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Abstract 
We present a 3D collaborative virtual environment, 
CHIME, in which geographically dispersed students can 
meet together in study groups or to work on team 
projects. Conventional educational materials from 
heterogeneous backend data sources are reflected in the 
virtual world through an automated metadata extraction 
and projection process that structurally organizes 
container materials into rooms and interconnecting doors, 
with atomic objects within containers depicted as 
furnishings and decorations. A novel in-world authoring 
tool makes it easy for instructors to design environments, 
with additional in-world modification afforded to the 
students themselves, in both cases without programming. 
Specialized educational services can also be added to 
virtual environments via programmed plugins. We present 
an example plugin that supports synchronized viewing of 
lecture videos by groups of students with widely varying 
bandwidths. 
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1. Introduction 
 
Learning is in large part a social activity [22]. Enabling 
social interaction among students is of paramount 
importance in courses based on team projects, where a 
high degree of cooperation is required, but challenging to 
achieve among distance learners. There has been research 
in the field of collaborative environments for seamless 
association between non-collocated users. Approaches 
have ranged from asynchronous systems like email and 
synchronous applications like instant messaging to more 
sophisticated approaches like collaborative virtual 
environments (CVEs) where users can visualize their 
teammates in a MUD (multi-user domain) environment. 
 
CHIME (Columbia Hypermedia IMmersion 
Environment) is a CVE that supports groupspaces [12], 
enabling, users to interact with one another through 
avatars and manipulating objects in the world that are 
mapped to user-specified backend data sources. 
Instructors set up the collaborative information space by 
supplying CHIME with references to data sources they 

wish to visualize. The server then extracts metadata from 
the specified source (metadata is just data about data [6]). 
It is this metadata that is ultimately visualized, after 3D 
model information is applied to it based on either preset 
defaults or instructor-specified visualizations. The world 
itself serves quite effectively as an authoring tool, can be 
viewed and manipulated by teams of users, and can be 
augmented at runtime allowing users to pull in related 
educational information as needed. 
 
CHIME includes a general plugin framework supporting 
special tools, such as remote laboratory resources, but to 
date only one substantial example has been implemented. 
This plugin, VECTORS (Video Enhanced Collaboration 
for Team Oriented Remote Synchronization), enables a 
group of distance learning students to watch lecture 
videos in synchrony, seeing “the same thing at the same 
time” semantically, even though users with different 
bandwidths may see different frame sequences. This 
plugin framework intends to address similar goals to MIT 
iLabs (http://i-lab.mit.edu), which focuses on web-
accessible labs for science and engineering courses. 
 
The above models helped create a framework well-suited 
for distance education. We present CHIME’s user view, 
followed by the architectural components that enable our 
in-world authoring mechanisms, and describe two 
generations of the video synchronization facility. We 
discuss related work and conclude with future directions. 
Due to space constraints, all figures are at the end. 
 
2. CHIME User View 
 
CHIME logs the user onto the system (Figure 1) by taking 
the user’s access credentials from the client and 
forwarding to the server. The user finds herself in an 
empty starting room from where she can choose to enter a 
pre-built space (one or more rooms) by opening one of the 
existing doors, or start building a new space. 
 
Once a space is populated, objects in the world can be 
clicked on, moved to different locations, or right-clicked 
to access more information. One can move objects from 
one room to another without affecting the backend data 
sources. This is highly advantageous, as an instructor 
could set up the initial space for a class, choosing a 
variety of educational materials from many heterogeneous 



data sources, but reflected according to a “theme” in one 
homogenous environment. Students can then rearrange 
them as desired (as permitted by access controls). Their 
changes are reflected to all users.  
 
Additionally, each user has her own 2.5D overview map 
of the world to help with navigation. To enhance the 
group experience, instant messaging and chat are built in. 
Each user is also provided with a history of her actions, to 
make it easy to navigate back to a previous room. 
Example screenshots can be seen in Figures 2, 3 and 4. 
 
3. CHIME Architecture and Components 
 
CHIME is a framework for distributed metadata-based 
information management and visualization environments, 
designed to enable sharing of heterogeneous applications 
and data in a homogeneous virtual world. Our key insight 
is to not directly map the actual data into the world, which 
typically would involve substantial programming, but 
instead to automatically extract metadata about the data 
specified and visualize that metadata according to pre-
programmed 3D objects. This also saves the system from 
downloading large amounts of data a priori and/or 
mirroring it in a local repository. The actual data is 
retrieved over the Internet only when a user actually 
accesses it, and then shown separately in the appropriate 
data-specific editor or viewer (as in a Web browser). 
 
FRAX – CHIME is composed of a centralized server 
component and many distributed 3D client front-ends. 
When data is selected to be added to a virtual world, the 
CHIME server invokes its metadata extraction engine, 
FRAX (File Recognize And XMLify). FRAX is a general 
purpose metadata extraction and management toolset and 
API. While it was engineered primarily to satisfy 
CHIME’s requirements, it can also serve as a standalone 
component. FRAX addresses two key challenges: 1. the 
extraction of relevant metadata from an extensible set of 
data sources; and 2. the efficient management and caching 
of relevant metadata. Analogous to a Web browser, 
FRAX attempts to communicate with the indicated data 
source using one of many preconfigured protocols 
(HTTP, FTP, SQL, etc.). Once the connection has been 
established, it uses MIME type matching to determine the 
kind of component that needs to be used in order to 
extract metadata. FRAX then uses one of several pre-
written components to extract metadata from the data 
source. Further FRAX components can be written by 
extending the default interface provided with the system. 
The metadata extracted by the component is represented 
as an XML document to capture structural relationships 
and provide a rich source of information to the server. 
 
VEM - The extracted metadata is parsed and placed in a 
database where 3D model information (stored in 
3DStudio’s .3DS format) is assigned by the server’s 
Virtual Environment Modeler (VEM), based on an 
administrator’s or instructor’s provided preset defaults. 

VEM’s 3D model repository can be extended by a 
graphics artist. The assignment of the 3D representation 
can be done via simple mapping rules or according to 
complex “themes” (visually related collections of 3D 
objects). Container relationships or hypermedia links that 
may exist in the data can be followed, upon author 
request, and are represented as doors. The new space 
created beyond the door is populated with data 
representing the containee(s) or followed link. Therefore, 
instructors (or TAs) can quickly and easily set up the 
environment they want for their students.  
 
The updated contents of the virtual world are then pushed 
to currently connected clients in the affected area, if any; 
the virtual world can thus be modified while in use. This 
is accomplished using an Internet-scale, publish-subscribe 
event system, U. Colorado’s Siena [7].  
 
4. In-World Authoring 
 
An author identifies each data source to include in the 
world with a URI-like reference and user credentials, for 
FRAX metadata extraction. The author then specifies the 
VEM mapping between classes of metadata objects and 
3D models. The client displays the appropriate 3D 
objects, typically according to built-in layout algorithms. 
However, the author of a space can provide specific 
layout information for each of the objects, and can also 
incrementally update object class-to-3D model mappings 
as desired. All this is done while the authoring user is “in” 
the virtual world. If a space is modified while other 
clients are in the affected room(s), the scene is redrawn 
for them (after prompting to avoid disorientation).  
 
An instructor would typically create the world and 
populate it with class materials, such as the course 
website and documents required for completion of 
assignments and projects. Consider container type objects, 
e.g., representing directories in the backend source. When 
the instructor double-clicks within CHIME, the directory 
is automatically reflected in a new room extending from 
the previous room, and populated with all the objects 
mapped from those directories. Thus, a hierarchy in the 
virtual environment mirrors (the metadata of) the original 
data source. An instructor can also define files to be 
containers of application-specific attributes. For instance, 
an HTML file can contain links, images and text; a Word 
document could be comprised of images, tables, text and 
equations. Some data, of course, are represented as atomic 
objects, either furnishings or decorations in rooms. Given 
a FRAX component for extracting metadata from each 
(sub) element as well as VEM 3D objects with which to 
represent them, CHIME can visualize any data type. Since 
a CVE does not have to match real world geometry, one 
can have an arbitrarily complex world layout – although 
simple is recommended. 
 
The above process allows student users as well as 
instructors to create rooms, add new objects inside rooms, 



etc., to the degree permitted by the access controls 
defined by the instructor (or administrator). User changes 
are seen by other users in the same space.  
 
5. Lecture Video Synchronization 
 
One of our goals was to integrate video synchronization 
for groups of students. The Columbia Video Network 
(CVN) offers taped courses over the Internet, primarily to 
MS candidates in the engineering school. These courses 
work well when the class is simply a series of lectures and 
homework assignments that do not require group work. 
However, for courses like Software Engineering, where a 
large team project is one of the pedagogical requirements, 
CVN is unable to deliver an experience comparable to 
that of on-campus students, since the students registered 
for CVN courses are geographically dispersed and often 
never meet each other in person. Further, CVN students 
can benefit from study groups for non-project courses, 
where they might want to watch lecture videos together 
and discuss them while in progress (or “paused”). 
 
Students are not required by CVN to have the same 
bandwidth or computation resources. To facilitate 
synchronized video feeds to diverse clients, we deliver 
pre-processed semantically structured videos over the 
heterogeneous Internet links to heterogeneous platforms 
in an efficient and adaptive manner. The semantic 
structuring of the CVN lecture videos is done by an 
algorithm developed by Kender and Liu [17], who pre-
process the taped lectures and extract a series of jpeg 
images that are representative of the entire video segment. 
Instead of following approaches like those employed in 
commercial multimedia applications like Real Player or 
QuickTime that drop every nth frame upon encountering 
network lag, which may have the negative side-effect of 
dropping important segments of the video, their process 
produces several levels of key frame density, each feed 
targeted at a different bandwidth level. Their algorithms 
are optimized for typical lecture videos, with a particular 
emphasis on capturing unobstructed views of full 
blackboards. (They are not intended for rapidly changing 
action such as sports clips.) Given the resulting set of 
video streams, each stream consisting of the best 
representation of the content for a particular bandwidth 
level, our goal was to give each user the best possible set 
of frames while staying synchronized with other users 
simultaneously watching the same video.  
 
Our approach is three-fold: 
1. Prefetch as many of the key frames as possible at the 
highest possible quality to each client before a pre-
determined meeting time for the group. However, videos 
may be watched immediately without any prior notice. 
2. Probe the clients’ bandwidth as well as their video 
cache, and report these results periodically. 
3. React to bandwidth changes in real time by lowering or 
raising the client to a lower or higher quality feed. 

All the video stream feeds are made available by the 
video server (distinct from the main CHIME server). 
Probing is done by using software probes [14] [15], with 
reports of any changes sent to the respective clients. 
Based on which video frames it has in cache, its current 
position in the video and its current bandwidth, the client 
determines the highest quality frame it can retrieve in the 
time remaining before it must be viewed, and downloads 
it. This continues until the end of the video. If a client 
finds itself lagging, it automatically drops to a lower 
quality stream in order to catch up, and will move to a 
higher resolution feed when possible. See Figures 5 and 6. 
 
We used a testbed of up to 10 clients with clock speeds 
ranging from 400MHz to 3GHz, and connection speeds 
ranging from 56Kbit modems up to 100Mbit Ethernet. 
The videos always synchronized between all 10 clients 
within an error of 4.38 seconds, i.e., at no point was any 
client-viewed frame more than 4.38 seconds ahead or 
behind any other. However, after approx. 7 minutes, 
independent of which video was playing, the testbed 
started showing more of a disparity on the laptops without 
native 3D hardware support built in – which therefore 
have to render the virtual environment in Software mode. 
 
The problem appears to be caused by a combination of 
inefficiencies in the 3D graphics engine (CHIME uses the 
open-source Crystal Space, http://crystal.sourceforge.net), 
and the fact that the video synchronization uses the same 
peer-to-peer UDP streams among clients that are also 
used to track user movements in the virtual world. The 
server knows where all the users are at any given time, 
but only at a room level granularity. As mentioned earlier, 
all communication between the server and the clients 
takes place over the event system. However, since user 
position synchronization is a high frequency process, the 
publish/subscribe system did not make for a good vehicle 
for this job, especially since the event system would add a 
substantial filtering and routing latency to each event even 
if it was as simple as coordinates in 3-space. The server 
instead sends every client an updated list of users (clients) 
in the same room and the client then sends position 
updates to each of these other clients over a UDP stream. 
This peer-to-peer model is a proven one that works well 
for commercial massively multiplayer game systems [13], 
but broke down with the video synchronization overload 
 
Our lab then developed another video synchronization 
system, AI2TV (Adaptive Interactive Internet Team 
Video) [21], which operates independently of the 3D 
world in another window on the user’s desktop. It uses the 
same video server with the same semantically compressed 
videos. Here an “autonomic” feedback control loop 
monitors the clients and dynamically adjusts their 
configurations. AI2TV inserts sensors [14] into the video 
clients to determine what frames are actually being 
shown, and the actual bandwidth. All sensor data is input 
to a workflow engine that instantiates and coordinates 
local actuators to dynamically adjust for each client the 



selection of which compression level and which next 
frame to pull from the video server. The workflow also 
instructs clients to prefetch from possibly higher 
resolution streams into their caches during idle time, e.g., 
when the video is “paused”. Experimental trials showed 
much higher “goodness”, our metric weighting aggregate 
resolution and skew. The next step is to integrate AI2TV 
into CHIME, to approximate the view of Figures 5 and 6. 
 
6. Related Work 
 
One key concern of research in educational technology 
has been social interactions, e.g., attempts to improve the 
user interfaces to enable seamless communication with 
others [2] [22]. Such research has focused on identifying 
potential indicators of effective collaboration and the 
types of problems that may result from insufficient group 
interaction and support [8]. Prasolova-Førland discusses 
the mechanisms employed to improve social awareness in 
education [22] [23] and has found that traditional 
collaborative technical tools like ICQ and email are not 
enough, and the mechanisms offered by CVEs provide a 
promising supplement to the mechanisms in use already. 
 
Brouras et al. [3] [4] describe a robust CVE that supports 
education. However, their environment can only be 
modified by editing VRML files whenever new materials 
need to be introduced. This requires technical expertise 
that a typical instructor may not possess, and changes 
cannot be made to the world while in use. Okada et al. 
[19] present a system that supports setting up a CVE for 
ecological education. While users can add virtual areas at 
runtime, the setup process is tedious: The user is 
responsible for uploading all the data about the 
environment she wishes to create as well as giving layout 
information to the server. CHIME overcomes this by 
doing all the data extraction and assembly for the user. 
 
Oliveira et al. [20] bring the idea of CVE-based 
collaborative learning to industrial training and e-
commerce. Their environment supports video on demand, 
but without synchronized video playback - so trainees can 
only discuss videos they have watched separately. J. Liu 
et al. [16] describe a system similar to our video 
synchronization plugin. However, they are primarily 
concerned with the QoS of the video, and therefore their 
approach involves compression techniques working with 
Mpeg-7 video. They do not address embedding their 
video stream in a CVE or a collaborative tool of any sort. 
 
An earlier version of CHIME followed a largely different 
architecture and was designed to support distributed 
software development environments [11] [12]. The users 
then were software project team members, possibly 
geographically dispersed, but virtually collocated within 
the same “room” or adjoining “rooms” of a 3D world. 
The layout and contents of such a groupspace represented 
the software project artifacts and/or the on-going software 
process. Doppke et al. investigated a similar idea [10], but 

with a text-based user interface. 
 
Kaplan et al. [18] describe their Orbit system, which 
supports a groupspace model - although not a CVE and 
without data or metadata visualization. Orbit best 
provides access to data that is physically located on its 
server. While they do allow references to external data, 
this is limited to a Web link without ability to incorporate 
what is at the end of the link. CHIME supports multiple 
protocols over which to connect to backend data sources. 
 
Finally, a significant advantage of 3D CVEs over other 
kinds of collaborative environments is the ability for users 
to simultaneously “see” what several of their peers are 
doing in the groupspace. Remote desktop sharing does not 
scale to watching different users doing different things 
with different data. Compared to other CVEs, educational 
or otherwise, the CHIME approach provides a seamless 
in-world, real-time authoring environment readily 
accessible to non-programming instructors and students – 
while also supporting programming of advanced services 
such as group-synchronized lecture videos. 
 
7. Conclusions and Future Work 
 
We have presented a 3D collaborative virtual 
environment for use in distance learning education. 
External on-line materials are analyzed upon a user’s 
request and corresponding metadata is automatically 
reflected in the layout and contents of the virtual world at 
runtime, without programming. Users view and 
manipulate the internal contents of such materials with the 
usual local application programs, as in a Web browser. 
CHIME also enables groups of users to view lecture 
videos synchronously, with “pause” and other VCR 
functions, over diverse and fluctuating bandwidths. 
 
There are, however, some limitations. The 3D 
environment is extremely resource intensive with respect 
to the CPU and graphics card. This is mainly due to our 
use of dynamic rather than static 3D objects in the Crystal 
Space 3D engine. We aim to work with the developers of 
the engine to help alleviate some of the loads, although 
many prospective laptop users will likely update to new 
laptops with 3D chipsets. We also need to improve the 
way users view the state of their peers in the environment, 
e.g., to show a graphical depiction of avatars actually 
holding or manipulating the objects those users are 
working with. At present selecting the user indicates in 
text what she is doing, and selecting an object states in 
text which user if any is using it. Finally, benchmark tests 
have shown that the Siena event system, used for 
CHIME’s client/server updates, can process only about 
400 events per second per event router. We are converting 
to the Elvin event system (http://elvin.dstc.edu.au), a 
higher performance system that claims to transmit as 
many as 80,000 events per second, to improve scalability. 
 



8. Figures 
 

 
Figure 1 –Client requesting user credentials 

 

 
Figure 2 - Objects populating a typical room 

 

 
Figure 3 - Unlabelled doors ready to become links 

 
Figure 4 - Multiple rooms 

 

 
Figure 5 - Lecture video and team member  

 

 
Figure 6 - Video orientation and perspective 
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