
Feature Interactions
in Internet Telephony End Systems

Xiaotao Wu and Henning Schulzrinne
Department of Computer Science

Columbia University
{xiaotaow,hgs}@cs.columbia.edu

January 24, 2004

Abstract

Internet telephony end systems can offer many services. Different services may
interfere with each other, a problem which is known as feature interaction. The fea-
ture interaction problem has existed in telecommunication systems for many years.
The introduction of Internet telephony helps to solve some interaction problems due
to the richness of its signaling information. However, many new feature interaction
problems are also introduced in Internet telephony systems, especially in end systems,
which are usually dumb in PSTN systems, but highly functional in Internet telephony
systems. Internet telephony end systems, such as SIP soft-agents, can run on personal
computers. The soft-agents can then perform call control and many other functions,
such as presence information handling, instant messaging, and network appliance con-
trol. These new functionalities make the end system feature interaction problems more
complicated. In this paper, we investigate ways features interact in Internet telephony
end systems and propose a potential solution for detecting and avoiding feature in-
teractions. Our solutions are based on the Session Initiation Protocol (SIP) and the
Language for End System Services (LESS), which is a markup language specifically
for end system service creation.

i



1 Introduction

A feature is an optional functionality of a system. We assume every system has a base
specification. The process of adding features is to modify the base specification. Every
modification is based on a specific context. For example, when a user wants to apply a
feature to automatically accept an incoming call, he assumes the call setup is still pending
(e.g., has not been rejected or forwarded) when the feature applies. If another feature breaks
the assumption, a feature interaction happens.

Before we investigate the feature interactions in end systems, we will first emphasize
two points mentioned by Pamela Zave [29]:

• Many feature interactions are undesirable, but some are desirable or necessary.

• Feature interactions are an inevitable by-product of feature modularity.

The first point indicates that we should not prohibit all feature interactions. The sec-
ond point emphasizes the feature modularity which allows users to create features without
knowing existing features. Feature modularity is very important for the efficiency of feature
creation. Service creation environments integrate independently created features together
by using feature-composition operators. For example, a simple feature-composition oper-
ator is to choose only one active feature to execute. A more complicated operator is to
define the feature execution order. How to design feature-composition operators is critical
for solving feature interaction problems.

In this paper, we will first introduce the related work of the paper. We then classify end
system features and analyze feature interactions for each class in Section 3. For all the fea-
ture interactions, we will illustrate both desirable and undesirable feature interactions. We
then discuss the way to perform feature interaction detection in Section 4 and investigate
how to solve feature interactions in Section 5. Section 6 conclude the paper.

2 Related work

This paper is based on Session Initiation Protocol [23] and Language for End System Ser-
vices (LESS) [28].

SIP is an IETF standard used for Internet telephony call session setup. With SIP exten-
sions, such as SIP extensions for presence [25] and SIP extensions for instant messaging
[1], SIP can also be used to perform functions beyond multimedia session setup.

There have been many efforts [21] [7] [19] [10] [30] on the service creation and exe-
cution in Internet telephony systems. The existing work mainly focus on the services on
network servers. We define network services as the services executed on network servers,
and end system services as the services executed on user-operated, Internet-connected de-
vices or agents, such as Ethernet phones, software phones, and instant messengers. There
are many differences between end system services and network services:

1



Different call models: Network services focus on establishing connections between mul-
tiple addresses, while end system services focus on instructing local applications to
send media to and receive media from remote addresses.

Different developers: Network services are usually implemented by experienced program-
mers so the functional richness of the service language is more important than its
simplicity. On the other hand, end system services are often developed by non-
programmers, making simplicity a requirement.

Different user interaction: Providing services in user-operated end systems has the ad-
vantage that on-the-spot interaction with users is much easier. Network services can
only interact via protocol messages and possibly media content, rather than GUIs.

Different media handling: In Internet telephony, end systems are the only entities where
signaling and media flows are guaranteed to converge. This is probably the single
largest architectural difference to the legacy PSTN. Thus, any service that requires
interaction with user media is likely to be easier to implement in end systems.

The differences motivate us to define a language specifically for end system service
creation. We named the new language Language for End System Services (LESS) [28].
LESS is extensible, can be easily understood by non-programmers and contains commands
and events for direct user interactions and direct media application control. It inherits the
tree-like structure of Call Processing Language (CPL) [16] and avoids the use of loops,
and recursion to allow program inspection and the back-and-forth translation between a
graphical and textual representation. We base our feature interaction discussion on the use
of LESS as the service creation language.

LESS has four kinds of elements, namely toplevelactions, switches, modifiers and ac-
tions. Toplevelactions represent the events that can trigger the scripts. Switches check
the context of the events, e.g., address-switch may check the caller’s address of an
incoming call event, and decide what actions to perform. Modifiers are used to set the
parameters of the actions. Multiple LESS scripts may interact with each other when one
toplevelaction triggers multiple different actions. For every toplevelaction, LESS has the
tree-like structure, there are no feature conflicts within a single LESS tree.

Prior to the work in this paper, Jonathan Lennox had written a technical report on
implementing intelligent network (IN) services with the Session Initiation Protocol [14].
Jonathan’s report describes service implementations on the signaling protocol level. In this
report, we focus on service creation on the service description language level, a higher level
than the work in Jonathan’s report. Jonathan’s report can serve as the base to design the
LESS based service creation environment. Jonathan Lennox has another paper on feature
interactions in Internet telephony systems [15]. In his paper, he discussed the differences
of the feature interactions between PSTN network and Internet telephony systems. His
paper also provides a case-by-case study on some feature interaction problems in Internet
telephony systems. His paper can help us to better understand the feature interactions in

2



Internet telephony. However, the paper mainly focus on services on signaling servers in the
network. There is no in-depth discussion on feature interactions in end systems, which we
will discuss in this paper.

3 Classify end system feature interactions

The article by E.J. Cameron et al. ”A Feature Interaction Benchmark for IN and Be-
yond” [6] classified feature interaction problems into three dimensions, namely customer-
system dimension, single-multiple user dimension and single-multiple component dimen-
sion, and five categories, namely SUSC (Single-User-Single-Component), SUMC (Single-
User-Multiple-Component), MUSC (Multiple-User-Single-Component), MUMC (Multiple-
User-Multiple-Component), and CUSY (CUstomer-SYstem) interactions.

The customer-system dimension distinguishes the features involving customer call pro-
cessing from the features involving system operations, administration and maintainance
(OA&M), such as billing. End system services usually only involves customer call pro-
cessing features. We will not discuss system maintainance features in this paper.

The single-multiple user dimension distinguishes the features involving single user
from the features involving multiple users. In most cases, the call control services in end
systems only deal with single user features because at a given time, an end device can only
be used by one user. However, an end system may control other devices. For example,
an end system may use MGCP[3]/Megaco[?] or SIP third party call control [22] to control
media applications in another device. An end system can also control network-connected
appliances. If multiple users try to control the same devices at the same time, feature con-
flicts may happen.

The single-multiple component dimension distinguishes the features involving single
component from the features involving multiple components. The components could be
end devices, network servers, or network-connected appliances. End system call control
services are usually single component services. However, end system services may interact
with network services and cause multiple components to be involved in feature interactions.

Based on the above discussion on feature dimensions, end system call control services
usually experience SUSC and SUMC (when interacting with network services) feature
interactions. Network appliance control services usually experience SUMC and MUMC
feature interactions. There are usually no MUSC and CUSY feature interactions in end
systems.

At the time Cameron et al. classified feature interactions, the presence related services
and network appliance control were not considered as part of the telecommunication ser-
vices. Cameron’s article focuses only on call control services. In Internet telephony end
systems, presence related services and network appliance control are very useful services.
Because presence related services, network appliance control, and call control services
have different characteristics in terms of feature interactions, we will not exactly follow
the classification defined in Cameron’s article. Rather, we divide the services into three

3



categories: call control services, presence and event based services, and other end system
services, including network appliance control. In each category, we use the methods in the
article by Cameron et al. to further classify the feature interactions.

3.1 End system call control feature interactions

Follow the above discussions, we investigate SUSC and SUMC feature interactions sepa-
rately for end system call control services. The investigation is based on LESS.

3.1.1 SUSC feature interactions

As discussed before, the feature interactions in end system call control services are usually
SUSC feature interactions, as long as we do not consider the interactions with network
services. Multiple scripts belonging to one user and handling one device may cause SUSC
feature interactions.

As indicated in Section 2, feature interactions may happen when multiple actions are
triggered at the same time. To investigate feature interactions, we should first check all the
possible actions LESS scripts can perform. The call control actions can be signaling or
non-signaling actions, and can be in different call stages. Table 1 shows the actions.

Signaling actions Non-signaling actions
Incoming call setup accept alert (all stages)

reject log (all stages)
redirect mail (all stages)

Outgoing call setup call
Mid-call stage transfer

hold
unhold
mute
unmute

Call termination disconnect

Table 1: Call control actions

For signaling actions, the actions belonging to the same call stage usually conflict with
each other. For example, an end system can only choose one of ’accept’, ’reject’, and
’redirect’ to handle an incoming call. The actions at different call stages can also interact
with each other. For example, accepting a call then transferring the call is a desirable
interaction, however, rejecting a call then transferring the call is an undesirable interaction.
The non-signaling actions will not conflict with the signaling actions.

When we check feature interactions between two actions, we need to define the execu-
tion order of the actions and check possible interactions in different orders. For example,

4



if we want to check the interactions between action A and action B, we first check the sit-
uation where A is performed before B. The checking consists of two parts: one is to check
whether action A’s result changes or conflicts with the context precondition of action B, the
other is to check whether action B’s result changes the expected result of action A. We then
check the interactions with a different execution order with action B performed first and do
the same checking. We define the context precondition and expected result of each action
in Table 2.

precondition expected result
accept The call setup is pending. The audio

device is available.
The call setup is finalized. The com-
munication session is setup. The au-
dio device is occupied.

reject The call setup is pending. The call setup is finalized.
redirect The call setup is pending. The call setup is finalized on the cur-

rent end system.
call The audio device is available. If the callee side accepts the call, a

communication session is setup and
audio device is occupied.

transfer There is an existing session and it
means the audio device may be oc-
cupied.

If the action succeeds, the session is
end in the current end system.

hold There is an existing session. There is no media transmission for
the session but the session will still
be alive.

unhold There is an existing session. Enable the media transmission for
the session. The session will be
alive.

mute There is an existing session. Disable the user’s audio input. The
session will still be alive.

unmute There is an existing session. Enable the user’s audio input. The
session will still be alive.

disconnect There is an existing session. The session is terminated.

Table 2: The context assumption and expected result of call control actions

We further investigate the cause of feature interactions and find five kinds of interac-
tions.

The first is action conflicts, such as the conflicts between the accept and the reject
actions.

The second is attribute conflicts, for example, two scripts both perform the redirect
action, but to different locations. We treat LESS modifiers as action attributes. If the
modifiers of two actions are different, they conflict with each other.

5



The third is avoidable conflicts, which can be avoided by putting restrictions on LESS
language design. For example, we can restrict LESS to not allow mid-call actions (such
as transfer) and call termination actions (such as disconnect) as the subsequent
actions of the reject and redirect actions. With the restriction, there is no chance for
reject and redirect to interact with transfer and disconnect. The avoidable
conflicts are in fact special cases of the first kind of conflicts.

The fourth is resouce competing conflicts. Multiple actions may compete the resource
usage. For example, if there is only one audio device in a device, two calls both using the
audio device will cause conflicts. Accepting an incoming call and making an outgoing call
to another address at the same time cause this kind of conflicts.

We call the last kind of interactions ’enabling’ interactions. It happens when one ac-
tion makes another action possible. This kind of interactions are desirable. For example,
accepting an incoming call enables the action to transfer the call. Table 3 shows the
conflict table for handling an incoming toplevelaction. The assumption of the table is
that there is only one audio device in the end device, which is the most common case for
end devices.

Note that the table is not a symmetric table, row m, column n and row n, column m
do not have the same value. In the table, we define the row actions are performed before
the column actions, except when the row action and the column action are the same. For
example, row 1, column 5 means ’accept then transfer’.

Mid-call and termination actions may apply to an existing call, instead of the call in
an incoming call event. For example, call A already established, another call comes in,
a script may transfer the existing call, then accept the incoming call. We append a * to
the transfer action to represent this situation. For example, the transfer*, hold*,
unhold*, mute*, unmute*, and disconnect* are used to handle an existing call,
not to handle the call in the incoming call setup request. The call* is used to make a
new call.

The N/A in the table means the indicated situation should not happen. For example,
the transfer action cannot be used alone for handling an incoming call because it’s for
mid-call handling, not for call setup handling.

3.1.2 SUMC feature interactions

A user’s service scripts can be hosted on his end devices, as well as the signaling servers in
the network. The scripts in different places may interact with each other. For example, if
the scripts on the proxy server reject all the calls, the scripts on the end devices will never
get executed. If the proxy server proxies calls to all of the user’s end devices, and one of
the user’s end devices (e.g., voicemail server) automatically accept calls immediately, the
other end devices of the user will not be able to accept incoming calls.

We divide the SUMC feature interactions into two categories, one is end system–proxy
server feature interactions, the other is end system–end system feature interactions.

6



accept reject redirect call* transfer transfer*
accept A(media) C C R E R
reject C A(reason) C - (C) -
redirect C C A(location) - (C) -
call* R - - A(location) N/A R
transfer* E - - E N/A A(location)
hold* E - - E N/A C
unhold* R - - R N/A C
mute* R - - R N/A C
unmute* R - - R N/A C
disconnect* E - - E N/A C

hold hold* unhold unhold* mute mute*
accept E R E R E R
reject (C) - (C) - (C) -
redirect (C) - (C) - (C) -
call* N/A R N/A R N/A R
transfer* N/A C N/A C N/A C
hold* N/A - N/A C N/A -
unhold* N/A C N/A - N/A C
mute* N/A - N/A C N/A -
unmute* N/A C N/A - N/A C
disconnect* N/A C N/A C N/A C

unmute unmute* disconnect disconnect*
accept E R E R
reject C - (C) -
redirect C - (C) -
call* N/A R N/A R
transfer* N/A C N/A C
hold* N/A C N/A C
unhold* N/A - N/A C
mute* N/A C N/A C
unmute* N/A - N/A C
disconnect* N/A C N/A -

-: no interaction, A: attribute conflict, C: action conflict,
(C): avoidable conflict, E: enabling, R: resource competition

Table 3: Call control action conflict table for handling incoming toplevelaction

7



End system–proxy server feature interactions End system–proxy server feature inter-
actions are caused by the CPL scripts on proxy servers interacting with the LESS scripts on
end systems. There are only three signaling actions for the CPL scripts running on proxy
servers, namely proxy, redirect and reject. Every action may interact with the
actions on end systems. For incoming calls, the proxy server scripts are executed before
the end system scripts. For outgoing calls, the end system scripts are executed before the
proxy server scripts. For incoming calls, the proxy server scripts may interact end system
scripts in two ways: blocking the execution of end system scripts or overlapped with the
end system scripts. For outgoing calls, the proxy server scripts may modify the bahaviour
of end system service scripts. Table 4 shows the possible interactions.

end / server reject redirect proxy
accept blocking blocking blocking
reject overlapping blocking blocking
redirect blocking blocking/overlapping blocking
call modifying modifying -
transfer modifying modifying -
disconnect - - -

Table 4: Interactions between end system services and proxy server services

End system–end system feature interactions End system–end system feature interac-
tions involve multiple end devices belonging to one user. This kind of feature interactions
are the most complicated feature interactions for end system services. It sometimes also
involves the services scripts running on proxy servers. For example, if a proxy server does
sequential forking [23] and has the voicemail server as the last one to fork to, the auto-
accept script running on voicemail server will not affect the other end devices’ behavior.
However, if the proxy server does paralle forking, the inappropriate timeout value of the
auto-accept script running on voicemail server may make the other end devices not able
to accept incoming calls. When we try to detect the end system–end system feature inter-
actions, we must also take service scripts on proxy servers into consideration. The action
conflict between two end systems can also be expressed as a table (Table 5).

The table shows that for outgoing calls, mid-call and call termination actions will not
interact with each other because every end system is independent to each other. During
the call setup stage, due to the forking proxy in Internet telephony systems, multiple end
devices may all get the incoming call setup at the same time. If they all try to accept the
call, a feature conflict happens. If they try to redirect the call setup to different locations, a
feature conflict also happens.

8



accept reject redirect call transfer disconnect
accept C - - - - -
reject - - - - - -
redirect - - C - - -
call - - - - - -
transfer - - - - - -
disconnect - - - - - -

C: action conflict

Table 5: Call control action conflict between two end systems

3.2 Feature interactions for end system presence and event-based ser-
vices

For event-based services, we base our discussion on the SIP event notification architecture
[20].

An end system can watch other users’ presence status, and can notify the others of
his own presence status. The feature interactions can be SUSC or SUMC interactions,
depending on whether the Presence User Agent (PUA) and the Presence Agent (PA) [25]
are co-located together or not. If PUA and PA are co-located, we need to deal with SUSC
feature interactions, otherwise, SUMC interactions.

The actions belonging to the event based services can be divided into two parts. One is
for incoming subscription handling, such as accept a subscription, or deny a subscrip-
tion. The other is to send outgoing messages, such as subscribe and notify. Feature
conflicts can also be categorized into action conflicts and action attribute conflicts.

3.2.1 SUSC feature interactions

For an incoming subscription, the accept and the deny actions conflict with each other.
accept actions with different attributes, such as different expiration time, conflict with
each other. deny actions with different reasons conflict with each other. subscribe and
notify actions do not conflict with the other actions, but they may cause action attribute
conflicts. Two subscribe actions conflict if they have the same destination, the same
event package, but different in the other attributes, such as expiration time. Two notify
actions conflict if they have the same destination, the same event package, but different
events.

3.2.2 SUMC feature interactions

If a PUA and a PA are separated, the PA usually resides on a network server, for example,
it can co-locate with a SIP proxy server. The PUA will reside in users’ end devices. A

9



PUA may use PUBLISH [18] request to update its status in the PA, and use XCAP [24] to
retrieve and modify watcher and presentity information. 1

For an incoming subscription, PA can decide whether to accept or deny it. PA can
also set the subscription status as ’pending’, and send a notification to the PUA about the
watcher-list changes. Once the PUA get the watcher-list notification, the PUA will use
XCAP to update the watcher-list document on the PA to authorize the subscription. A user
may have multiple PUAs. The PA and all the PUAs will involve in incoming subscription
handling and feature interactions may happen between them. For an incoming subscrip-
tion, if a PA and all the PUAs make different decisions, for example, the PA accepts a
subscription but one PUA denies the subscription, an action conflict happens.

3.3 Other end system services

An end system can perform many other communication functions, such as instant messag-
ing and network appliance control. There will be many more new communication functions
developed in end systems. In this paper, we only focus on the instant messaging and net-
work appliance control for feature interaction analysis.

3.3.1 Feature interactions for instant messaging

For instant messaging, there is only one LESS action defined, namely im, which is used
to send an outgoing message. If we don’t concern the content of the message, there is no
conflict between multiple ims. However, the content of an im may have special meanings
in some circumstances. For example, if we use SIP MESSAGE to perform shared web
browsing [27], the message content will be used to convey URL information. Two ims
with different content may conflict with each other. The user should decide the order of the
ims, or choose one im and discard the other.

Instant messaging may also experience SUMC feature interactions. One incoming mes-
sage may be sent to multiple contacts of a user. If more than one contact can automatically
send a message back, SUMC feature interactions may happen. There is not much differ-
ence between SUSC and SUMC instant messaging feature interactions. Both interactions
depend on whether the content of the messages conflicts with each other.

3.3.2 Feature interactions for network appliance control

Services related to network appliance control can be very complicated. Different sensors
may trigger different control actions. The actions performed by multiple network appli-
ances may conflict with each other. For example, turning on air conditioner to lower the
temperature and turning on heater to make the room warmer conflict with each other. This
kind of feature interaction has been detailed in [13].

1Watcher information contains the entities watching the user’s status, presentity information contains the
entities watched by the user.

10



In our paper, we focus on multimedia communication related services, and consider
the network appliance control as an additional part for a more convenient and comfortable
communication environment. In this paper, we will not cover all the sensors and events
that may trigger control commands. We limit the events to the toplevelactions we have
already discussed above, which are all communication related. The only sensor generated
events we are going to discuss is the events triggered by location sensors. The reason we
only choose location sensors is because location information is critical to communications,
especially to emergency services.

We will not consider the situation that the result of one control action triggers another
control action. In addition, we will not consider the situation that multiple appliances
interact with each other. For example, we will not consider the interactions between a
heater and an air conditioner. With these limitations, we can detect feature interactions by
inspecting service scripts.

If multiple scripts try to control a network appliance to perform different actions, feature
interactions may happen. Different network appliances may have different interactions.
For example, to control a lamp, power on and power off conflict with each other. To
control a stereo, power on and tune the stereo to a specific channel do not conflict with
each other. To analyze feature interactions, we need to first identify the network appliances
we want to control. We then need to build the context precondition and expected result table
for the device control actions. Based on the table, we can build the feature interaction table
for the device. In this paper, we choose two network appliances to as sample devices to
analyze. One is a lamp, controlled through a X10 controller, the other is a stereo, controlled
through a sLinke [11] controller.

The commands for lamp can be power on, power off, dim, and bright. The
commands for stereo can be power on, power off, volume up, volume down,
tune, play, and stop. Table 6 shows the context assumption and expected result of
lamp control actions. Table 7 shows the context assumption and expected result of stereo
control actions.

precondition expected result
power on - The lamp is on.
power off - The lamp is off.
dim The lamp is on. The lamp is dimmer. The lamp is

still on.
bright The lamp is on. The lamp is brighter. The lamp is

still on.

Table 6: The context assumption and expected result of lamp control actions

For both lamp and stereo, we define power on and power off as basic control ac-
tions, and the other actions as additional control actions. All the additional control actions
require appliances to be powered on. So, power on does not conflict with all the addi-

11



precondition expected result
power on - The stereo is on.
power off - The stereo is off.
tune The stereo is on. Play radio on a specific channel.

The stereo is still on.
play The stereo is on. Play a specific CD. The stereo is still

on.
stop The stereo is on. Stop playing CD. The stereo is still

on.
volume up The stereo is on. Play louder. The stereo is still on.
volume down The stereo is on. Play in a lower volume. The stereo

is still on.

Table 7: The context assumption and expected result of stereo control actions

tional control actions but power off will conflict with them. power on and power
off conflict with each other. dim and bright conflict with each other. volume up
and volume down conflict with each other. play and stop conflict with each other.
tune and play conflict with each other because tune tries to play radio but play tries
to play CD. Table 8 and Table 9 shows the conflict tables. The conflict tables are based on
the assumption that multiple scripts trying to control the same device at the same time.

power on power off dim bright
power on - C E E
power off C - C C
dim - C A C
bright - C C A

A: attribute conflict, C: conflict, E: enabling

Table 8: Interactions between lamp control actions

Network appliance control intrinsically involves multiple components, one is the con-
troller, the others are the appliances. Network appliance control may have SUMC and
MUMC feature interactions.

Both SUMC and MUMC feature interaction detection are based on feature interaction
tables. However, different type feature interaction detections happen in different stages.
SUMC feature interaction detection happens in service creation stage because one user
can access all of his own service scripts. But MUMC feature interaction need to be de-
tected during service execution stage because one user cannot access another user’s service
scripts.

We should use different ways to solve SUMC and MUMC interactions. For SUMC

12



power on power off volume up volume down tune play stop
power on - C E E E E E
power off C - C C C C C
volume up E C A C - - -
volume down E C C A - - -
tune E C - - A C -
play E C - - C A C
stop - - - - - C -

A: attribute conflict, C: conflict, E: enabling

Table 9: Interactions between stereo control actions

interactions, the owner of the scripts can decide the way to solve the conflicts.
For MUMC interactions, since the service scripts belong to different users, not a single

user can solve the conflicts. If all the users access the device through the same appliance
controller, (e.g., a network appliance gateway), the policies residing on the network appli-
ance gateway may help to solve the conflicts. For example, the administrator of the gateway
may define the priority of the users. The actions performed by the user with higher priority
may override the actions performed by the user wihh lower priority. If the users access the
device through different controllers, the communication between the device controllers is
required to solve feature conflicts.

3.4 Feature interactions across classes

The toplevelactions in one category may trigger actions in another category. For example,
an incoming call may cause an end system to send an instant message and lower the vol-
ume of a stereo. The actions in different classes will not conflict with each other directly.
However, some actions may trigger additional actions and cause feature conflicts. For ex-
ample, the call action may invoke the scripts handling the outgoing toplevelaction.
The outgoing toplevelaction handling may perform network appliance control actions.

To illustrate the feature interactions across classes, we define three service scripts. The
first one is ’when I am in IRT lab, power on the lab stereo’. The second one is ’when I am
in IRT lab, call my home’. The third one is ’when making an outgoing call, power
off the stereo’. There is no conflict when composing the first two or the last two scripts.
However, composing all three scripts together will cause a conflict. In this example, the
power off is a subsequent action caused by the call action. Though call and power
on do not conflict with each other, the subsequent action of callmay conflict with power
on and cause feature conflict. This kind of feature conflicts require us to do an additional
step to check the feature conflicts involving subsequent actions. There is no need to have
another feature interaction table because the conflict checking still ends at inspecting the
conflicts of the actions in the same category.

13



4 Feature interaction detection

There are many existing languages and notations for describing telecommunication ser-
vices, such as Use Case Map (UCM) [2], Chisel Representation Employing Systematic
Specification (CRESS) [26], LOTOS (Language Of Temporal Ordering Specification) [5],
Promela [4], and SDL (Specification and Description Language) [26]. Accordingly, there
are some tools designed based on the formal languages to detect feature interactions. For
example, Spin [9] is used to analyze logical consistency of concurrent systems described
by Promela. The feature interaction detection in UCM and CRESS is done by compiling
them into LOTOS or SDL, and use the model checking tools for LOTOS or SDL for fea-
ture interaction detection. For LESS and CPL features, we can also convert them into a
formal language and use the formal model checking tools to detect interactions. However,
there are several disadvantages in doing that. First, CPL and LESS are designed to sacrifice
some functionalities to make the language simpler. For example, there is no loop in CPL
and LESS scripts. It is used to define a small set, but commonly used features. The formal
languages like LOTOS and Promela are used to describe all possible features, which makes
the language much more complex than CPL and LESS and the feature interaction detection
process can be complicated. Second, one way of solving feature interactions between mul-
tiple LESS scripts is to merge multiple scripts into one script. LESS scripts can be merged
since they have tree-like structure. The merge process cannot be done in formal languages.

There is an existing research work on detecting CPL script feature interaction without
any translation [17]. However, that work only applies to services on network servers, and
the feature interaction analysis is incomplete. What we need to do is to build a complete
LESS feature interaction detection system. One possible solution is to develop an algorithm
that can traverse the tree structure of multiple scripts and find the possible interactions.
Usually, the interactions happen at the intersection of multiple conditions. We then check
whether the actions in different scripts interact with each other or not. For example, we
have a service script ”reject a call if the time is between 12:30PM to 1:00PM because I
am at lunch”, and we have another service script ”Automatically accept a call if it’s from
sip:hgs@cs.columbia.edu”. The interaction of the conditions between the two scripts is ”A
call from sip:hgs@cs.columbia.edu between 12:30PM and 1:00PM”. The action reject
and accept conflict with each other and there is an unwanted feature interaction between
these two scripts.

5 Resolving feature interactions

Compared to the work on interaction detection, the work is much less on solving feature
interactions. This is because how to solve a interaction highly depends on the requirement
of features and the expectation of users. It is hard to find a general solution for feature
interactions. However, there are still some architectural approaches trying to deal with the
feature interactions in general. For example, the pipe-and-filter architecture and Distributed
Feature Composition (DFC) [12].

14



Filter Pipe
* input

* output intpu 1

output 1

Figure 1: Pipe and filter architecture

Figure 1 shows the basic pipe-and-filter architecture. A filter can have many inputs and
outputs. A pipe connect one of the outputs of a filter to one of the inputs of another filter.
The features are applied in the filters. The order of the filters defines the precedence of the
features and may help to solve the feature interaction problems.

DFC is a well-designed pipe-and-filter architecture. The key novelty of DFC is the
choice of an architecture in a dynamic pipe-and-filter style. The order of the filters can be
dynamically changed based on the service usage so DFC can handle non-linear usages.

There are some other architectural approaches, such as agent-based architecture [8].
We will not describe these approaches in detail. We will just note one thing that is common
to these approaches. All these approaches assume the features are carefully designed and
modularized. In another words, they assume the service creators are professional telecom-
munication service designers. However, for end system services, usually the service cre-
ators are non-professional, which means they will not create modularized features. A new
created feature may overlap with the existing features or can be divided into multiple mod-
ules if it was created by professionals. The architecture approaches are not suitable for the
’ill-formatted’ features in an end system. However, in a multi-user environment, since one
user cannot access the others’ scripts, the architecture approaches are still appropriate for
feature conflict avoidance.

For LESS based services, due to the tree-like structure of LESS, we consider it simpler
and more efficient to design an algorithm to merge multiple scripts into one script. At any
given time, there is only one active LESS script at a device. We will still keep the original
scripts for users to modify them independently. By this way, service execution gets more
efficient because it only needs to go through one decision tree to perform services, and
we can still ensure the service creation efficiency because users can still edit every script
separately.

If we regard the merging operation as one way of doing feation composition, the ap-
proaches to perform the operation can be considered as composition-operators. There are
many approaches of merging two scripts into one. For example, based on the feature inter-
action tables we defined before, we can sequentially execute multiple actions, or execute
multiple actions in parallel. We can also keep one action and abandon the others. We need
further investigation on the composition-operators.

15



6 Conclusion

This paper investigates feature interactions in end systems. It first classifies the interactions,
then proposes approaches for detecting feature interaction and solving the interactions. We
plan to develop algorithms for the proposed approaches.

References
[1] Session initiation protocol (SIP) extension for instant messaging. RFC 3428, Internet Engineering Task

Force, December 2002.

[2] Daniel Amyot. Use case maps as a feature description notation. In FIREworks Feature Constructs
Workshop, May 2000.

[3] M. Arango, A. Dugan, I. Elliott, C. Huitema, and S. Pickett. Media gateway control protocol (MGCP)
version 1.0. RFC 2705, Internet Engineering Task Force, October 1999.

[4] A. Basu, G. Morrisett, and T. von Eicken. Promela++: A language for constructing correct and efficient
protocols. In Proceedings of the Conference on Computer Communications (IEEE Infocom), page 455,
San Francisco, California, March/April 1998.

[5] Ed Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their implementations and their
tests. In Protocol Specification Testing and Verification VI, pages 349–360. IFIP, 1987.

[6] E. J. Cameron, N. Griffeth, Y. Lin, Margaret E. Nilson, William K. Schure, and Hugo Velthuijsen.
A feature interaction benchmark for IN and beyond. In Feature Interactions in Telecommunications
Systems, pages 1–23, Amsterdam, Netherlands, 1994.

[7] John de Keijzer, Douglas Tait, and Rob Goedman. JAIN: a new approach to services in communication
networks. IEEE Communications Magazine, 38(1), January 2000.

[8] N. Griffeth and Hugo Velthuijsen. The negotiating agents approach to runtime feature interaction reso-
lution. Feature Interactions in Telecommunications Systems, IOS Press, pages 217–235, 1994.

[9] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, Englewood Cliffs,
New Jersey, 1991.

[10] R. Stubbs I. I. The intelligent network - changing the face of telecommunications. Proceedings of the
IEEE, 79(1):7–20, 1991.

[11] Nirvis Inc. Slink-e. http://www.nirvis.com/slink-e.htm.

[12] Michael Jackson and Pamela Zave. Distributed feature composition: A virtual architecture for telecom-
munications services. IEEE Transactions on Software Engineering, August 1998.

[13] Mario Kolberg, Evan H. Magill, and Michael Wilson. Compatibility issues between services supporting
networked appliances, November 2003.

[14] J. Lennox, Henning Schulzrinne, and Thomas F. La Porta. Implementing intelligent network services
with the session initiation protocol. Technical Report CUCS-002-99, Columbia University, New York,
New York, January 1999.

[15] Jonathan Lennox and Henning Schulzrinne. Feature interaction in Internet telephony. In Feature Inter-
action in Telecommunications and Software Systems VI, Glasgow, United Kingdom, May 2000.

[16] Jonathan Lennox, Xiaotao Wu, and Henning Schulzrinne. CPL: a language for user control of Internet
telephony services. Internet draft, Internet Engineering Task Force, August 2003. Work in progress.

16



[17] Masahide Nakamura, Pattara Leelaprute, Ken ichi Matsumoto, and Tohru Kikuno. Detecting script-to-
script interactions in call processing language. In Seventh International Workshop on Feature Interac-
tions in Telecommunications and Software Systems, June 2003.

[18] A. Niemi. Session initiation protocol (SIP) extension for event state publication. Internet Draft draft-
ietf-sip-publish-02, Internet Engineering Task Force, January 2004. Work in progress.

[19] Parlay. Parlay framework api. http://www.parlay.org/specs/index.asp.

[20] A. B. Roach. Session initiation protocol (sip)-specific event notification. RFC 3265, Internet Engineer-
ing Task Force, June 2002.

[21] J. Rosenberg, J. Lennox, and Henning Schulzrinne. Programming Internet telephony services. IEEE
Network, 13(3):42–49, May/June 1999.

[22] J. Rosenberg, J. Peterson, Henning Schulzrinne, and G. Camarillo. Best current practices for third
party call control in the session initiation protocol. Internet Draft draft-ietf-sipping-3pcc-06, Internet
Engineering Task Force, January 2004. Work in progress.

[23] J. Rosenberg, Henning Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler. SIP: session initiation protocol. RFC 3261, Internet Engineering Task Force, June
2002.

[24] Jonathan Rosenberg. The extensible markup language (XML) configuration access protocol (XCAP).
Internet Draft draft-ietf-simple-xcap-01, Internet Engineering Task Force, October 2003. Work in
progress.

[25] Jonathan Rosenberg. A presence event package for the session initiation protocol (SIP). Internet draft,
Internet Engineering Task Force, January 2003. Work in progress.

[26] Kenneth Turner. Representing new voice services and their features. In Feature Interactions in Telecom-
munication Networks, Ottawa, Canada, June 2003. IOS Press.

[27] X. Wu and Henning Schulzrinne. Use SIP MESSAGE method for shared web browsing. Internet draft,
Internet Engineering Task Force, November 2001. Work in progress.

[28] Xiaotao Wu and Henning Schulzrinne. Programmable end system services using SIP. In Conference
Record of the International Conference on Communications (ICC), May 2003.

[29] Pamela Zave. An experiment in feature engineering. In Programming Methodology, February 2003.

[30] Pietro Zolzettich and Arye R. Ephrath. Customized service creation: A new order for telecommunica-
tions services. Proceedings of the Conference on Computer Communications (IEEE Infocom), pages
1014–1019, 1992.

17


