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Abstract

The rapidly increasing array of Internet—scale threats is a pressing problem for every orga-
nization that utilizes the network. Organizations often have limited resources to detect and
respond to these threats. The sharing of information related to probes and attacks is a facet of
an emerging trend toward “collaborative security.” Collaborative security mechanisms provide
network administrators with a valuable tool in this increasingly hostile environment.

The perceived benefit of a collaborative approach to intrusion detection is threefold: greater
clarity about attacker intent, precise models of adversarial behavior, and a better view of global
network attack activity. While many organizations see value in adopting such a collaborative
approach, several critical problems must be addressed before intrusion detection can be per-
formed on an inter—organizational scale. These obstacles to collaborative intrusion detection
often go beyond the merely technical; the relationships between cooperating organizations im-
pose additional constraints on the amount and type of information to be shared.

We propose a completely decentralized system that can efficiently distribute alerts to each
collaborating peer. The system is composed of two major components that embody the main
contribution of our research. The first component, named Worminator, is a tool for extracting
relevant information from alert streams and encoding it in Bloom filters. The second component,
Whirlpool, is a software system for scheduling correlation relationships between peer nodes. The
combination of these systems accomplishes alert distribution in a scalable manner and without
violating the privacy of each administrative domain.
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1 Introduction

With the growing threat to critical infrastructure computer networks and systems, the ability to
rapidly and correctly identify, rank, and react to probes and attacks is of acute importance. We
posit that probes and attacks can be detected accurately when multiple organizations share alert
information. One noteworthy advantage is the detection of very stealthy attackers: those who
distribute their reconnaissance activities over multiple sites and a long time period.

Classical intrusion detection systems (IDS’s), whether host-based or network—based, are typ-
ically constrained within one administrative domain. In such an environment, information about
the global state of network attack patterns is necessarily unexamined. This global information
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could prove crucial to organizations in ranking and addressing threats that they do perceive and
alerting organizations to threats they would not otherwise have recognized.

Most current IDS’s do not adequately address the need for information exchange between sys-
tems under attack. In addition, the fail-open nature of intrusion detection systems make them a
natural target for attacks and subversion. As the recent Witty worm demonstrates [19], security
systems themselves can be prime targets for attack. Any distributed IDS must enforce mechanisms
that support the reliability of its nodes as well as the integrity and confidentiality of the alerts
exchanged between those nodes.

1.1 Challenges for Collaboration

Collaborative methods for distributed intrusion detection seem poised to revitalize the arsenals of
system administrators by offering the fusion of alerts from many different domains and types of
IDS’s (e.g., both host and network—based anomaly detection and signature matching engines). The
exchange of alert data can effectively supplement the knowledge gained from local sensors.

However, several critical problems must be addressed before intrusion alert information can be
safely distributed among cooperating sites. First, the sheer volume of alerts can cause evidence
of stealthy scan/attack activity to go unnoticed. Second, the currently observable rates of alert
generation preclude the use of any solution incorporating a centralized system to aggregate and
correlate alert information. Administrators need a reasonable chance to respond to the threats
that are perceived by the system; replicating all alert information and forwarding it to a common
central node places considerable trust in that node and risks both a single point of failure and the
increasing congestion of the network near that node. Third, exchanging alert data in a full mesh
quadratically increases the complexity of communication and bandwidth requirements. Fourth, in-
formation exchange between administrative domains needs to be carefully managed, as proprietary
or confidential network data may escape the boundary of each domain. Finally, any partitioning
of the alert information into distinct sets defined by the different domains may cause information
loss by disassociating data that would otherwise have been considered in the same context.

1.2 Our Approach

We propose a collaborative and distributed approach to intrusion detection and present a system
that addresses many of the difficulties present in information sharing of this type. By exchang-
ing information between administrative domains, we gain the tantalizing benefit of near—global
intrusion knowledge at the cost of communicating with a small number of peers.

Previous work on distributed intrusion detection has focused mainly on the exchange of data
within a single organization. Only recently has research been performed on systems that support
the exchange of data between administrative domains. The most notable of these is the DOMINO
[25] system. DOMINO is an overlay network that utilizes the Chord [20] protocol to distribute
alert information based on a hash of the source IP address. However, DOMINO does not address
privacy requirements. In addition, we propose a completely decentralized architecture more akin
to a peer—to—peer application rather than the dual-layer hierarchy that DOMINO employs.

Our innovative claims are based on the combination of Worminator® and the Whirlpool dis-
tribution mechanism to provide privacy to a large number of collaborating sites. Our two main
contributions over previous work are:
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1. We enable sharing of information between administrative domains by protecting the privacy,
confidentiality, and integrity of messages.

2. We propose a peer-to-peer architecture that scales much better than the centralized or dis-
tributed (mainly 2-layer hierarchy) solutions previously proposed.

In a series of experiments and simulations we demonstrate the practicality and efficacy of our
approach, showing that we can detect distributed attacks within an average of six time slices or
exchange periods without the overhead of replicating and distributing data to all peers.

Paper Organization The remainder of this paper is organized as follows. In Section 2, we
outline our approach to the problem and examine the threat model. In Section 3 we discuss in
detail the implementation of our system, and Section 4 presents performance measurements to
support our claims. We give an overview of the related work in Section 5. We discuss our plans for
future work in Section 6, and conclude the paper in Section 7.

2 Architecture

We adopt two primary mechanisms in order to cope with the difficulties of distributed correlation
and the potential volume of data being correlated. First, the construction of Bloom filters by
Worminator [21] is employed to protect the confidentiality of the data being exchanged between
domains. Second, efficient information exchange is accomplished with a distributed correlation
scheduling algorithm. The scheduling algorithm dynamically calculates subsets of correlation peers
that should communicate to exchange Bloom filters. Since information is also compacted by the
Bloom filter, correlation between peers becomes extremely cost-effective in terms of bandwidth and
processing power.

2.1 Motivation

A key motivating factor for organizations to join a collaboration group in performing distributed
intrusion detection is that participants can implement fast mitigation strategies against threats
they otherwise would not have known about; for example, DOMINO discusses the advantage of
small blacklists (around 40 entries) that retain their efficacy even when data is fairly stale. Other
responses include the content filtering strategies proposed by Moore et al. [13], prosecution, or
military action.

2.2 Environment

From our discussion above, a set of requirements that guides the design of our system has emerged:
1. The exchange of alert information must not leak potentiall sensitive data.
2. Large alert rates hide stealthy activity.

3. Centralized repositories are single points of failure and likely unable to correlate the burgeon-
ing amount of alerts.

4. Exchanging alerts in a full mesh quadratically increases the complexity of the problem.



5. Any solution that partitions data among nodes risks information loss by disassociating evi-
dence that should be considered in the same context.

We make several assumptions about the environment the system exists in and the alert information
the system exchanges. Our assumptions and choices are intended to carefully balance the require-
ments of data privacy with the need to derive useful information and actionable intelligence from
the alert exchange.

The environment and user base for a collaborative distributed intrusion detection system is an
important consideration. We envision cohorts of 25 to 100 organizations exchanging information.
Such cohorts can be organizations with similar interests, such as universities, financial institutions,
military or government networks, energy companies, news organizations, etc. Each of these orga-
nizations already manages their own fairly large enclave. In such an environment, the potential
amount of raw network events and low-level alerts is staggering. DShield? currently reports the
contribution of around 10 million alerts per day. Our experimental sensors at Columbia report the
processing of some 1.6 million network events per hour.

The sheer volume of alert streams is a critical consideration in the design and evaluation of any
distributed intrusion detection system. The size of current (and foreseeable) alert streams demands
low—cost processing and correlation. Alert streams can threaten to dominate network bandwidth
if they are unnecessarily replicated.

Perhaps the most important decision we make is to employ the use of “watchlists,” or lists of
IP addresses suspected of subversive behavior. The task of the distributed detection system is not
to analyze the network or host events of other domains, but rather to correlate summaries of alerts
to identify attackers. Therefore, watchlists encapsulate the appropriate information to exchange.
In addition, we believe that encodings of these watchlists in some binary format (as opposed to the
IDMEF) represents a bandwidth savings in the environment described above.

We also use the Antura Recon system [6] as a major component of our input; Antura acts
as our alert generator. The advantage of employing Antura is that Recon alerts provide more
information than other sensors for stealthy long term reconnaissance activity [16], thus providing
richer information about attack precursors. Other correlation systems do not keep such long term
information; they usually fuse information about current network events.

2.3 Threat Model

We must consider a threat model that accounts for two major types of attackers. The first kind of
attacker attempts to evade the distributed intrusion detection mechanism by performing very low
rate scans and probes. The sophisticated attacker will often scan single organizations at slow rates
in parallel in order to increase his productivity. Such an attacker, when faced with our system, can
attempt to guess or derive the schedule at which organizations trade alerts, thereby avoiding the
promotion of his scan activity.

The second type of attacker targets the intrusion detection system itself and engages in nu-
merous behaviors intended to corrupt the system or violate the confidentiality or integrity of alert
information. Such an attacker can compromise some subset of nodes in the system in order to
discover information about the organizations he is targeting. This threat is called “proxy wa-
termarking”: an attacker compromises a node in the system and scans some target in another
organization via a proxy. The attacker then listens for alert information at the compromised node
to discover if his attack via the proxy was detected by any member of the system.
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2.4 Detection and Correlation Mechanisms

Novel methods for detection abound in the literature. In this paper, we focus both on signature—
based methods, such as those used by the Snort Intrusion Detection engine [17] and anomaly-based
detection mechanisms, such as those discussed in [23].

Correlation mechanisms range from the very simple to intricately elegant. Qin and Lee [15]
present a sophisticated statistical mechanism for assessing causality in alert data sets, allowing
them to detect new relationships among attacks.

Our basic hypothesis is that the proper level of information can be represented by distributing
and correlating watchlists of suspected attacker IP addresses. Additional information can be mixed
into this, including source and destination ports, and codes for the particular type of attack.

2.5 Preserving Privacy

While IDS alerts themselves could be distributed, there are two substantial disadvantages to doing
this: first, organizations may have privacy policies or concerns about sharing detailed IP data,
some of which might uncover who they normally communicate with. Second, these alert files grow
rapidly given substantial traffic. While parameters may be tweaked to reduce potential noise, a
preferable solution would be to encode the relevant information in a compact yet useful manner.

We provide a compact format via the use of Bloom filters. A Bloom filter is a one-way data
structure that supports two operations: insertion and verification, e.g., while no data can be
extracted after being inserted in the Bloom filter, it is probabilistically possible to see if specific
data has been inserted if presented a second time to the Bloom filter. This is accomplished by
creating a compact bit vector (typically between 2!5 — 220 entries). Entries are indexed by the
hash of the original data, i.e., a high-quality hash of original data (in this case, IPs and port
information) is generated, broken up into parts, and these parts are used as indices into the bit
vector. Each resolved index in the bit vector is set to 1. This process is typically repeated multiple
times (for different parts of the hash and/or different hashes), thereby increasing resiliency to noise
or data saturation. Verification is similar to insertion; instead of actually setting bits, the bit
vector is examined to determine if the bits are already set. Therefore, a process is run on the
computer running the IDS to parse its alert output and to generate Bloom filters corresponding to
(for example) IP/port endpoint data.

Since Bloom filters are compact one-way data structures, we get three benefits:

e Compactness: A Bloom filter smaller than 10k bits in size is still able to accurately verify
tens of thousands of entries.

e Resiliency, even when the Bloom filter is decreased in size: When the Bloom filter is saturated,
it starts giving false positives (i.e., multiple data entries resolve to the same locations in the
bit vector), but never gives false negatives. The false positives can be ameliorated by tuning
or by correlation against multiple alert lists.

e Security: By utilizing a one-way data structure, organizations can correlate watchlists without
releasing actual IP data, satisfying privacy needs while being able to participate. If further
security from outside observers is needed, the dissemination protocol can be encapsulated in
a secure tunnel, like SSL, thereby only granting Bloom filter access to the set of participants
in the alert list correlation.



2.6 Distributed Correlation

A distributed correlation function must overcome the performance problems of a centralized model
while balancing the information loss inherent in partitioning alert data among different nodes. The
most straightforward way to accomplish distribution (forwarding all data from every node to every
other node) involves a quadratic increase in the amount of data exchanged (and the associated
processing, however lightweight that may be).

More sophisticated approaches are based on two different theories. The first approach creates
an explicit mapping from alert data (specifically, source and target IP addresses) to particular
correlation nodes. The reasoning behind this approach is that source and target IP addresses are
the two most important features (besides target port) of alert data. With data about various
machines collected in one node, the majority of correlation can be accomplished at that node
without communicating with other nodes (except to distribute results of global interest).

The shortcomings to this approach (an approach similar to that used in DOMINO [25]) is that
nodes become special cases of the centralized model: they are single points of failure for information
pertaining to the IP address range being hashed. In addition, participants in the system may be
uncomfortable with storing their raw alert information at a single node. This approach invests too
much trust in each node. While a self-healing approach like Chord [20] can ameliorate the loss
of a node, previous information stored at that node is at best lost temporarily (for example, in
the case of a denial of service,) or corrupted (in the case of the node being compromised). Some
of these shortcomings can be mitigated by replicating the data to some number of other nodes;
however, it is not clear what the appropriate balance is between fault—tolerance through replication
and utilization of network bandwidth and storage space. If data is replicated to every other node,
we see an unacceptable quadratic increase in the cost of the system.

The second theory realizes the limitations of the first approach and instead observes that a
theoretical optimal schedule exists for communicating information. If an oracle existed in the
network that answered with the appropriate subset of nodes that should talk given a particular
alert, communication links could be set up between these nodes in constant time without wasting
effort talking to nodes with irrelevant data.

In this model, we assume that there is a set of nodes S of size N. We assume that there is
some reliable mechanism for any subset of nodes to communicate with each other. There is some
whole piece of knowledge K, that if known would provide evidence of a distributed scan. During a
distributed scan, some subset of S is scanned and now contains a piece of knowledge K.

Normally, this knowledge would be discarded as insignificant. However, the optimal schedule
allows this set of nodes to perfectly guess which of its neighbors also contains a piece of K. Note
that each node could also find this information out via the O(N?) full mesh method of asking each
other node in the network. However, we assert that this method is too costly in terms of trust,
network bandwidth, and disk storage.

The key idea in this optimal schedule is that the correct subsets of nodes are always commu-
nicating. In order to mimic this behavior, the (approximately) correct nodes must talk to each
other at (approximately) the right time. One naive way of accomplishing such a schedule is to pick
relationships at random. However, a more robust model than the random approach provides some
control over the rates at which node relationships change. When the correlation schedule is seeded
with some secret high—entropy information, the task of intrusion detection can be viewed from a
game theoretic perspective. Game theory approaches to intrusion detection have been explored by
Kodialman and Lakshman [10].



2.7 Whirlpool

There is a clear need for efficient alert correlation in large-scale distributed networks. To address
this need, we introduce the notion of correlation scheduling: the controllable formation and disso-
lution of relationships between nodes and groups of nodes in a network. These relationships can
be envisioned as a dynamic overlay.

The Whirlpool mechanism is a procedure for coordinating the exchange of information between
the members of a correlation group. The coordination mechanism is controlled by a dynamic and
parameterizable correlation schedule.

Our approach is predicated on the previously described theoretical model of the optimal cor-
relation schedule, the shortcomings of a fully interconnected mesh of correlation nodes, and the
limitations of the ideal centralized approach to large—scale correlation. The main difficulty is that
nodes would most likely discard data that in truth belong to a distributed alert. We must develop
a mechanism whereby a node can quickly conference with other peers and determine whether or
not a local alert is noise or signifies part of a distributed alert.

In this section, we identify the optimal correlation scheduler and present the Whirlpool scheduler,
which closely approximates the optimal schedule and performs better than both a random subset
selection model and the total exchange full-mesh model.

The basic mechanism behind Whirlpool is a set of dynamic federations of nodes that join and
leave these federations at various rates. The variance in rates is intended to allow federation
groups to retain some stability while expediting the import of new information into the group.
Furthermore, this mechanism can be augmented with a distributed learning algorithm that assists
in promoting alerts discovered by the distributed correlation.

Informally, the Whirlpool model can be thought of as a set of nodes of size N arranged in
concentric circles of size /(IV), much like electrons in the classic model of an atom. For convenience,
we can assume that the rings are ordered such that the inner rings are spinning faster than the outer
rings (although it makes no difference for the amount of information gleaned). To offer a concrete
example, the outermost ring can advance clockwise by 1 position every 10 minutes, and the ring
inside that advances clockwise by 1 position every 9 minutes, and so on, until the innermost ring
advances by 1 position every minute. Rates for each ring are configurable.

If we draw a radius that passes through 1 node at each ring level, we have identified a temporary
“family” or federation of nodes that can exchange alert data. Part of this family changes very
rapidly (the nodes that belong to rings close to the center of the system) and part of the family
is relatively stable. This combination provides both stability of the correlation mechanism as well
as bringing fresh information into each family on a regular basis, increasing the chances that a
particular family is capable of identifying a common watchlist-encoded behavior.

To further enhance this model, we can imagine that rings are arranged in a circular buffer:
after the outermost ring completes a revolution, each ring advances inward, and the innermost ring
becomes the outermost ring.

3 Implementation

The Worminator platform supports compact watchlist correlation via the replication and use of
Bloom filters [2]. A Bloom filter is a one-way data structure that supports two operations: insertion
and verification, e.g., while no data can be extracted after being inserted in the Bloom filter, it is
probabilistically possible to see if specific data has been inserted if presented a second time to the
Bloom filter. This is accomplished by creating a compact bit vector (typically between 2% — 220



entries). Entries are indexed by the hash of the original data, i.e., a high-quality hash of original
data (in this case, IPs and port information) is generated, broken up into parts, and these parts
are used as indices into the bit vector. Each resolved index in the bit vector is set to 1. This
process is typically repeated multiple times (for different parts of the hash and/or different hashes),
thereby increasing resiliency to noise or data saturation. Verification is similar to insertion; instead
of actually setting bits, the bit vector is queried to see if the bits are already set.

The Worminator project currently supports the Antura [6, 16] IDS, and is implemented using
about 2,500 lines of Java code. The program runs in two modes: generation and correlation. For
generation, the Worminator process is run at specified intervals on the computer running Antura to
parse its alert output and to generate Bloom filters corresponding to IP/port endpoint data. In the
first version of the software, this Bloom filter data is then disseminated using HT'TP to a centralized
node at Columbia. Once such Bloom filters are generated and disseminated, individual sites can
correlate their local alerts against one or many Bloom filters, and determine which IPs/ports match
against others’ results, identifying distributed attacks.
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The goal is to provide an easily replicated, secure watchlist that can be rapidly disseminated and
correlated. Our first experiments focused on worm propagation rather than stealthy surveillance.
Our results suggest that uncoordinated worm propagation are detectable by correlated watchlists
from a set of collaborating sensor sites. In preliminary tests conducted at Columbia that correlated
results from Worminator installations at Columbia and Georgia Tech, three common sources of
stealthy surveillance were detected: one each in Beijing, the Phillippines, and a small western US
community college. We are watching these sources to determine what behavior they exhibit over the
coming weeks and months. We theorize that these sources are interested in Columbia and Georgia
Tech to discover weakly protected or administrated university machines for nefarious purposes.

4 Performance and Whirlpool Evaluation

In order to validate our approach to the problems involved in exchanging alerts, we show that data
reduction and aggregation before exchange is crucial. This can be observed through an analysis of
publicly available alert rates. Bloom filters are a compact and powerful way to represent data that
has been aggregated. In addition, we discuss the Whirlpool mechanism and compare its efficacy
with the full mesh distribution mechanism.

4.1 Alert Rates

Intrusion detection systems face the very real threat of information loss from the sheer rate of
available information. Schaelicke et al. [18] are decidedly pessimistic about the ability of relatively
powerful commodity hardware and network links to absorb peak alert loads, noting that an IDS is
effectively neutralized by the loss of alert data resulting from a database unable to keep up with
incoming network data. This problem is compounded if multiple NIDS sensors report to the same
database system [18]. They continue with the following analysis of the problem:

For example, a dual-processor 800 Mhz Pentium-IIT system running MySQL is able
to log 412 alerts per second into a MySQL database server configured for the ACID
intrusion detection analysis console. A 100 Mbit Ethernet link at 50 percent utilization
can carry approximately 23855 packets with an average size of 512 bytes per second.
Given the maximum database throughput, at most 1.7 percent of all packets can trigger
an alert before the database server is overloaded and alerts are lost. [18]

DShield reports about 10 million alert records added daily. For a year—long period between
January 2002 and May 2003, DShield averaged the addition of 46 million alerts per week. For that
same period, Figure 2 shows the increase in contributed data per month.

Experiments conducted on a workstation installation of Snort [17] indicate that currently ob-
servable alert rates (perhaps boosted by the production of false positives, depending on the IDS in
use) can create large alert streams. In the course of a few hours, 375 attacking sources generated
3,139 alerts, totaling roughly 2MB (2,567,874 bytes) with an average size of 818 bytes. Alert size
is greatly dominated by the capture of the payload content that triggered the alert. While most
alerts are small (see Figure 3 and Figure 4), we consider the source IP address and destination port
(and perhaps alert type, although it is not clear that such information is useful between domain
employing different IDS’s) to be the interesting pieces of information encoded in a Bloom filter.
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Figure 2: DShield monthly alert record contributions. The graph is not cumulative, but rather
shows the rapid increase in contributed alert information per month as DShield grew in popularity.

4.2 Alert Aggregation and Reduction

Event reduction and aggregation is a critical part of our system. Since we construct watchlists from
very little information (an IP address and a port), we are interested in ways of combining different
alert information.

Reduction can be accomplished by filtering events either at the source sensor or prior to cor-
relation processing. As a trivial example of the latter, consider a series of 100 basic IDS alerts
with the same source and destination IP information and alert type information (e.g., “Host X
probed host Y on port Z”). These alerts can be reduced to a single alert and a frequency. If a
significant portion of alert streams are amenable to this type of reduction, we can either perform
more expensive processing on the resulting stream, or produce actionable intelligence more rapidly.

Inexpensive reduction strategies (like logically grouping attacking IP source addresses in the
same /24 subnet) can result in substantial compression, as is aggregation of multiple scan alerts
(one per port) by a single source into one overall alert announcing a scan. For an example of the
successful application of these reduction strategies, Figure 5 shows how the Antura Recon IDS [6]
reduces evidence of certain scans and other alerts into a more manageable set of long-term alerts.

4.3 Whirlpool Implementation and Evaluation

The prototype implementation of the Whirlpool system is some 800 lines of Java code. Peers
communicate via a multicast publish-subscribe mechanism, joining and leaving channels according
to a parameterizable schedule. The implementation itself is fairly straightforward, as it consists of
exchanging Worminator—generated alerts encoded as Bloom Filters.

To evaluate the effectiveness of Whirlpool, we compare it against a full mesh distribution scheme
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Figure 3: Range of alert sizes. A view of the distribution of various alert sizes generated by a
workstation running Snort over the course of a few hours.

and a random selection distribution scheme. To that end, we introduce a Bandwidth Effective
Utilization Metric (BEUM). The BEUM is defined as:
1

BEUM = ——
u tx B

where t is the average number of time units it takes the distribution scheme to detect an attack
and B is the amount of bandwidth used by the distribution mechanism during that period. B is
defined in terms of the total number of nodes, N, communicating via the distribution mechanism.
Thus, for a full mesh scheme we have:

B=N=xN

and the time to discover an attack is ¢ = 1. The BEUM for a full mesh distribution strategy is
therefore ng For a system of 100 nodes, the BEUM for a full mesh is ﬁ

The BEUM for the Whirlpool mechanism is different, based on the calculation of the bandwidth
consumed, B:

1
BEUM =

U tx B
B=NxVN

In general, if ¢ < v/N, the Whirlpool distribution mechanism wins. Specifically, for a system of
100 nodes, the BEUM for the Whirlpool scheme is ﬁ. If £ < 10, the Whirlpool mechanism is a
better choice than a full mesh. Our experiments show that Whirlpool is indeed more effective.
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Figure 4: Range of alert sizes. Another view of the same workstation data unsorted by alert size.
The data suggests that alert rates are unpredictable. Data reduction techniques should be employed
to smooth out such rates.

We compare Whirlpool with a randomized distribution strategy by employing the BEUM. While
detection with a random schedule performs badly when the number of nodes involved in the system
grows (see Figure 6), our simulations for a system of 100 nodes (performed over 1000 trials) indicate
that on average, it takes 5 to 6 time units before an attack is detected using a repeated random
schedule. This time unit requirement satisfies the requirement for ¢ < 10 we derived for the BEUM.
Figure 7 shows that even though some pathological outliers exist, the vast majority of attacks are
detected in a relatively short time.

The only remaining problems a randomized schedule has are unpredictable bandwidth require-
ments and potentially lengthy times to converge on a subset that detects a given attack. The
latter difficulty is displayed in our simulation results of Figure 7. On the other hand, Whirlpool
behaves quite well, displaying no outliers for a simulation of 100 nodes (see Figure 8) and having
an average time slice of 6, well within the limit of ¢ < 10 for 100 nodes. A consequence of the
bounded detection with Whirlpool is that the necessary state for detection is also bounded: while
with random execution we are forced to keep state for up to 90 time slices, with Whirlpool we only
need to keep 9 past Bloom Filters. This significantly reduces the amount of state each node needs
to maintain, and simplifies the correlation operation commensurately.

5 Related Work

Much of the traditional work in the area of distributed IDS alert correlation has focused on dis-
tributed collection and centralized correlation and often incorporates a significant offline component.
Furthermore, even work that addresses decentralized correlation is limited in scope to a single ad-
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Figure 5: Reduction of Events to Alerts using Antura. The reduction of alerts over a four hour
period is impressive. This approach shows the benefit of simple aggregation and reduction at the
sensor source.

ministrative domain (although the basic mechanisms could conceivably extend across networks).
The DShield project [22] is an example of a centralized repository that receives intrusion alerts
from many distributed sources.

Distributed Intrusion Detection CARDS is a prototype distributed intrusion detection sys-
tem realized by the netforensics product. CARDS uses “attack trees”, or pre-defined sequences of
attack steps as distributed signatures. CARDS decomposes global representations of distributed
attacks into smaller units (called detection tasks) that correspond to the distributed events indi-
cating the attacks, and then executes and coordinates the detection tasks in the places where the
corresponding events are observed.

Attack trees are essentially a form of signature matching; attack trees can be modeled by
Finite State Machines that specify the steps and relative order of an attack pattern. While fast
algorithms for signature and string matching exist, the best known are of complexity O(n log> n)
— quite impractical for dealing with millions of alerts per hour.

One notable follow—up work is constructing new attack sequences [14] to keep the signature
database up to date and overcome the major shortcoming of signature-based schemes.

Decentralized Alert Correlation Cuppens and Miege [5] discuss methods for cooperatively
correlating alerts from different types of intrusion detection systems in order to synthesize more
meaningful alerts. Shortcomings of their system include the need to encode attacks in their
LAMBDA language [4]. In addition, it appears that their system is constructed with an eye
towards correlating information among IDS systems in the same administrative domain, as no
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Figure 6: Detection performed with a random schedule.

privacy—preserving measures are discussed.

Krugel et al. [11] propose a peer-to-peer system that recognizes attacks in a distributed manner;
the system is interesting because their results indicate two things. First, only a relatively small
number of messages (seldom more than two in their experiments) need to be exchanged to determine
an attack is in progress. Second, their work confirms that a peer—to—peer approach to decentralized
intrusion detection is feasible and appropriate. They present a language for expressing attacks as
a sequence of steps relating hosts. This “Attack Specification Language” has the advantage that
only local information is necessary to decide which messages should be forwarded and is specifically
limited to avoid exponential growth of information sharing.

However, their approach has two significant drawbacks. First, it requires that attack signatures
be known a priori and be expressed in their attack meta—language. The language explicitly ex-
presses the connections between nodes as the connections in the steps of an attack. Second, they
trade alert information in the IDMEF format, which is not as compact as a binary representation
and potentially wasteful of bandwidth. In addition, the scope of their research is the exchange of
alerts within a single administrative domain and so they do not address privacy requirements.

Large—Scale Collaborative Distributed Intrusion Detection The research closest to ours
in aim and scope is the recent work by Lincoln, Porras, and Shmatikov [12]. The authors present
a practical scheme for Internet—scale collaborative analysis of information security threats and
claim that it provides strong privacy guarantees to contributers of alerts. The authors sanitize
and replicate alert data to enable alert correlation between cooperating peers. While the authors
are mostly concerned with the scrubbing of alerts, we examine the need for the construction of an
efficient distribution mechanism as well as alert privacy.

Huang and Wicks [9] and DOMINO [25] propose systems similar to ours in organization.
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DOMINO, however, is directed at providing a large—scale monitoring facility to provide an early
warning system for outbreaks of worms or other malicious traffic (DDos, etc.) and relies on the
Chord protocol [20]. The work by Huang [9] presents a thoughtful exploration of the relevant
features of attacks, concluding that reconstructing attack strategies is the appropriate method for
balancing the cost of distributed correlation with the utility of global knowledge.

A recent study by Moore et al. [13] using the network telescope at UCSD defines the resources
needed to counter worm propagation. They conclude that a response needs to be mounted in 2-3
minutes and that participation of nearly all major ASes is required to be effective. The authors are
pessimistic about the preparedness of the general Internet for preventing and containing worm out-
breaks. Their results suggest that both technological and administrative issues must be addressed
before any effective defense can be mounted against such Internet—wide threats.

While these numbers are specifically derived in the context of quarantining Internet worms,
their results show that current and foreseeable threats demand a cooperative and collaborative
approach to achieving security. Our proposed system effectively addresses many of the primary
technological and administrative concerns with sharing intrusion detection data.

Secure Multi—-Party Computation Secure multi-party computation can be used to achieve
stronger reliability and robustness, as well as to maintain privacy of the data to the maximal
extent possible. Secure multi-party computation, initiated by [24, 8, 1, 3]), is one of the most
fundamental achievements of cryptography in the last two decades. Du and Atallah [7] briefly
discuss privacy-preserving intrusion detection in the course of enumerating practical applications
of Secure Multi-Party Computation. The authors of [12] specifically avoid the use of SMC approachs
due to their cost.
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6 Future Work

Our future work will especially focus on collaborative security, of which collaborative intrusion
detection is a vital component.

We shortly expect to coordinate and participate in a large scale study of the techniques presented
in this paper with other academic institutions and industry partners. We also intend to work with
groups based in Europe to obtain a geo—global view of attack patterns.

We will continue to study methods for low cost alert distribution and propagation. In addition,
we envision developing metrics for ranking the threat level for particular “verticals”, or groups of
organizations. We will also explore the development of a framework for typing and versioning of
our Bloom filter watchlists and the necessary mechanisms for managing these typed alerts.

7 Conclusions

Distributed intrusion detection is being increasingly viewed as a powerful tool against sophisticated
adversaries that do not generate high—visibility events that can be easily caught by traditional IDS’s.
In this paper, we seek to overcome two fundamental limitations of such systems: the disclosure of
potentially sensitive information to collaborating entities, and the scaling of such systems to real
workloads (i.e., handling millions of alerts per hour), both from a systems engineering (i.e., the
impact of such workloads on system performance) and a granularity of detection perspective.

We have presented two components for our system, the Worminator alert generator, and the



Whirlpool alert-trade scheduler. Worminator creates compact watchlists of IP addresses encoded in
Bloom Filters. The use of Bloom Filters minimizes the amount of sensitive information exposed to
third parties (that are participating in the distributed IDS), without hampering the detection effort
itself. Furthermore, this compact representation lessens the impact of the distributed computation
on the network and simplifies the correlation process itself. Whirlpool creates federations of nodes
that exchange alert information (encoded as Bloom Filters) at any particular time, varying the rate
at which nodes join and leave these groups.

Our experiments and simulations show that our system can detect distributed attacks within
six exchange periods without using an unacceptable amount of bandwidth to distribute alert infor-
mation to peers. In our plans for future work, we intend to deploy Worminator using the Whirlpool
distribution mechanism to a number of different organizations and entities to correlate watchlists.
Having such a mechanism deployed can allow us to perform mitigation and preemptive threat
response without having been directly attacked.
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