Improved Controller Synthesisfrom Esterel

Cristian Soviani

JiaZeng

Stephen A. Edwards*

Department of Computer Science, Columbia University
1214 Amsterdam Avenue, New York, New York, 10027
{soviani, jia, sedwards} @cs.columbia.edu

Abstract

We present a new procedure for automatically synthesiz-
ing controllers from high-level Esterel specifications. Un-
like existing RTL synthesis approaches, this approach frees
the designer from tedious bit-level state encoding and cer-
tain types of inter-machine communication.

Experimental results suggest that even with a fairly prim-
itive state assignment heuristic, our compiler consistently
produces smaller, slightly faster circuits that the existing Es-
terel compiler. We mainly attribute this to a different style of
distributing state bits throughout the circuit.

Initial results are encouraging, but some hand-optimized
encodings suggest room for a better state assignment algo-
rithm. We are confident that such improvements will make
our technique even more practical.

1 Introduction

Designing state machine controllers remains one of the
more challenging aspects of digital circuit design. Although
such controllers tend to contain fewer gates than datapaths
or memory, the irregularity and concurrency of controllers
makes their design and verification time-consuming.

Currently, controllers are usually written in register-
transfer-level vHDL or Verilog and synthesized automati-
cally. While such RTL synthesis frees the designer from de-
tailed logic design, he or she is still responsible for encod-
ing, communication, and composition.

Like the move from schematic capture systems to RTL
design, we need to raise the level of abstraction in designing
controllers. This paper describes a way to do this through
an efficient compiler for a higher-level language well-suited
for describing complex synchronous digital controllers.

We present novel techniques for compiling Berry’s Es-
terel language [2] into synchronous digital circuits. Esterel
was not originally intended for hardware specification, but
its synchronous, concurrent, deterministic semantics plus

*Edwards and his group are supported by an NSF career award, agrant
from Intel corporation, and an award from the SRC.

high-level control constructs make it adept at describing
control-intensive synchronous digital logic circuits.

While resembling the problem of generating circuits
from Verilog or VHDL RTL descriptions, generating circuits
from Esterel differs in two main ways. First, in addition
to “combinational” statements such as conditionals and as-
signments, which execute within a single clock cycle, Es-
terel supports implicit state machines through the “sequen-
tial” pause statement, which delays for a cycle. Thus, Es-
terel program counters hold their state between clock cycles
and are in this sense more like behavioral descriptions. Un-
like RTL, therefore, the synthesis system is responsible for
state encoding. Second, Esterel supports high-level control
constructs such as concurrent composition, preemption, and
exceptions. Both aspects make Esterel a challenging lan-
guage to translate into circuitry, but also enable more ag-
gressive optimizations because the compiler is able to gain
a better understanding of the program’s behavior.

Berry first described the translation of Esterel into cir-
cuitry in 1992 [1] and little has changed since. Touati, Berry,
Toma, and Sentovich [12, 11, 9] improved it by reduce the
number of latches produced by Berry’s mechanical transla-
tion procedure. They compute the reachable state set implic-
itly using BDDs, then use this knowledge to remove sequen-
tial redundancies. This improves circuits because the group-
hot encoding used by Berry’s synthesis procedure is fairly
inefficient. Unfortunately, computing the reachable state be-
comes prohibitively expensive for large examples.

Potop-Butucaru’s [6, 7] optimizations, while intended
for software, apparently also improve circuit generation, but
we are unaware of any published results confirming this.

In this paper, we present a new circuit synthesis proce-
dure for Esterel that improves upon the current technique in
three novel ways. First, a new state encoding technique is
employed. Second, the “scaffolding” logic around the state
machines is synthesized in a different way. And finally, a
class of combinational redundancies is removed cheaply by
synthesizing the circuit from a control-dependence graph,
not a control-flow graph. One of the authors (Edwards) pre-
sented some of these ideas earlier [5].



2 An Esterel Example

Figure 1ais a simple Esterel program that will illustrate our
compiler’s operation. It consists of a pair of state machines
with a global reset input R and four one-bit outputs, A, B, C,
and D. The first machine, enclosed in the loop statement,
makes signals A and B true in alternate cycles. The com-
binational emit statement sets its signal true in the cycle in
which it executes; the sequential pause statement delays for
a cycle before passing control to the statement following it.

The second machine (starting at emit C) makes signal C
true in the first cycle, D true in the third, and then termi-
nates. The double vertical bars between the two machines
makes them start and run concurrently in lockstep.

The every statement surrounding the two machines
restarts them every time the R signal is present. Every pro-
vides strong preemption, i.e., in a cycle in which R is true,
the machines are restarted before they have a chance to do
whatever they would otherwise do if R were false.

Figure 2 shows a representative timing diagram for the
program. In the last cycle, D would have been true had R
not reset the machines.

3 Intermediate Representations

Cec employs two intermediate representations, the first
generated from a traditional abstract syntax tree. The first IR
is a variant of Potop-Butucaru’s GRC format [6, 7], which
consists of a selection tree (Figure 1b) that represents the
hierarchical state structure of the program, and an acyclic
control-flow graph (Figure 1c) that represents the behavior
of the program within a cycle. Ultimately, the control-flow
graph represents the combinational portion of the program;
the selection tree the sequential portion.

The second IR transforms GRC’s control-flow graph into
a control-dependence graph (Figure 1d) that exposes addi-
tional concurrency. In circuitry, the CFG-to-cDG transfor-
mation corresponds to removing redundant gates.

From the abstract syntax tree, the compiler builds the se-
lection tree in Figure 1b and the control-flow graph in Fig-
ure 1c using the recursive procedure described by Potop [6,
7]. In Figure 1b, the double diamonds—switch nodes—
represent exclusive states, the triangles—fork nodes—
concurrent states, and the others simple states. The two chil-
dren under switch node 5 correspond to the two states of
the first machine: branch 0 emits A, and branch 1 emits B.
The three children under switch node 8 are the three states
of the second machine: branch 2 waits for a cycle after C
was emitted, branch 1 emits D, and branch O corresponds to
the machine being terminated. And the three children under
switch node O represent the initialization of the machine, its
behavior in the first cycle, and its behavior in later cycles.

The GRC control-flow graph is a flowchart with some ad-
ditions. It is concurrent: when a triangle-shaped fork node
is executed, it sends control to all of its successors. Once

nmodul e exanpl e:
input R
output A B, C D

every R do
| oop
emt A
pause;
emt B;
pause
end | oop
[
emt C
pause;
pause;
emt D
end every

end nodul e

Figure 1. (a) A simple Esterel program, (b) its
selection tree, (c) its control-flow graph, and
(d) its (simplified) control-dependence graph.

RN [
ALY Y
B U
Cl | _/_\
5 B
nERN

Figure 2. A timing diagram for Figure 1a




spawned, concurrent threads of control are synchronized by
sync nodes (the downward-pointing triangles).

Although not in this example, sync nodes generally have
multiple successors and handle terminating threads and
concurrently-thrown exceptions. When control in all incom-
ing threads reaches sync node, the node passes control to its
successor labeled with the highest exit level produced by
its threads. This example only uses levels 0 (“thread ter-
minated”) and 1 (“thread paused”); exceptions are encoded
using higher exit levels.

The state of the program between cycles can be thought
of as residing in the switch nodes in the selection tree. Each
remembers which of its children was last entered, and when
control reaches a switch node in the control-flow graph, it
passes control to one of its children depending on this state.
For example, when the house-shaped enter 1 node in Fig-
ure 1c is executed, it sets the state of switch 0 in Figure 1b
to 0 because node 1 is child 0 of node 0. After this, when
control reaches switch 0 in Figure 1c, the node sends control
down the arc labeled 0.

Consider what happens when the program starts execut-
ing. By convention, switch 0 is initially set to 1, so control
initially flows down the arc labeled 1 from switch 0 to a
fork, which sends control to the enter 1 and enter 3 nodes,
setting switch 0 to 0 and switch 2 to 0.

In the next cycle, control flows down the arc labeled 0
under switch 0 to the test of R (the diamond). If R is absent,
control flows through switch 2 to enter 3 and the program
stays in the same state. Otherwise, control flows through
enter 4 setting the state of switch 2 to 1, hits a fork, and
executes emit C and emit A before hitting enter 7, setting
the state of switch 5 to 1, and enter 11, setting switch 8 to 2.

While it would be practical to generate a circuit directly
from the control-flow graph of Figure 1c (Berry’s V5 com-
piler does essentially this [1]), to further improve the gener-
ated circuit our compiler transforms the control-flow graph
into the control-dependence graph of Figure 1d using the
efficient algorithm of Cytron et al. [3]. This transformation
exposes additional parallelism in the graph by adding fork
nodes and grouping control-equivalent nodes under them.
For example, the emit A and enter 7 nodes in Figure 1c
are always executed together. The control-dependence al-
gorithm recognizes this and always pairs these two nodes
under a single fork nodes in Figure 1d.

Some redundant nodes were removed in the translation
from Figure 1c to Figure 1d. The sync nodes only have
a single successor and therefore do not do anything. This
means the terminate nodes (the double octagons) are also
unneeded and were removed.

Our GRc representation differs from Potop’s [6, 7] in one
key way: handling of the terminated state of a thread. This
occurs when a thread in a group has terminated while the
others continue running. Potop has an additional type of

node in the control-flow graph: exit, which is the opposite
of an enter, i.e., it marks its thread as not operating; it marks
a switch as passing control to none of its children. We feel,
and experiments bear this out, that the terminated state of a
thread should be treated like any other state to minimize the
number of special cases the state machine synthesis proce-
dures must address and potentially simplify the state encod-
ing problem. In fact, experiments suggest that instead the
initial state of a machine should be treated specially.

Other other changes to the GRC representation are cos-
metic. Potop draws switch nodes in the control-flow graph
as triangles, not diamonds (we prefer the diamond because
it is a decision point). His parallel synchronizer nodes dis-
tinguish their inputs; ours have equivalent inputs and distin-
guish exit levels using terminate nodes instead.

4 Generating Circuits

Much as the GRc format consists of the sequential selection
tree and the combinational control-flow graph, our compiler
synthesizes circuits in two parts: sequential state machines
with encoding and decoding logic, and “scaffolding” logic
that implements the control flow graph and handles inter-
machine communication. Separating the two simplifies the
task of analyzing the impact of state encoding.

Each exclusive node in the selection tree becomes a local
state machine; the high-level structure of the specification
is preserved. The output of each machine is a set of one-hot
encoded chk signals, one per state. This is the most natural
interface for the logic at the switch nodes in the control-flow
graph, the only observers of the machines’ outputs.

Each machine has a goto input for each of its states plus
a hold input that instructs the machine to hold its state. The
machine assumes the goto and hold inputs are mutually ex-
clusive, i.e., at most one is active in any cycle. To ensure
this, the circuit outside the machine often includes arbitra-
tion logic. Making it the responsibility of the machine’s en-
vironment is natural because the appropriate priorities come
from structure of the control-flow graph.

The machines’ hold inputs implement Esterel’s suspend
instruction, which can temporarily halt a group of state ma-
chines. The hold inputs of the machines within the scope
of a suspend instruction (i.e., the exclusive nodes under the
suspend node in the selection tree) are driven with the acti-
vation net of a suspend node in the control-flow graph. Like
the goto inputs, external arbitration logic ensures hold and
goto inputs are never active simultaneously.

For each machine, our compiler builds two-level en-
coding/decoding logic given either the default or a user-
supplied encoding. The default encoding is one-hot for ma-
chines with greater than three states; for machines with
three or fewer states, one state is encoded as all 0’s. Surpris-
ingly, this simple variation on one-hot produces a significant
improvement in the quality of the generated circuits.



Our encoding scheme differs from the traditional V5 en-
coding. In V5, each active state of a concurrently-running
thread is given a one-hot code, but the terminated state of
a thread, which may appear when other threads within the
same group continue to run, is encoded with all zeros. De-
tecting this state can require a wide OR gate. By contrast,
our compiler treats this “terminated” state as yet another
state if it may occur, possibly saving the wide OR gate at the
expense of an additional latch. In any case, our flexible en-
coding technique allows the terminated state to be encoded
as in V5, or in whatever other style proves suitable.

Our technique builds state machines throughout the se-
lection tree. By contrast, V5 only holds state at the leaves.
While the V5 encoding is sufficient (the state of any ma-
chine can be computed by logically oring the state of its
children), it can lead to inefficiencies. Consider the signal
that indicates an abort condition should be tested. In V5,
this is computed by oRring together all the flip-flops “un-
der” the abort test. In our technique, this is usually a chk
signal from a machine above the abort statement in the se-
lection tree. This generally eliminates levels of logic and
may make computing the effect of abort statements faster.
In some sense, ours is a retiming of the V5 scheme, but is
more flexible because it also supports different encodings.

Thew circuity between state machines is nearly a one-
to-one translation of the control-flow graph. Each arc in the
CFG becomes a net that is true if the corresponding arc ex-
ecutes in the current cycle. The circuit driving each net is
usually trivial. An emit ORs its activation net with all the
others that emit the same signal, a conditional test gener-
ates a pair of AND gates driven by the test’s predicate and
its complement, and a fork node becomes simply fanout.

The translation for the sync node is more complicated:
a non-trivial one becomes a priority encoder that computes
the maximum exit level for the group of threads.

Nodes that interact with state machines are more com-
plicated. Switch nodes AND their activation net with the chk
nets from their machine. Nodes for enter and suspend either
drive machines’ goto or hold inputs directly, or may feed
into a arbitration circuit that ensures the goto nets remain
mutually exclusive. Such logic is often necessary because of
Esterel’s exception-handling constructs and its strange rein-
carnation phenomenon that makes some statements execute
twice or more every cycle.

CEC generated Figure 3 from the control-dependence
graph in Figure 1d. The inputs are the R signal and chk
signals from the four state machines. The outputs are sig-
nals A, B, C, and D plus the goto outputs for the state ma-
chines. There are no hold outputs because the example has
no suspend statements.

The leftmost pair of AND gates in Figure 3 implement the
test for R under branch 0 of switch 0, and the leftmost OR
implement the two enter 1 nodes. At the second level, the

=
D\ Dﬁ

[sm5_chk_0
(B >

[sm8_chk_1 w
[sm8_chk_0 ’

[sm5_chk_1

[sm8_chk_2 N ‘
>
[SmO0_chk_1T ) [sm2_goto_0>

Figure 3. The scaffolding circuit generated for
the example in Figure 1.

o

0

Figure 4. The final SIS-optimized circuit.

rmiﬂ ~
L

AND gates implement switch 2. The AND gates at the third
level implement switches 5 and 6 and the OR gates imple-
ment the four enter 3 and 4 nodes. The topmost OR gate on
the right implements the two emit A nodes, and the second
OR combines the two incoming control arcs on enter 9.

Figure 4 shows the circuit after adding state machines
and optimizing with sis. From the top, the five latches in
Figure 4 encode switch 0, switch 2, switch 5, and the second
and first branches of switch 8.

5 Counters

Counting events is easy in Esterel. For example, the state-
ment await 3 S waits for the three cycles in which signal S
is true. Both V5 and our compiler counts such events with
explicit counter state machines. Although counting could be
treated as just another source of states (e.g., by dismantling
such an await statement into three), treating them as coun-
ters simplifies counter-specific optimizations.

CEC synthesizes simple binary down-counters to count
events. Each has a start input that loads an initial value, a
enable input that causes the counter to counter, and an zero
output that indicates when the count has expired.



Table 1. Experimental Results

SIS Xilinx

Example Literals Latches Levels Slices Period (ns)

V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand
Figure 1la 23 15 15 6 (0) 5 5 4 3 3 7 4 4 47 46 44
dacexample 41 23 22 7(0) 5 5 5 3 3 10 5 5 6.2 6.0 55
jackyl 39 22 20 5(0) 4 4 4 3 3 6 5 4 54 6.1 50
runner 218 145 144 30(24) 20 20 11 10 10 56 36 35 106 84 81
greycounter 240 173 142 34(6) 18 15 11 13 9 40 34 17 12.4 134 8.9
scheduler 519 380 74(52) 55 8 8 80 66 11.3 89
Servos 407 287 60 (16) 47 10 10 105 66 16.7 134
abcd 167 165 17(0) 13 7 8 43 43 128 125
tcint 508 414 95(14) 60 17 9 115 81 10.8 10.9

Reported by sis: Literals: number of literals after optimization by “script.rugged.” Latches: number of latches (number due to counters). Levels: levels of
logic (complex gates). Reported by Xilinx tools: Slices: Number of dlices (area). Period: Minimum clock period in nanoseconds.

The V5 compiler synthesizes faster, more complex coun-
ters with two latches per bit. Although this may produce
faster unoptimized circuits, the increased circuit complex-
ity appears to make it harder for the logic optimization step.

Currently, cec does technology-independent synthesis,
but Esterel’s counters illustrate the need for being more
technology-aware. Especially on the Xilinx architecture,
which has highly optimized circuitry for arithmetic carries,
binary counters can be implemented very efficiently. But
other counter styles may be superior in other technologies.

6 Experimental Results

Table 1 shows our experimental results. We compare the
output of Cec running normally with the output of Berry
et al.’s V5 compiler and a circuit generated with CEC using
hand-optimized state machine encodings. The information
in columns titled “sIS” are statistics from running the sis
logic optimizer [8]. Data in columns titled “Xilinx” were
collected after running the Xilinx ISE tools.

We used sIS’s combinational optimization script
script.rugged. Although targeted only at area optimization,
it is standard and scales well. Sis can also do sequential op-
timization, but it requires the ability to calculate the reach-
able state set, which rapidly becomes impractical for larger
examples. Our goal is to synthesize arbitrarily large con-
trollers, so we chose not to use other optimizations.

For the Xilinx results, we transformed the optimized cir-
cuit from sIs into structural Verilog using a simple script
and passed it to the Xilinx 1SE tools (i.e., xst, ngdbuild, map,
par, trce) with all optimization flags set to maximum and a
Spartan 2s50e-ft265-6 target. We registered the inputs and
outputs for reasonable 1/O timings. The number of slices
and minimum clock period come from a placed and routed
design, so we consider them realistic. A slice is a pair of
four-input lookup tables driving two flip-flops.

We ran our compiler on controllers ranging from the
small example in Figure la to a bus controller (tcint).
Dacexample is the simple arbiter from Edwards [4]. Jackyl
is a pattern matcher due to Potop-Butucaru [6]. Runner is
Berry’s example from the Esterel tutorial. Greycounter is a
four-bit grey-code counter with an alarm. Scheduler mod-
els a round-robin arbiter responding to requests to a shared
resource. Servos is a controller for a trio of stepper motors
that rotates them into a home position then to a given posi-
tion, all the while watching for faults. Abcd is a four-button
user interface that locks out other buttons while one is active
pressed. Tcint is a controller for the turbochannel bus.

In general, CEC generates circuits with fewer latches for
two reasons. Its counters use half as many latches as those
in V5, but this only affects certain examples. The numbers
in parentheses in Table 1 are the number of latches in the
V5 circuit due to counters. So the reduction in latches in the
scheduler, runner, and servos examples are due exclusively
to counters, but this is not true for the others.

Our encoding of machines with three or fewer states
causes most of the different in latch counts. This causes
the differences in greycounter and tcint, which has many
two-state machines. Applying Potop-Butucaru’s optimiza-
tions to the V5 synthesis procedure may produce similar
improvements, but we know of no published comparison.

CEC generates smaller machines that run at compara-
ble speeds. The area improves approximately 20% on many
examples. We attribute this to the more compact state en-
coding and the control dependence analysis, which removes
certain redundant gates more effectively than sis.

Examples with more extensive preemption constructs
(e.g., servos, scheduler, and runner) run faster when syn-
thesized with cec. We attribute this to our distributed style
of state assignment, i.e., because we synthesize latches at



every switch node in the selection tree, not just those at the
leaves as V5 does.

For the smaller examples, we hand-optimized the state
encoding, largely by trial-and-error, to see how much bet-
ter we could make the circuits. Not surprisingly, the biggest
advantage came in the greycounter example, which became
significantly smaller and faster; the others improved less
dramatically. We attribute this to the fairly regular character
of the greycounter example.

We included the hand-optimized results partially to show
the power of CEC’s user-supplied encoding mechanism, but
also to suggest the possibility of improvement in the current
heuristics for state assignment.

7 Conclusions and Future Work

We presented a novel procedure for synthesizing con-
troller circuits from Esterel programs. Experiments sug-
gest our technique gives reduced circuit size with a slight
speed advantage over the procedure in Berry et al.’s Es-
terel V5 compiler. Our procedure uses the GRC intermedi-
ate representation suggested by Potop-Butucaru [6, 7] and
a redundancy-removing control dependence transformation.
Together, these give smaller, more distributed controllers
with less communication.

Our speed results are less impressive than those for area,
but they no worse than the existing V5 technique. We will
concentrate on circuit speed in the future.

One drawback of the recursive GRC generation proce-
dure described by Potop [7] is its excessive duplication of
structures (e.g., there are two identical emissions of A in
Figure 1c that could be merged). While Esterel’s reincarna-
tion semantics often do require structures to be duplicated,
and the sis logic optimizer is often able to identify and col-
lapse such redundancy, the existing translation makes many
needless duplications that should be avoided. Tardieu and
de Simone [10] have devised some simple, powerful static
analysis for identifying when duplication is necessary. We
will incorporate this algorithm in a future version of the
compiler to reduce the size of the generated circuit.

Much work remains to be done. We plan to explore
more technology-dependent optimizations, such as different
counter architectures for different technologies. Also, we
currently only synthesize the pure subset of Esterel. While
this is the most natural one for controllers, it should be pos-
sible to add limited datapath synthesis ability to cec. Fi-
nally, we plan to explore more powerful state assignment
algorithms that take into account the structure of the scaf-
folding logic. Because we know the environment in which
these machines will execute, ours will be significantly dif-
ferent than existing state assignment algorithms.

Acknowledgements

Intel’s Mike Kishinevsky has long demanded better state en-
coding. Xilinx’s Satnam Singh gave us real chips and de-
velopment tools. Dumitru Potop-Butucaru gave us his GRC
format. Gérard Berry has always helped.

References

[1] G. Berry. Esterel on hardware. Philosophical Transactions
of the Royal Society of London. Series A, 339:87-103, Apr.
1992. Issue 1652, Mechanized Reasoning and Hardware De-
sign.

[2] G. Berry and G. Gonthier. The Esterel synchronous pro-
gramming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87-152, Nov.
1992.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, 13(4):451-490,
Oct. 1991.

[4] S. A. Edwards. Compiling Esterel into sequential code.
In Proceedings of the 37th Design Automation Conference,
pages 322-327, Los Angeles, California, June 2000. Asso-
ciation for Computing Machinery.

[5] S. A. Edwards. High-level synthesis from the synchronous
language Esterel. In Proceedings of the International Work-
shop on Logic Synthesis (IWLS), New Orleans, Louisiana,
June 2002.

[6] D. Potop-Butucaru. Optimizing for Faster Smulation of
Esterel Programs. PhD thesis, INRIA, Sophia-Antipolis,
France, Aug. 2002.

[7] D. Potop-Butucaru. Optimizations for faster execution of
Esterel programs. In Proceedings of Memocode, pages 227-
236, Mont St. Michel, France, June 2003.

[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton,
and A. Sangiovanni-Vincentelli. SIS: A system for sequen-
tial circuit synthesis. Technical Report UCB/ERL M92/41,
University of California, Berkeley, May 1992.

[9] E. M. Sentovich, H. Toma, and G. Berry. Efficient latch op-
timization using exclusive sets. In Proceedings of the 34th
Design Automation Conference, pages 8-11, Anaheim, Cal-
ifornia, June 1997.

[10] O. Tardieu and R. de Simone. Instantaneous termination in
pure esterel. In Proceedings of the 10th Annual Satic Anal-
ysis Symposium, volume 2694 of Lecture Notesin Computer
Science, pages 91-108, San Diego, California, June 2003.

[11] H. Toma, E. Sentovich, and G. Berry. Latch optimization in
circuits generated from high-level descriptions. In Proceed-
ings of the IEEE/ACM International Conference on Com-
puter Aided Design (ICCAD), pages 428-435, San Jose, Cal-
ifornia, Nov. 1996.

[12] H. Touati and G. Berry. Optimized controller synthesis using
Esterel. In Proceedings of the International Workshop on
Logic Synthesis (IWLS), Tahoe City, California, May 1993.



