phase function
Q Source
S Original path length of Most Probable Path (MPP)

〈θ2〉 Mean square scattering angle
α 1/4(1 − g) = 1/(2〈θ〉2)
ξ Vector of parameters corresponding to path
w Spatial width of paths

Table 1: Selected symbols

Many of the subtle appearance effects of scattering materials are a direct
consequence of beam spreading due to multiple scattering. As we see, it is
straightforward to qualitatively understand beam spreading and stretching in
the scattering media, but direct simulation of multiple scattering and there-
fore of spreading (blurring) is computationally expensive. The quantitative
analysis of spatial and angular spreading we present could provide more in-
sight into appearance of scattering materials and could lead to more efficient
and simpler rendering algorithms.

3 Mathematical Preliminaries

In this section, we introduce the mathematical preliminaries of the radiative
transfer equation and path integration as the necessary background for our
derivations in the following sections.

3.1 Radiative Transfer Equation

Optical properties of volumetric materials can be characterized by density
ρ(x), their scattering and absorption coefficients b(x) and a(x), the extinction



coefficient c(x) = a(x)+ b(x), and the phase function P (x, ~ω, ~ω′). The phase
function P describes the probability of light coming from incident direction
~ω scattering into direction ~ω′ at point x. The phase function is normalized,
∫

4π
P (~ω, ~ω′)dω′ = 1 and only depends on the phase angle cos θ = ~ω · ~ω′. The

mean cosine g of the scattering angle is defined as

g =

∫

4π

P (~ω, ~ω′)(~ω · ~ω′)dω′.

and the average square of the scattering angle 〈θ2〉 is

〈θ2〉 = 2π

∫ π

0

θ2P (~ω, ~ω′) sin θdθ. (1)

The value of g qualitatively describes the properties of the medium. If g = 0,
the medium is isotropic (constant phase function), while a forward scattering
medium like clouds or mist will have g positive. The phase function as defined
here only describes what happens when light is scattered by a single particle.
It has no recollection about which direction the particle was redirected to
before. The phase function P is independent from what happened in previous
scattering events and it is unimportant when light gets absorbed.

The most general case of light transport in arbitrary media is described
by the time-dependent radiative transport equation [5, 8],

(

∂

∂s
+ ~ω · ∇ + c(x)

)

L(s,x, ~ω) =

b(x)

∫

4π

dΩ′P (~ω, ~ω′)L(s,x, ~ω′) + Q(s,x, ~ω), (2)

where we have expressed time t in units of length s, with s = vt. As compared
to the standard time-independent equation, we have introduced the term
∂/∂s on the left-hand side. Q(s,x, ~ω) is the source term, accounting for
emitted illumination from light sources.

From the general theory of linear integral equations [1], it is known that
the solution of equation 2 can be expressed as a convolution of the initial
source radiance distribution Q = L0(x

′, ~ω′) with a Green’s function or prop-
agator (evolution operator) G(s,x,x′, ~ω, ~ω′):

L(s,x, ~ω) =

∫

G(s,x,x′, ~ω, ~ω′)L0(x
′, ~ω′) dx′ d~ω′. (3)



(a) No scattering (b) Single scattering

Figure 2: Green’s propagator for the light transport equation can be re-
lated to marching along a ray and computing effects of attenuation operator
Gnoscatter and single-scattering operator Gsingle.

Physically, the Green propagator G(s,x,x′, ~ω, ~ω′) represents radiance at
point x in direction ~ω at time s due to light emitted at time zero by a point
light source located at x′ shining in direction ~ω′. Mathematically, it is the
solution of the homogeneous version of equation 2 (i.e. with source term set
to zero) with initial condition expressed using the Dirac delta function δ as

G(s = 0,x, ~ω,x′, ~ω′) = δ(x − x′)δ(~ω − ~ω′). (4)

3.2 Green’s propagator and relation to raytracing

In the absence of scattering (b = 0), the solution for the complete propagator
G is almost trivial:

G(s,x, ~ω,x′, ~ω′) ≡ Gnoscatter(s,x, ~ω,x′, ~ω′) = (5)

δ(x − ~ωs − x
′)δ(~ω − ~ω′) × exp{−

∫ s

0

c(x − ~ω(s − s′))ds′}. (6)

Here the light travels in a straight line and is attenuated by the absorption
coefficient a(x) = c(x). One can see that in this case, the formulation using
the propagator is equivalent to simple raytracing (Figure 2). This simple
attenuation model is quite popular in computer graphics and it is often part
of popular APIs like OpenGL (fog attenuation).

We can also write the propagator G to include an arbitrary number of
scattering events. For example, single scattering propagator Gsingle includes



light that has been scattered only once and the light that has not been
scattered at all (as above). To formalize it, we note that propagation from
starting position and direction (x′, ~ω′) to final position and direction (x, ~ω)
requires three steps. First, light is attenuated over distance s′ to an interme-
diate point x′′. Second, the light scatters at point x′′ from initial direction ~ω′

to final direction ~ω. Only a fraction that is determined by the phase function
P of the incident radiance scatters into the new direction. Third, light is
further attenuated from the intermediate point x′′ to the final point x′. To
include all possible intermediate points where a scattering event occurs, the
propagator Gsingle is given by integration over all intermediate points:

Gsingle(s,x, ~ω,x′, ~ω′) = Gnoscatter(s,x, ~ω,x′, ~ω′) + (7)
∫ s

0

ds′
∫

|x′′−x′|=s′

∫

S2

{Gnoscatter(s − s′,x, ~ω,x′′, ~ω′′′) × b(x′′)

∫

S2

P (x′′, ~ω′′, ~ω′′′)Gnoscatter(s
′,x′′, ~ω′′,x′, ~ω′)dω′′}dω′′′dx′′.

This expression again directly corresponds to the standard single scatter-
ing ray marching algorithm commonly used in computer graphics. Marching
along the viewing ray and sending shadow rays (that are also attenuated)
toward a light source corresponds to the three steps discussed above (Fig-
ure 2).

We could further rewrite the propagator to include higher order of scat-
tering events by recursively exapnding the propagator. But, as demonstrated
by equation 7, the expression would quickly become unmanageably complex
due to additional angular integrations that have to be performed to account
for higher orders of scattering. Therefore, it is often useful in practice to
split the propagator G into two parts: unscattered and single-scattered (or
“direct”) light Gd = Gsingle and one for multiply scattered (or “indirect”)
light Gs and solve them separately:

G(s,x, ~ω,x′, ~ω′) = Gd(s,x, ~ω,x′, ~ω′) + Gs(s,x, ~ω,x′, ~ω′) (8)

The initial condition for the scattered light propagator Gs is straightforward,
because there is no multiply scattered light in the beginning:

Gs(s = 0,x, ~ω,x′, ~ω′) = 0 (9)

We will use existing techniques for computing direct lighting described by
Gd. Our main goal in this work will be to efficiently deal withe propagator
Gs (multiply-scattered light) that could lead to faster rendering algorithms
for participating media.



Figure 3: There are infinitely many paths by which the light can reach the
eye through a scattering media, and the total visible luminance is the sum
over all such paths. However, some paths (cyan) clearly contribute very little
to the final image. Furthermore, some paths (green) are more probable than
others (red) given optical properties of the medium even if they are otherwise
comparable.

3.3 Path Integral Formulation

The path integral (PI) approach provides a particular way to express the
propagator G(s,x, ~ω,x′, ~ω′). It is based on the simple observation that the
full process of energy transfer from one point to another can be thought
of as a sum over transfer events taking place along many different paths
connecting points x and x′, each subject to boundary conditions restricting
path directions at these points to ~ω and ~ω′, respectively (see Figure 3). The
full propagator is then just an integral of individual path contributions over
all such paths. This object is called the path integral. One can further notice
that the intensity of light travelling along each path will be only diminishing
due to absorption and scattering events along the path. This is because in-
scattering into the path, which is generally treated as a process increasing
light intensity, in a particular direction will be due to photons travelling a
different path in the medium (we ignore here exact backscattering which can
return photons exactly to the same path). Therefore, if we introduce effective
attenuation τ along the path, we can write the individual path contribution



(weight) as exp(−τ), and the complete propagator as

G ∼
∫

exp(−τ(path))Dx, (10)

where the attenuation τ is analogous to the classical action A along the path,
with exp(−τ(path)) ∼ exp(−A(path)).

Because the integration is performed over the infinite-dimensional path
space using highly non-intuitive differential measure Dx defined for it, the
mathematics of path integrals is exceptionally complex [6, 10]. Tessendorf [19]
derived a path integral expression for the propagator G in homogeneous ma-
terials. Interested readers are referred to his further work [20, 21] for detailed
derivations of the path integral formulation. Using much simpler tools, one
can still obtain some useful results [16] of the PI theory, which we will present
here without detailed derivations.

First, part of path weight or action due to multiple scattering in the
integral in equation 10 can be shown to be proportional to:

exp(−A(path)) ∼

exp

(

−
∫ s

0

[

a(~γP (s′)) +
α

b(~γP (s′))

∣

∣

∣

∣

dθ

ds′

∣

∣

∣

∣

2
]

ds′

)

, (11)

where ~γ(s) is a pathlength parameterized path, dθ/ds is its curvature, and
α = 1/4(1 − g) = 1/(2〈θ2〉), where 〈θ2〉 is the mean square scattering angle.
Integration is performed along the path.

One can find a path which maximizes this expression (i.e. has minimal
attenuation or action among all possible paths). We call it the most proba-
ble path (MPP). For the important special case of homogeneous media under
boundary conditions when path directions are specified at both ends, one can
determine the shape of MPP of given length analytically with the standard
Euler-Lagrange minimization procedure [7]. The result is a “uniformly turn-
ing” path of constant curvature which is changing its direction at a constant
rate.

We further assume that only a small fraction of paths “around” the MPP
contribute significantly to the integral and will restrict the integral to account
for the contribution of these important paths only. Formally, this constitutes
a Wentzel-Kramer-Brillouin (WKB) expansion [10] of the path integral while
physically and visually it accounts for the fact that blurring of the luminance



Figure 4: Once we find a set of most probable paths for given initial condi-
tions, we compute contributions along those paths and some neighborhood
around these paths. All other paths are ignored because they are deemed
not important. In practice, we do not even consider the full set of MPPs,
but rather a subset of those which are the easiest to treat.

distribution is the most notable characteristic of participating media. The
basic idea of our approach, using the most probable path, and a neighborhood
around it, is shown in Figure 4.

4 Surrounding Path Contribution

In computer graphics, a boundary condition of particular interest is a single-

sided one, which requires the path to start at a particular point in space
with particular initial direction (an example is the eye position and primary
viewing ray direction) but applies no additional restrictions on the second
end of the path. The path will usually terminate once it reaches an object (or
a light source) in the scene. Suppose we found the MPP for this boundary
condition and computed its contribution. We would now like to approximate
the complete path integral by taking into account only the contribution of
“surrounding” paths. This operation formally constitutes a WKB expansion
of the integral.

If we parameterize the family of nearby paths using some vector of pa-
rameters ~ξ (with ~ξ=0 at the MPP), the path integral can be written as an



integral over these parameters. Note that because A in equation 11 has the
global minimum at the MPP, its expansion in terms of parameters ~ξ will
start from square terms. That is, if there is only one parameter ξ, a simple
Taylor series is,

A(ξ) = A(0) +
1

2
ξ2

∂2A

∂ξ2
+ . . . ,

exp(−A(path)) ∼ exp(−A(MPP )) exp(−1

2
ξ2

∂2A

∂ξ2
) (12)

where the linear term in the top equation is omitted because A(0) is a mini-
mum, and A(0) corresponds to the action for the most probable path. Note
that the bottom equation has a gaussian form, giving weights to nearby paths
according to their “distance” from the MPP. If ~ξ is now a vector, we may
write the propagator in equation 10 as

G ∼ exp(−A(MPP ))

∫

ξ

exp(−(ξ∇ξ)
2A/2)dξ. (13)

The first term here is the MPP contribution and the integral is over re-
parameterized path space. Although integration space is still infinite-dimensional,
we can use this expression to estimate some important properties of the radi-
ance distribution by writing out the expansion of A for some family of nearby
paths in terms of relevant parameters while keeping others fixed. In particu-
lar, we will be interested in radiation blurring along the path, which can be
measured by the spatial width of contributing paths, as shown in Figure 5.

5 Estimation of Spatial Blur

For the purposes of blurring size estimation, we can assume without loss
of generality that the MPP is a straight line 1. We are also interested for
now only in spatial, and not angular blurring (which will be considered next).
Thus, we consider only paths with the same incident and outgoing directions,
as shown in Figure 5. For a path displaced from the straight line MPP by
a distance x, we consider a path consisting of two circular segments stitched
together, as shown on the right of Figure 5. Paths of this family both fulfill
boundary conditions, including the new one of path end direction coinciding

1A space warp can be performed to bring a curved path to this case.
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Figure 5: A sequence of simplifications for the paths considered. Contribu-
tions are Gaussian with respect to both space and path end direction. Only
the first factor is considered by applying an extra boundary condition. Left to
right: original MPP (thick) and nearby paths; straightened MPP and paths
contributing to spatial blurring; special family of double circle paths which
is being treated exactly; parameters for a double circle path. The region of
nearby path concentration is shown in grey.

with that of MPP (necessary to exclude blurring in the space of directions)
and are expected to be effective energy transporters due to their uniformly
low curvature and low additional length compared to the MPP. We will
compute analytically the width of the path distribution in this family for
homogeneous media, and assume that the result gives a reasonable estimation
for the total spatial blurring.

We can rewrite A for such paths, shown in Figure 5, and integrate over
each of the circular segments separately per equation 11,

A(x) = 2

∫ s

0

(

a +
α

bR2

)

ds′, (14)

where the curvature is given by 1/R and R is the circle radius. Now, we



switch variables to the turning angle β, since ds′ = R dβ,

A(x) = 2

∫ βmax

0

(

aR +
α

bR

)

dβ = 2
(

aR +
α

bR

)

βmax. (15)

For the end point offset x, simple geometric computations give R = (S2 +
x2)/4x and the maximum turning angle βmax = arcsin(S/2R) ≈ 2x/S −
2x3/3S3 where S is the original path length and we have performed Taylor
expansion in small parameter x/S. Substituting these values into equation 15
and performing further Taylor series expansion, we get:

2
(

aR +
α

bR

)

βmax =

(

a(S2 + x2)

4x
+

4αx

b(S2 + x2)

)(

4x

S
− 4x3

3S3

)

= aS + x2

(

a

S
− a

3S
+

16α

bS(S2 + x2)

)

+ . . .

≈ A(0) + x2

(

2a

3S
+

16α

bS3

)

(16)

As expected from the form of equation 12, this expansion starts from quadratic
terms in x. This will allow us to write the width of the Gaussian distribution
of paths in this family as

w2 =
1

2

(

2a

3S
+

16α

bS3

)−1

=
〈θ2〉bS3

16(1 + S2/12l2)
, (17)

which we will use as an estimation of the overall blurring along the path in
our rendering algorithm. Here we introduced “diffusive path length” l2 =
1/(ab〈θ2〉).

Limiting Cases. For long paths (S � l), the square of the spatial width
grows linearly along the path (with S): w2 = 3

4
〈θ2〉bSl2. For another special

case of no absorption (l = ∞) w2 = b〈θ2〉S3/16. For these limiting cases,
using much more rigorous derivation Tessendorf [18] obtained the spatial
width of w2 = b〈θ2〉S3/24 for case with no absorption and w2 = b〈θ2〉l2S
with absorption. We obtain a correct functional dependence on both S and
medium parameters, but are off by a constant factor of 3/2 in comparison
to Tessendorf. We offset this discrepancy by introducing a constant 2/3
correction factor to our expression.

Being relatively simple, our approach provides a single easy to evaluate
expression for spacial blurring. When a comparison with much more sophis-
ticated theoretical methods is possible, the accuracy of our expression seems



sufficient given the needs of computer graphics applications giving more solid
ground to our results. Note also that more rigorous approaches typically do
not provide a general closed form solution at all and only special cases sim-
ilar to those present above can be evaluated. McLean[13] discusses beam
spread functions in more depth and provides a comparison between different
analytic models.

6 Angular blur strength estimation

In this section we present a simple treatment of angular blurring due to
multiple scattering. Although we do not currently use these results in our
implementation, corresponding algorithm which would treat non-directional
light sources more accurately can be designed based on the approach pre-
sented in [15].

We will follow the general procedure outlined in section 5 to estimate the
strength of angular blurring along the path. We will again make the same
simplifying approximations to arrive at an analytic solution, namely, we will
assume that MPP is a straight line, the medium is homogeneous and devia-
tion of sufficiently significant surrounding paths from MPP is small enough
to allow Taylor expansion in relevant parameters. We will also need a new
modified boundary condition to isolate angular blurring. We will therefore
consider only paths starting and ending at the same positions as MPP and
furthermore, only whose which have the same starting direction as the MPP.
Among these paths we will now select a set of paths which we expect to
be effective light transporters while still allowing a closed form treatment.
We choose the one parameter family of asymmetric double-circular-segment
paths of the type shown on Figure 6. We can uniquely specify a particular
path by its final deviation angle φ. For such paths we can express action A
from equation 11 as

A(x) = 2

∫ βmax

0

(

aR +
α

bR

)

dβ +

∫ φ

0

(

aR +
α

bR

)

dβ (18)

Note that the first term is the same as the one we considered for the problem
of spacial blurring and we know the result for this part already. However, it is
not very useful since it is not expressed in terms of final deviation φ. Instead,
since curvature radius is constant for the paths we chose and arclength is just
ds = Rdβ, we re-write equation18 as an integral over path length to arrive



Figure 6: Top: Geometry of the path used for angular blurring width deriva-
tion. Bottom: Blurring width is a non-decreasing quantity. Paths with
shorter curved part are more efficient energy transporters and while blurring
width decreases with S for paths of A1B1C type, it can not be less than the
maximum width reached in the family shown.

at
A(x) =

(

as +
α

bR2
s
)

(19)

where s is the total length of the curved double circular path which we have
to express through MPP length S and deviation angle φ. We now split the
MPP into two parts by the point corresponding to maximum spatial devia-
tion d. We then have S = Rsinφ + 2

√

R2 − (R − d/2)2. d in turn can be
expressed as d = R − Rcosφ We can now compute radius R of the circle as
R = S/(sinφ +

√

3 − 2cosφ − cos2φ) ≈ S/((1 +
√

2)φ). This immediately
gives approximate expression for the curvature-related second part of equa-
tion 19 as φ2α(1+

√
2)2/(bS). The total length of the path can be computed

using standard approximate expressions for the length of a circular sector: l =
√

S2

1
+ 16/3(d/2)2 + (1/2)

√

(2S2)2 + 16/3d2 and length difference from the
MPP is ∆s = l−(S1+S2) ≈ 2d2/3(1/S1+1/S2). Substituting expressions for
lengths of two parts of the MPP S2 = Rsinφ, S1 = S−S2 and then for the cir-
cle radius, we obtain ∆s = (2/3)R2(1−cosφ)2(1/(Rsinφ)+1/(S−Rsinφ)) =



(2/3)S(1 − cosφ)2/(sinφ
√

3 − 2cosφ − cos2φ) ≈ Sφ2/(6
√

2). Substituting
this result into the expression for A, we finally get expansion around the
MPP which, as expected, starts from second order terms in φ:

A(x) = A(0) +

(

aS

6
√

2
+

α(1 +
√

2)2

bS

)

φ2 (20)

Gaussian angular blurring radius is then

w2

a =
1

2

(

aS

6
√

2
+

α(1 +
√

2)2

bS

)−1

=
3
√

2bS

abS2 + 6
√

2α(1 +
√

2)2
(21)

For short paths (S � l, l2 = 1/(ab〈θ2〉)) or cases with no absorption (a = 0)
this expression gives w2

a = (1/(1 +
√

2)2)b〈θ2〉S ≈ (1/5.8)b〈θ2〉S where we
used the expression for α. Generally accepted result of rigorous treatment
for this case gives w2

a = (1/3)b〈θ2〉S which is a very reasonable agreement
given the simplicity of our approach.

However, for the other limiting case of long paths (S � l) we obtain
a non-physical result of blurring radius decreasing with distance and need
to examine this case more closely. We note that paths which follow MPP
exactly for some fraction of their length, as shown on the bottom of Figure 6
for paths A2B2C and A3B3C, are even more efficient light transporters as the
“fully curved” paths A1B1C we considered. We can write analytic expression
for blurring due to such path in a way similar to equation 21 with adjusted
length S ′. We then see that a more accurate expression for blurring radius
will be

wa = max
allA

(wa(pathABC)) = max
0<S′<S

wa(S
′) (22)

As long as wa grows with S, maximum value is achieved for S ′ = S and
equation 21 can be used directly as we did for short path/no absorption case.
In general, we need to find the point Smax where wa expression has the maxi-
mum and, if path is long enough to contain this point, use wa(Smax). This im-
mediately means that for long paths blurring angle will reach a constant value
(rather than decreasing). Taking the derivative of equation 21 and perform-

ing substitution, we obtain w2

a(S � l) = 2
√

3
√

2/(1 +
√

2)〈θ2〉bl ≈ 1.7〈θ2〉bl
Rigorous treatment in this case also predicts constant blurring radius which
is expressed as w2

a = 〈θ2〉bl.



7 Conclusion

In this report we derived expressions for spatial and angular blurring of light
due to multiple scattering in a medium using path integral formulation. We
would like to emphasize again that we presented here an hugely simplified
treatment of the problem and never expected to get an exact answer. It is
therefore quite encouraging to see that we were able to obtain in all cases

where more rigorous results are available correct functional dependence of
both spatial and angular blurring radiuses on all relevant parameters. The
fact that all constants in our estimations of blurring radius are always within
a factor of two from corresponding accurate results is even more remarkable.
We hope that both the results themselves and simple procedures used in
their derivation will be useful in developing efficient rendering algorithms
for multiply scattering participating media. We presented a version of such
algorithm in [15].
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