
On TCP-based SIP Server Overload Control
Charles Shen and Henning Schulzrinne

Department of Computer Science, Columbia University
{charles, hgs}@cs.columbia.edu
Technical Report CUCS-048-09

November 10, 2009

Abstract— SIP server overload management has attracted
interest recently as SIP becomes the core signaling protocol
for Next Generation Networks. Yet virtually all existing SIP
overload control work is focused on SIP-over-UDP, despite the
fact that TCP is increasingly seen as the more viable choice
of SIP transport. This report answers the following questions:
is the existing TCP flow control capable of handling the SIP
overload problem? If not, why and how can we make it work?
We provide a comprehensive explanation of the default SIP-
over-TCP overload behavior through server instrumentation. We
also propose and implement novel but simple overload control
algorithms without any kernel or protocol level modification.
Experimental evaluation shows that with our mechanism the
overload performance improves from its original zero throughput
to nearly full capacity. Our work leads to the important high level
insight that the traditional notion of TCP flow control alone is
incapable of managing overload for time-critical session-based
applications, which would be applicable not only to SIP, butalso
to a wide range of other common applications such as database
servers.

I. I NTRODUCTION

The Session Initiation Protocol (SIP) [48] is an application
layer signaling protocol for creating, modifying, and termi-
nating media sessions in the Internet. SIP has been adopted
by major standardization bodies including 3GPP, ITU-T, and
ETSI as the core signaling protocol of Next Generation Net-
works (NGN) for services such as VoIP, conferencing, Video
on Demand (VoD), presence, and Instant Messaging (IM). The
increasingly wide deployment of SIP has raised the require-
ments for SIP server overload management solutions [47]. SIP
server can be overloaded for many reasons such as emergency-
induced call volume, flash crowds generated by TV programs
(e.g., American Idol), special events such as “free ticketsto
third caller”, or denial of service attacks.

Although SIP server is an application server, the SIP server
overload problem is distinct from other well-known applica-
tion server such as HTTP overload for at least three reasons:
First, it is common for a SIP session to traverse multiple hops
of SIP proxy servers until it reaches the final destination.
This characteristics creates a so-called SIP proxy-to-proxy
overload scenario which is absent in the mostly single-hop
client-server HTTP architecture. Second, SIP defines a number
of application level retransmission timers to deal with possible
packet losses, especially when running over an unreliable
transport like UDP. This protocol retransmission mechanism
can have an adverse effect when the server is overloaded. On
the other hand, HTTP is predominantly running over TCP and

does not possess the same application layer retransmission
problem. Third, SIP requests are much more time sensitive
than HTTP requests since SIP signaling is mostly used for
real-time sessions.

SIP already has a mechanism that sends rejection messages
to terminate sessions that it could not serve. However, one
of the key property of SIP server overload is that the cost
of rejecting a session is usually comparable to the cost of
serving a session. Consequently, when a SIP server has to
reject a large number of incoming sessions, it ends up spending
all its processing cycles for rejection, causing its throughput
to collapses. If, as often recommended, the rejected sessions
are sent to a load-sharing SIP server, the alternative server
will soon also be generating nothing but rejection messages,
leading to a cascading failure.

Since the built-in rejection mechanism is incapable of
handling SIP overload, Hiltet al [57], [58] articulate a SIP
overload control framework based on augmenting the current
SIP specification with application level feedback from the SIP
Receiving Entity (RE) servers to the SIP Sending Entities (SE)
servers. The feedback, which may be rate-based or window-
based, could delegate the burden of rejecting excessive calls
from the RE to the SE and thus prevent that the RE is being
overwhelmed by the SEs. Detailed application level feedback
algorithms and their effectiveness for SIP overload control
have been demonstrated by a number of researchers, e.g.,
Noel [40], Shen [55] and Hilt [28].

It is worth pointing out that virtually all existing SIP
overload control design and evaluation focus on SIP-over-
UDP, presumably because UDP is still the common choice
for today’s SIP operational environment. However, SIP-over-
TCP is getting increasingly popular and seen as a more viable
SIP transport choice in the near future for a number of
reasons: first, there is a growing demand for securing SIP
signaling [46] with the standard SIP over TLS [54] solution,
e.g., as mandated by the SIP Forum [1]. TLS itself runs on
top of TCP; second, deployment of SIP in NGN is expected
to support longer message sizes that exceed the maximum
size UDP can handle, forcing carriers to turn to SIP-over-
TCP. Third, there are other advantages that TCP holds which
motivates a shift to run SIP-over-TCP, such as easier firewall
and NATs traversal.

The SIP-over-TCP overload control problem possesses two
distinct aspects when compared to the SIP-over-UDP overload
control problem. One is TCP’s built-in flow control mechanism

which provides an inherent, existing channel for feedback-
based overload control. The other is the removal of many
application layer retransmission timers that exacerbatesthe
overload condition in SIP-over-UDP. Nahumet al [16] have
experimentally studied SIP performance and found that upon
overload the SIP-over-TCP throughput exhibits a congestion
collapse behavior as with SIP-over-UDP. Their focus, however,
is not on overload control so they do not discuss why SIP-over-
TCP congestion collapse happens or how to prevent it. Hilt
et al [28] have shown simulation results applying application
level feedback control to SIP servers with TCP-specific SIP
timers but without including a TCP transport stack in the
simulation.

This report systematically addresses the SIP-over-TCP over-
load control problem. To the authors’ knowledge, our paper is
the first to provide a comprehensive answer to the following
questions: why are there still congestion collapse in SIP-over-
TCP despite the presence of the well-known TCP flow control
mechanism and much fewer SIP retransmission timers? Is
there a way we can utilize the existing TCP infrastructure to
solve the overload problem without changing the SIP protocol
specification as is needed for the UDP-based application level
feedback mechanisms?

We find that the key reasons why TCP flow control feedback
doesnot prevent SIP congestion collapse has to do with the
session-based nature and real-time setup requirement of SIP
load. Request and response messages in the same SIP session
arrive at different times from upstream and downstream SIP
entities; start-of-session requests trigger all the remaining in-
session messages and are therefore especially expensive. The
transport level connection-based TCP flow control, without
knowing the causal relationship about the messages, will admit
too many start-of-session requests and result in a continued
accumulation of in-progress sessions in the system. The mes-
sages for all the admitted sessions soon fill up the system
buffers and entail a long queueing delay. The long delay not
only triggers the SIP end-to-end response retransmission timer,
but also significantly slows down the effective rate of server
session setup. This forms a back pressure through the TCP
flow control window feedback which ultimately propagates
upstream to the session originators, hindering the session
originators from generating further in-session messages that
could complete the setup of accepted sessions. The combined
delayed message generation and processing as well as response
retransmission lead to SIP-over-TCP congestion collapse.

Based on our observations, we propose novel SIP overload
control mechanisms within the existing TCP flow control
infrastructure. To accommodate the distinction between start-
of-session requests and other messages, we introduce the
concept ofconnection split. To meet the delay requirements
and prevent retransmission, we developsmart forwarding al-
gorithms combined withbuffer minimization. Our mechanism
contains only a single tuning parameter for which we provide
a recommended value. Implementation of our mechanism ex-
ploits existing Linux socket API calls and is extremely simple.
It does not require any modifications at the kernel level, neither

does it mandates any change to the SIP or TCP specification.
We evaluate our mechanism on a common Intel-based Linux
test-bed using the popular open source OpenSIPS [44] server
with up to ten upstream SEs overloading the RE at up to
10 times the server capacity. The performance is found to be
improved from zero to full capacity with our mechanisms. We
also show that under heavy overload, the mechanism maintains
a fair share of the capacity for competing upstream SEs.

Our research leads to the important insight that the tra-
ditional notion of TCP flow control alone is insufficient for
preventing congestion collapse for real-time session-based
loads, which cover a broad range of applications, e.g., from
SIP servers to datacenter systems [59]. Additional techniques,
like what we have proposed, are needed and they could be
simple but very effective.

The remainder of this paper is structured as follows. Sec-
tion II describes related work. Section III provides some
background on SIP and TCP flow and congestion control.
Section IV describes the experimental testbed used for our
experiments. Section V explains the SIP-over-TCP congestion
collapse behavior. Section VI develops and evaluates our
overload control mechanism.

II. RELATED WORK

A. SIP Server Performance and Overload Control

Many researchers have studied SIP server performance.
Schulzrinneet al presented SIPstone [51], a suite of SIP
benchmarks for measuring SIP server performance on common
tasks. Cortes [14] measured the performance of four different
stateful SIP proxy server implementations over UDP. Nahum
et al [16], [39], Oho and Schulzrinne [41] showed experi-
mental SIP over UDP and TCP performance results using
OpenSER and SIPd SIP server, respectively. Ramet al [45]
demonstrated that the process architecture in OpenSER causes
a substantial performance loss for using SIP over TCP and
provided improvements. Salsanoet al [49] and Camarillo [11]
measured the performance of SIP proxy server over UDP, TCP
and TLS based on a Java-based proxy implementation and on
ns-2 simulator, respectively. While the above work does not
specifically study SIP overload control, the results to different
extents exhibit the SIP congestion collapse behavior under
overload.

SIP overload falls into the broader category of application
server overload, which has received extensive study in the area
related to HTTP (web) server overload control. Server adaptive
QoS management and service differentiation for clients are
common techniques proposed for web server overload [2], [4],
[17], [42], [61]. Many other researchers combined admission
control with service differentiation [8], [20], [32], [35], [63].
Unlike web servers, it is difficult for SIP servers to provide
the similar concept of differentiated QoS for different sessions
during overload, because the basic task is setting up the call
session. Another general method to alleviate the web server
overload problem is to adaptively distribute the load across
a cluster of web servers [13], [69]. As far as SIP overload

is concerned, drafting additional SIP servers alone does not
completely solve the problem.

Although most of the web server overload study like the
above uses a request-based workload model, Cherkasova and
Phaal [12] presented a study using session-based workload for
E-commerce web applications. They proposed several adap-
tive, self-tunable internal admission control strategieswhich
aimed at minimizing the percentage of aborted requests and
refused connections and maximizing the achievable server
throughput in completed sessions. The key idea is to monitor
the server load periodically and estimate the server capacity. If
the load exceeds the estimated capacity, more sessions should
be rejected to reduce the load. Since requests that could not
be accommodated are explicitly rejected, they considered the
rejection cost, but only within the range where the rejection
cost is still not high enough to exhaust the server. This
assumption would be unrealistic in our SIP server overload
study, so we do not make such an assumption.

The SIP server overload problem itself has received inten-
sive attention only recently. Ejzaket al [18] provided a quali-
tative comparison of the overload in PSTN SS7 signaling net-
works and SIP networks. Whitehead [64] described a protocol-
independent overload control framework called GOCAP. But
it is not yet clear how exactly SIP can be mapped into the
framework. Ohta [36] explored the approach of using a priority
queueing and bang-bang type of overload control through
simulation. Noel and Johnson [40] presented initial results of
a rate-based SIP overload control mechanism. Sunet al [56]
proposed adding a front end SIP flow management system
to conduct overload control including message scheduling,
admission control and retransmission removal. Sengar [53]
combined the SIP built-in backoff retransmission mechanism
with a selective admittance method to provide server-side
pushback for overload prevention. Hiltet al [28] provided
a side-by-side comparison of a number of overload control
algorithms for a network of SIP servers, and also examined
different overload control paradigms such as local, hop-by-
hop and end-to-end overload control. Shenet al [55] proposed
three new window-based SIP feedback control algorithms and
compared them with rate-control algorithms. Most of the
above work on SIP overload control assumes UDP as the
transport. Hiltet al [28] does include simulation of application
level feedback overload control for SIP server with only TCP-
specific timers enabled, but without a TCP transport stack.

B. TCP Flow and Congestion Control and Its Performance

The basic TCP flow and congestion control mechanisms
are documented in [31], [43]. Modifications to the basic TCP
algorithm have been proposed to improve various aspects of
TCP performance, such as start-up behavior [29], retransmis-
sion fast recovery [21], packet loss recovery efficiency [23],
[37], or more overall improvements [3], [9]. Research has also
been extended to optimize the TCP algorithm for more recent
network architecture such as mobile and wireless networks [6],
[10], [19], [65], [67] and high-speed networks [26], [33], [66],
[68]. There are also efforts focus not on modifying TCP flow

and congestion control algorithm itself, but on using dynamic
socket buffer tunning methods to improve performance [15],
[25], [27], [52]. Another category of related work addresses
routers, e.g., active buffer management [22], [38] and router
buffer sizing [60]. Our work differs from all the above in
that our metrics is not the direct TCP throughput, but the
application level throughput. Our goal is to explore the existing
TCP flow control mechanism, and to develop a mechanism
for a SIP-over-TCP system that neither requires modifying
existing TCP algorithm specification, nor needs any kernel
level modification such as dynamic socket buffer tuning.

A number of studies have also investigated TCP perfor-
mance for real-time media [5], [7], [34], [62]. Our work,
however, is concerned about the session establishment phase,
or the control plane of multimedia real-time services, which
has very different load characteristics and usually more con-
strained latency requirements.

III. B ACKGROUND

A. SIP Overview

SIP defines two basic types of entities: User Agents (UAs)
and servers. UAs represent SIP end points. SIP servers con-
sist of registrar servers for location management, and proxy
servers for message forwarding. SIP messages are divided into
requests (e.g.,INVITE and BYE to create and terminate a
SIP session, respectively) and responses (e.g.,200 OK for
confirming a session setup). The set of messages including
a request and all its associated responses is called a SIP
transaction.

SIP message forwarding, known as proxying, is a critical
function of the SIP infrastructure. This forwarding process is
provided by proxy servers and can be either stateless or state-
ful. Stateless proxy servers do not maintain state information
about the SIP session and therefore tend to be more scalable.
However, many standard application functionalities, suchas
authentication, authorization, accounting, and call forking,
require the proxy server to operate in a stateful mode by
keeping different levels of session state information. Therefore,
we focus on stateful SIP proxying.

Figure 1 shows a typical message flow of stateful SIP
proxying. Two SIP UAs, designated as User Agent Client
(UAC) and User Agent Server (UAS), represent the caller and
callee of a multimedia session. The UAC wishes to establish
a session with the UAS and sends anINVITE request to
proxy A. Proxy A looks up the contact address for the SIP
URI of the UAS and, assuming it is available, forwards the
message to proxy B, where the UAS can be reached. Both
proxy servers also send100 Trying response to inform the
upstream SIP entities that the message has been received.
After proxy B forwards the message to the UAS. The UAS
acknowledges receipt of theINVITE with a 180 Ringing
response and rings the callee’s phone. When the callee actually
picks up the phone, the UAS sends out a200 OK response.
Both the180 Ringing and 200 OK make their way back to
the UAC. The UAC then generates anACK request for the
200 OK. Having established the session, the two endpoints

INVITE INVITE INVITE
100 Trying 100 Trying

180 Ringing

200 OK
180 Ringing

200 OK

ACK ACK ACK

BYE BYE BYE

200 OK200 OK200 OK

Media

UAC UASSIP Proxy B

180 Ringing

200 OK

SIP Proxy A

Fig. 1. Basic SIP call flow

communicate directly, peer-to-peer, using a media protocol
such as RTP [50]. The media session does not traverse the
proxies, by design. When the conversation is finished, the UAC
“hangs up” and generates aBYE request that the proxy servers
forward to the UAS. The UAS then responds with a200 OK
response which is forwarded back to the UAC.

SIP is an application level protocol on top of the transport
layer. It can run over any common transport layer protocols,
such as UDP, TCP and SCTP. SIP defines quite a number
of timers. One group of timers is for hop-to-hop message
retransmissions in case a message is lost. These retransmission
timers are not used when TCP is the transport because
TCP already provides a reliable transfer. There is however
a retransmission timer for the end-to-end200 OK responses
which is enabled even when using TCP transport, in order to
accommodate circumstances where not all links in the path
are using reliable transport. The200 OK retransmission timer
is shown in Fig 2. The timer starts withT1 = 500 ms and
doubles until it reachesT2 = 4 s. From then on the timer
value remains atT2 until the total timeout period exceeds 32 s,
when the session is considered to have failed. Note that even
if the whole path is TCP-based, as long as the message round
trip time exceeds 500 ms, the200 OK timer will expire and
trigger retransmission. The UAC should generate anACK
upon receiving a200 OK. The UAS ceases the200 OK
retransmission timer when it receives a correspondingACK.

B. Types of SIP Server Overload

There are many causes to SIP overload, but the resulting SIP
overload cases can usually be grouped into either of the two
types: proxy-to-proxy overload or UA-to-registrar overload.

A typical proxy-to-proxy overload topology is illustratedin
Fig 3(a), where the overloaded RE is connected to a relatively
small number of upstream SEs. One example of proxy-to-
proxy overload is a special event like “free tickets to the
third caller”, also referred to as flash crowds. SupposeRE

is the service provider for a hotline N.SE1, SE2 and SE3

are three service providers that reach the hotline throughRE.
When the hotline is activated,RE is expected to receive a
large call volume to the hotline fromSE1, SE2 andSE3 that

ACK

200 OK

UASSIP Proxy

200 OK

200 OK

200 OK

T
1

2T
1

4T
1

200 OK

200 OK

200 OK

200 OK

ACK

Fig. 2. 200 OK retransmission

RE

SE3

SE2

SE1

(a) proxy to proxy overload

SIP Registrar

(b) UA to registrar
overload

Fig. 3. Types of SIP server overload

far exceeds its usual call volume, potentially puttingRE into
overload.

The second type of overload, known as UA-to-registrar
overload, is when a large number of UAs overload the next hop
server directly. A typical example is avalanche restart, which
happens when power is just restored after a mass power failure
in a large metropolitan area and a huge number of SIP devices
boot up trying to perform registration simultaneously. This
paper only discusses the proxy-to-proxy overload problem.

C. TCP Window-based Flow Control Mechanism and Related
Linux API Calls

TCP is a reliable transport protocol with its built-in flow
and congestion control mechanisms. Flow control is exercised
between two TCP end points. The purpose of TCP flow control
is to avoid a sender from sending too much data that overflow
the receiver’s socket buffer. Flow control is achieved by having
the TCP receiver impose a receive window on the sender side
indicating how much data the receiver is willing to accept
at that moment; on the other hand, congestion control is
the process of TCP sender imposing a congestion window
by itself to avoid congestion inside the network. The TCP
sender assesses network congestion by observing transmission
timeout or the receipt of duplicate TCP ACKs, and adjusts the
congestion window to slow down or increase the transmission
rate as appropriate. Thus, a TCP sender is governed by

Sender Application

Write

TCP

Read

■ ■ ■ Receive
Buffer

LastByteSent LastByteAcked LastByteRcvd

LastByteWritten LastByteRead

Send
Buffer

TCP

EffectiveWindow = AdvertisedWindow –

(LastByteSent – LastByteAcked)

AdvertisedWindow = MaxRcvBuffer -

(LastByteRcvd - LastByteRead)

Sender sends no more than

the EffectiveWindow size

Application
Buffer

Receiver Application

Fig. 4. TCP flow control

both the receiver flow control window and sender congestion
control window during its operation.

The focus of our work is on using TCP flow control since we
are interested in the receiving end point being able to deliver
transport layer feedback to the sending end point and we want
to see how it could facilitate higher layer overload control. We
illustrate the TCP flow control architecture in Fig 4. A socket
level TCP connection usually maintains a send buffer and a
receive buffer at the two connection end points. The receiver
application reads data from the receive buffer to its application
buffer. The receiver TCP computes its current receive buffer
availability as its advertised window to the sender TCP. The
sender TCP never sends more data than an effective window
size derived based on the receiver advertised window and data
that has been sent but not yet acknowledged.

In our experimental testbed, the default send buffer size is
16 KB and the default receive buffer size is 85 KB. Since the
Linux operating system uses about 1/4 of the socket receive
buffer size for bookkeeping overhead, the estimated effective
default receive buffer size is about 64 KB. In the rest of the
paper we use the effective value to refer to receive buffer
sizes. The SIP server application that we use allocates a default
64 KB application buffer.

Linux also provides convenient API to allow applica-
tions to manipulate connection-specific socket buffer sizes
using the SO_SNDBUF and SO_RCVBUF options of the
setsockopt function call. It should be noted that when
usingsetsockopt to supply a socket send or receive buffer
size, the Linux system doubles the requested size. E.g., if we
supply 8 K asSO_SNDBUF to setsockopt, the system will
return a 16 KB send buffer. Furthermore, at the receiver side, if
we specify a 1,365B socket receive buffer, the system doubles
its size to allocate a 2,730 B receive buffer. Excluding the 1/4
overhead, the effective receive buffer is then about 2KB.

In addition, Linux supports various API calls that al-
low the applications to retrieve real-time status information
about the underlying TCP connection. For example, using the
SIOCOUTQ option of theioctl call, the application can
learn about the amount of unsent data currently in the socket
send buffer.

IV. EXPERIMENTAL TESTBED AND METRICS

A. Server and Client Software

We evaluate the Open SIP Server (OpenSIPS) version
1.4.2 [44], a freely-available, open source SIP proxy server.
OpenSIPS is a fork of OpenSER, which in turn is a fork of
SIP Express Router (SER) [30]. These sets of servers represent
the de facto open source version of SIP server, occupying a
role similar to that of Apache for web server. All these SIP
servers are written in C language, use standard process-based
concurrency with shared memory segments for sharing state,
and are considered to be highly efficient. We also implement
our overload control mechanisms on the OpenSIPS server.

We choose the widely used open source tool, SIPp [24]
(May 28th 2009 release) to generate SIP traffic. We also make
corrections to SIPp for our test cases. E.g., we find that existing
SIPp implementation does not enable200 OK retransmission
timer over TCP as required by the SIP specification, and
therefore we added it.

B. Hardware, Connectivity and OS

The overloaded SIP RE server has2 Intel Xeon 3.06GHz
processors with4 GB RAM. However, for our experiments,
we only use one processor. We use up to10 machines for
SEs, and up to10 machines for UACs. All the SE and UAC
machines either have 2 Intel Pentium 43.00 GHz processors
with 1 GB memory or 2 Intel Xeon3.06 GHz processors and
4 GB RAM. The server and client machines communicate over
copper Gigabit or 100Mbit Ethernet. Typical round trip time
measured by theping command between the machines is
around 0.2 ms. All machines use Ubuntu 8.04 with Linux
kernel 2.6.24.

C. Test Suite, Load Pattern and Performance Metrics

We wrote a suite of Perl and Bash scripts to automate
running the experiments and analyzing results. Our test load
pattern is the same as in Fig 1. For simplicity but without
affecting our evaluation purpose, we do not include call
holding time and media. That means, the UAC sends aBYE
request immediately after sending anACK request. In addition,
we do not consider the time between the ringing and the actual
pick-up of the phone. Therefore, the UAS sends a200 OK
response immediately after sending a180 Ringing response.

Our main performance metrics include server throughput
which reflects the per-second number of sessions successfully
set up by receiving theACK to 200 OK at UAS. We also
examine Post Dial Delay (PDD), which corresponds to the
time from sending the firstINVITE to receiving the200 OK
response. A number of other metrics such as CPU utilization
and server internal message processing rate are also used in
explaining the results.

V. DEFAULT SIP OVER TCP OVERLOAD PERFORMANCE

We start our evaluation with a single SE - single RE
testbed with all out-of-the-box configurations and show the
throughput in Fig. 5. It can be seen that the throughput
immediately collapses as the load approaches and exceeds the

Fig. 5. Default SIP-over-TCP throughput

server capacity. In this section, we explore the detailed causes
of this behavior through server instrumentation.

We examine a particular run at a load of 150 cps which
is about 2.5 times the server capacity. Fig. 6 depicts the
per second message processing rate. The four figures show
INVITE, BYE, 200 OK and ACK, respectively. It should be
noted that the number of180 Ringings, not shown in these
figures, basically follows the number ofINVITEs processed,
because the UAS is not overloaded and can always deliver
responses to RE. For the same reason, the number of200
OKs to BYEs which are also not shown, follow the number
of BYEs. Along with the individual message processing rates,
Fig. 6 also includes the current number of active sessions
in the RE. The active sessions are those sessions that have
been started by anINVITE but have not yet received aBYE.
Since the call holding time is zero, in an ideal situation, any
started sessions should be terminated immediately, leaving no
session outstanding in the system. In a real system, the number
of active sessions could be greater than zero. The larger the
number of such in-progress sessions, the longer the delay that
those sessions will experience.

Fig. 6 indicates that200 OK retransmission happens almost
immediately as the test starts, which means the end-to-end
round trip delay immediately exceeds 500 ms. This is caused
by the large buffers at the different stages of the network
system, which allow too many sessions to be accepted. The
SIP session load is not atomic. TheINVITE request is always
first introduced into the system and then come the responses
and follow-up ACK and BYE requests. When too many
INVITEs are admitted to the system, theBYE generation rate
cannot keep up with theINVITEs, resulting in a large number
of active sessions in the system and also a large number
of messages queued in various stages of the buffers. These
situations translate to prolonged delays in getting theACK to
200 OK to the UAS. More specifically, assuming the server’s
capacity is 65 cps, if the sessions are indeed atomic, each
session will take a processing time of 15.4 ms. In order to avoid
200 OK retransmission, the end-to-end one-way delay cannot
exceed 250 ms, corresponding to a maximum of about 16 ac-
tive sessions in the system. Factoring in the non-atomic nature
of the session load, this maximum limit could be roughly

doubled to 32. But with the default system configuration,
we have a 16 KB TCP socket send buffer, and 64 KB socket
receive buffer, as well as 64 KB SIP server application buffer.
Considering anINVITE size of around 1 KB, this configuration
means the RE can be filled with up to 130INVITEs at one
time, much larger than the threshold of 32. All theseINVITEs
contribute to active sessions once admitted. In the experiment,
we see the number of active sessions reaches 49 at second
2, immediately causing200 OK retransmissions.200 OK
retransmissions also trigger re-generatedACKs, adding more
traffic to the network. This is why during the first half of the
time period in Fig. 6, the number ofACKs processed is higher
than the number ofINVITEs andBYEs processed. Eventually
the RE has accumulated too manyINVITEs both in its receive
buffer and application buffer. So its flow control mechanism
starts to advertise a zero window to the SE, blocking the SE
from sending additionalINVITE requests. Subsequently the
SE stops processingINVITE requests because of the send
block to the RE. This causes SE’s own TCP socket receive
buffer and send buffer to get full as well. The SE’s flow
control mechanism then starts to advertise a zero window to
UAC. This back pressure on UAC prevents the UAC from
sending anything out to the SE. Specifically, the UAC can
neither generate newINVITE requests, nor generate more
ACK and BYEs, but it could still receive responses. When
this situation happens, retransmitted200 OKs received can no
longer trigger retransmittedACKs. Therefore, the number of
ACKs processed in the later half of the graph does not exceed
the number ofINVITEs or BYEs. The number ofACKs
becomes actually similar to the number ofBYEs because
BYEs and ACKs are generated together at the same time in
our workload.

It can further be seen that under the default settings, the
INVITE andBYE processing tends to alternate with gradually
increasing periods as the test proceeds. During each period, the
INVITE portion is increasingly larger than theBYE portion.
Since the number of active sessions always increases with
INVITE processing, and decreases withBYE processing, those
processing patterns lead to the continued growth of the number
of active sessions in the RE and exacerbate the situation.

In addition to observing the per-second message processing
rate at RE, we also confirm the behavior from the total number
of messages processed at the UAS, along with the number
of active sessions at RE as in Fig. 7. Note that the number
of INVITEs received,180 Ringing and initial 200 OK (not
retransmissions) messages sent are the same, because180
Ringing and200 OK are generated by UAS immediately upon
receiving anINVITE. Similarly the number ofACK, BYE, and
200 OK to BYEs are the same, becauseACK and BYE are
generated at the same time at the UAC and200 OK to BYE
is immediately generated upon receivingBYE at the UAS. In
Fig. 7, initially between 0 and the 38th second, the number of
ACK andBYEs received are roughly half of the totalINVITEs
received. Therefore, the number of active sessions in the RE
and the number ofACKs received at the UAS are roughly the
same. Then RE enters the abnormalINVITE processing and

(a) INVITE (b) BYE

(c) 200 OK (d) ACK

Fig. 6. RE message processing rates and number of active sessions in default SIP-over-TCP test

BYE processing alternating cycle. During the period when RE
is processingACKs andBYEs, the number of active sessions
decreases. During the period when RE is processingINVITEs,
no ACKs are forwarded, so the number ofACKs remains
constant.

Fig. 7. Total number of messages processed at UAS and number of active
sessions at RE

200 OK retransmission starts at second 2. The total period
of 200 OK retransmission lasts 32 seconds for each individual
session, therefore the expiration of the first session that has
exhausted all its200 OK retransmissions without receiving
an ACK happens at the 34th second. The actual200 OK
retransmission timeout we see from Fig. 7 is at the 66th
second. The difference between the 66th and 34th second is 32

seconds, which is a configured maximum period UAS waits
to receive the next message in sequence, in this case theACK
to 200 OK.

Starting from the 69th second, we see a category of mes-
sages calledINVITE Unexpected. These are indeedACKs and
BYEs that arrive after the admitted sessions have already
timed out at the UAS.1TheseACKs and BYEs without a
matching session also create session states at the SIPp UAS,
which normally expect a session message sequence beginning
with an INVITE. Since those session states will not receive
other normal in-session messages, at the 101th second, or
after the 32 seconds UAS receive timeout period, those session
states start to time out, reflected in the figure as theINVITE
Timeout curve. Finally, a very important overall observation
from Fig. 7 is that at a certain point, the 77th second, the
number of timely receivedACKs virtually stopped growing,
causing the throughput to drop to zero.

We also show the final screen logs at the UAC and UAS side
for the test with default configurations in Fig. 8, where status
code202 is used instead of200 to differentiate the200 OK to
BYE from the200 OK to INVITE. We have explained the200
OK retransmissions,200 OK timeouts,INVITE timeouts, and
INVITEs unexpected messages. We can see that among the

1Note that the number of active sessions still sees a decreasealthough those
processedBYEs are for sessions that have expired, this is because the RE
active session statistics merely records the difference between the total number
of INVITEs andBYEs processed without taking delay into consideration.

(a) UAC

(b) UAS

Fig. 8. Screen logs in default SIP-over-TCP test

25,899INVITEs received at the UAS side, 22,078 eventually
time out and only 3,821 receive the finalACK. The UAC
actually sends out a total of 10,106ACKs and BYEs. The
remaining 6,285ACKs andBYEs are indeed delivered to UAS
but are too late when they arrive, therefore thoseBYEs do
not trigger202 OK and we see 6,285202 OK timeouts at the
UAC. At the UAS side, those 6,285ACKs andBYEs establish
abnormal session states and eventually time out after the 32s
receive timeout forINVITE. The unexpected messages at the
UAC side are408 Send Timeout messages triggered at the
SIP servers for theBYEs that do not hear a202 OK back.
Note that the number of those messages (3,567) is smaller
than the exact number ofBYEs that do not receive202
OK (6,285). This is because the remaining 2,718408 Send
Timeout messages arrive after the202 OK receive timeout
and therefore those messages were simply discarded and not
counted in the screen log.

We also examine the PDD in Fig. 9. Even if we do not
consider whether theACK are delivered to complete session
setup, the results show that 73% of theINVITEs have a PDD
between 8 and 16 seconds, which is most likely beyond the
human interface acceptability limit. Another 24% have a PDD
between 4 to 8 seconds, which might be at the boundary of
the acceptable limit.

Fig. 9. PDD in default SIP-over-TCP test

VI. SIP-OVER-TCP OVERLOAD CONTROL MECHANISM

DESIGN

Key lessons we learn from SIP-over-TCP congestion col-
lapse is that we must limit the number ofINVITEs we can
admit to avoid too many active sessions accumulating in the
system, and for all admittedINVITEs we need to make sure
the rest of the session messages complete within finite delay.
In this section, we propose specific approaches to address these
issues, namelyconnection split, buffer minimization, as well
as smart forwarding.

A. Connection Split and Buffer Minimization

First, it is clear that we only want to limitINVITEs but not
non-INVITEs because we do not want to drop messages for
sessions already accepted. In order to have a separate control
of INVITEs and non-INVITE messages, we split the TCP
connection from SE to RE into two, one forINVITE requests,
and the other for all other requests. Second, in order to limit
the number ofINVITEs in the system and minimize delay, we
minimize the total system buffer size between the SE and the
RE for the INVITE connection, which should include three
parts: the SE TCP socket send buffer, the RE TCP socket
receive buffer and the RE SIP server application buffer. We call
the resulting mechanismExplicit Connection Split + Buffer
Minimization (ECS+BM) and illustrate it in Fig. 10.

Session start

INVITE requests

Receiving

Entity

Sending

Entity Other in-session

requests (ACK etc.)

Minimized TCP socket

receive buffer +

minimized SIP server

application buffer

Minimized TCP socket

send buffer

Default TCP socket

send buffer

Default TCP socket

receive buffer + default

SIP server application buffer

Fig. 10. Explicit Connection Split + Buffer Minimization

We find, however, although ECS+BM effectively limits the
number of INVITEs that could accumulate at the RE, the
resulting throughput differs no much from that of the default
configuration. The reason is that, since the number ofINVITEs
SE receives from UAC remains the same and theINVITE
buffer sizes between SE and RE are minimized, theINVITE
pressure merely moves a stage back and accumulates at the
UAC-facing buffers of the SE. Once those buffers, including
the SE receive buffer and SE SIP server application buffer,
have been quickly filled up, the system delay dramatically
increases. Furthermore, UAC is then blocked from sending
to SE and unable to generate ACKs and BYEs, causing the
number of active sessions in the RE to skyrocket.

INVITE connection
send buffer empty?

INVITE arrival?

Forward INVITE

Reject INVITE

Start

Y

N

Y

N

Fig. 11. Smart forwarding for ECS

B. Smart Forwarding

In order to release, rather than pushing back, the excessive
load pressure present in the ECS+BM mechanism, we intro-
duce theSmart Forwarding (SF) algorithm as shown in Fig. 11.
This algorithm is enforced only for theINVITE connection.
When an INVITE arrives, the system checks whether the
current INVITE connection send buffer is empty. If yes, the
INVITE is forwarded; otherwise theINVITE is rejected with
an explicit SIP rejection message. This algorithm has two
special advantages: first, although we can choose any send
buffer length threshold value for rejecting anINVITE, the
decision to use the emptiness criterion makes the algorithm
parameter-free; second, implementation of this algorithmis
especially easy in Linux systems because the current send
buffer occupancy can be retrieved by a simple standardioctl
call.

C. Explicit Connection Split, Buffer Minimization and Smart
Forwarding (ECS+BM+SF)

Session start

INVITE requests

Receiving

Entity

Sending

Entity Other in-session

requests

Minimized TCP socket

receive buffer +

minimized SIP server

application buffer

Minimized TCP socket

send buffer

Default TCP socket

send buffer

Default TCP socket

receive buffer +

SIP server application buffer

Smart Forwarding

Fig. 12. ECS+BM+SF illustration

Our resulting mechanism is then ECS+BM+SF and we
illustrate it in Fig. 12. Basically, RE listens to two separate
sockets, one forINVITE requests that start new sessions, the
other for other in-session requests, such asACKs andBYEs.

SIP response messages go through the reverse directions of the
corresponding connection as usual. We start with the following
settings for the specialINVITE request connection: the SE
send buffer size is set to the minimum system-allowed value
of 2 KB; the RE side effective TCP socket receive buffer is
set to about 1 KB and the RE application buffer size is set to
1,200bytes. Since the size of an INVITE in our test is about
1K, these configurations allows the RE to hold at maximum
one or two activeINVITEs at a time.

We compare the detailed results of this ECS+BM+SF mech-
anism with those of the default configuration in the same
scenario as Section V with one SE overloading an RE at an
offered load of 2.5 times the capacity.

Fig. 13. RE message processing rates with ECS+MB+SF

Fig. 14. UAS total number of message processing with ECS+MB+SF

Fig. 13 shows the average message processing rate and the
number of active sessions in the RE. We can see dramatic
difference of this figure from Fig. 6. Here, the values of
INVITE, 200 OK, ACK, and BYE processing rate overlap
most of the time, which explains why the number of active
sessions remains extremely low, between 1 and 3, all the time.
Fig. 14 shows that the total numbers ofINVITEs andACKs
received at the UAS are consistent. The slope of these two
overlapping lines corresponds to the throughput seen at the
UAS2.

2The throughput value, 58 cps, is smaller than the peak value in Fig. 5 at
the same load because this run is obtained with substantial debugging code
enabled.

(a) UAC

(b) UAS

Fig. 15. Screen logs with ECS+MB+SF

Fig. 16. PDD with ECS+MB+SF

The PDD of the test is shown in Fig. 16. As can be seen,
none of the delay values exceeds 700 ms, and over 99% of the
sessions has a delay smaller than 60 ms. Furthermore, from the
overall UAC and UAS screen logs in Fig. 15(a) and Fig. 15(b),
we see that among the 35,999INVITEs that are generated,
22,019 of them are rejected by thesmart forwarding algorithm.
The remaining 13,980 sessions all successfully get through,
without triggering any retransmission or unexpected messages
- a sharp contrast to Fig. 8. Finally, the system achieves full
capacity as confirmed by the full CPU utilization observed at
the RE.

D. Implicit Connection Split, Buffer Minimization and Smart
Forwarding (ICS+BM+SF)

The ECS+BM+SF mechanism in Section VI-C is effective
in restricting load by combiningsmart forwarding and two
separate connections forINVITE and non-INVITE requests,
with special buffer minimization techniques applied to the
INVITE connection. If the mechanism works so well in
keeping only a few active sessions in the RE all the time, we
deduce that servers should never be backlogged and therefore
the queue size for bothINVITE and non-INVITE request
connections should be close to zero. In that case, the dedicated
connection for non-INVITE requests does not require the
default large buffer setting either. We may therefore merge

send buffer empty?

message arrival?

Forward

Reject

Start

Y

N

Y

N

Is an INVITE?

Y

N

Fig. 17. Smart forwarding for ICS

Receiving

Entity

Sending

Entity

All requests

Minimized TCP socket

send buffer
Minimized TCP socket

receive buffer + minimized

SIP server application buffer
Smart forwarding

Fig. 18. ICS+BM+SF illustration

the two split connections back into one with a minimized SE
send buffer, RE receive and application buffer settings. Wealso
need to revise thesmart forwarding algorithm accordingly as
in Fig. 17. Since there is only a single request connection
now, the algorithm checks forINVITE requests and rejects
it if the send buffer is non-empty. Otherwise, theINVITE is
forwarded. All non-INVITE requests are always forwarded.
Although the revised mechanism no longer requires a ded-
icated connection forINVITEs, it treats INVITEs and non-
INVITEs differently. Therefore, we call itImplicit Connection
Split (ICS) as opposed to the previous ECS. We show the
resulting ICS+BM+SF mechanism in Fig. 18. Running the
same overload experiment as in Section VI-C, we see that the
RE average message processing rate Fig. 19 and UAS total
message processing Fig. 20 are pretty similar to Fig. 13 and
Fig. 14.

However, the number of active sessions in the system is
between 0 to 3 in ICS as opposed to between 1 to 3 in ECS.
This indicates that the ICS mechanism is more conservative
in forwarding INVITEs (or more aggressive in rejectingIN-
VITEs) because in ICSINVITEs and non-INVITEs share a
single connection and the same buffer space. This will imply
that ICS could have a smaller delay but also smaller throughput
than ECS. Fig. 21 compares the PDD of ICS and ECS. In ICS,
over 99.8% of the sessions have a delay value smaller than
30 ms, much better than ECS where 99% of the session delays
are smaller than 60 ms. On the other hand, Fig. 22 shows that
ICS successfully admitted 13,257 of the 35,999INVITEs, only

Fig. 19. RE message processing rates with ICS+MB+SF

an insignificant 5% fewer than the corresponding number in
ECS. Combining with the big advantage of not requiring an
explicit connection split, these results indicate ICS could be a
more preferable choice over ECS during overload.

Fig. 20. UAS total number of message processing with ICS+MB+SF

Fig. 21. PDD with ICS+MB+SF vs. ECS+MB+SF

VII. SIP-OVER-TCP OVERLOAD CONTROL MECHANISM

PARAMETER TUNING

The mechanisms developed in Section VI contain three tun-
ing parameters which are the three buffer sizes. We minimized
their values and set the SE send buffer to 2 KB, RE receive
buffer to 1 KB and RE application buffer to 1,200 bytes. In
this section we explore the relationship among setting different
values of these three buffer sizes.

(a) UAC

(b) UAS

Fig. 22. Screen logs with ICS+MB+SF

A. Increasing the RE Side Buffer

Fig. 23. Throughput under varying RE application buffer with minimized
SE send buffer and RE receive buffer

1) Increasing Either RE Application Buffer or Receive
Buffer: First we keep the SE send buffer and RE receive
buffer size at their minimized values, and see how increasing
the RE application buffer may affect performance. We specifi-
cally look at the throughput under two load values, 150 cps
and 750 cps, the former representing a moderate overload
of 2.5 times the capacity and the latter a heavy overload of
12.5 times capacity. The application buffer sizes vary at 2 KB,
4 KB, 16 KB, 64 KB. The 64 KB value is the default appli-
cation buffer size. Fig. 23 shows that the application buffer
size does not have a noticeable impact on the throughput.
Moreover, the number of200 OK retransmissions is found
to be zero in all the tests, indicating a timely completion of
all the session setup.

To further illustrate the actual sizes of application buffer
used, we plot the histograms of actual number of bytes RE
reads in each time from the receive buffer in two tests:
with minimized send buffer and receive buffer but default
application buffer under load 150 cps and 750 cps. Results in
Fig. 24 show that even when the application buffer size is
64 KB, the system almost never reads more than 1,300 bytes.
This can be explained by the fact that the number of bytes
the application buffer reads are limited by the receive buffer

(a) L=150 cps

(b) L=750 cps

Fig. 24. RE application buffer reading histogram (in Bytes)

size. Note that in these tests, although the estimated effective
receive buffer size is 1 KB, the maximum receive buffer size
could be up to 1,360bytes depending on the actual buffer
overhead.

By referring to the message sizes captured by Wireshark at
the RE and SE as listed in Table I3 and check the server
message log, we confirm that most of the time, the bytes
read are for a single or a couple of messages which are sent
together. E.g., since the180 Ringing and200 OK messages
are sent at the same time, they are likely to be read together,
which account for about 1,233 bytes. Therefore, a larger RE
application buffer size actually does not change throughput
once the other two buffers are already minimized.

Results in Fig. 25 indicate that when the send buffer and
application buffer are minimized, the throughput does not
make a difference even when the receive buffer is increased
up to its 64 KB default value.

2) Increasing Both RE Receive Buffer and Application
Buffer: We have known from Section VII-A1 that keeping
either of the RE receive buffer or RE application buffer at its
default value, while minimizing the other one still works. Can
the minimized RE receive buffer or RE application buffer be
further increased while the other one is in its default value? As
Fig. 26 shows, the throughputs do remain close to the system
capacity at both heavy and moderate overloads even in those
cases.

3The differences between the lengths seen at the SE and RE are caused by
the serve stripping away or appending certain SIP headers, e.g., theRoute
andRecord-Route headers.

TABLE I
MESSAGE SIZES OBSERVED ATSE AND RE (IN BYTES)

Message Type At SE At RE

INVITE 776 941
100 Trying 363 NA

180 Ringing 473 534
200 OK 638 699

ACK 425 590
BYE 608 773

202 OK 356 417
Total 2863 3954

Fig. 25. Throughput under varying RE receive buffer with minimized SE
send buffer and RE application buffer

(a) Varying RE receive buffer with minimized SE send buffer and
default RE application buffer

(b) Varying RE application buffer with minimized SE send buffer
and default RE receive buffer

Fig. 26. Increasing both RE receive buffer and application buffer

However, recall that enlarging either RE buffer size could
hold messages in the RE and increase queuing delay. We plot
the PDD distribution for four test cases in Fig. 27. Two of
those cases compare the delay when RE application buffer
is set to 2 KB vs. the default 64 KB, while the RE receive
buffer is at its default value of 64 KB. Most of the delays
in the small application buffer case are below 375 ms, and
as a result we observe no200 OK retransmissions at the
UAS side. In the large application buffer case, however, nearly
70% of the sessions experience a PDD between 8 seconds and
32 seconds, which will most likely be hung up by the caller
even if the session setup messages could ultimately complete.
Not surprisingly, we also see a large number of200 OK
retransmissions in this case.

The other two cases in Fig. 27 compare the PDD when the
receive buffer is set to 2 KB vs. the default 64 KB, while the
application buffer is at its default value of 64 KB. In the small
receive buffer case, over 99.7% of the sessions have a PDD
below 30 ms, and there is certainly no200 OK retransmissions
at the UAS side. In the larger receive buffer case, about 30%
of the sessions have a PDD below 480 ms, and the rest 70%
between 480 ms and 700 ms. Since a large number of sessions
experienced a round trip delay exceeding 500 ms, we see quite
a number of200 OK retransmissions at the UAS side, too.

Fig. 27. PDD comparison for RE side buffer tuning

To summarize, although throughput is similar by tuning
either RE receive buffer or application buffer, the delay
performance could be very different in these two approaches.
Specifically, when similar size of RE receive buffer or applica-
tion buffer is used and the other buffer left at its default value,
limiting the receive buffer could produce over a magnitude
lower PDDs than limiting the application buffer, which in
turn significantly reduces the likelihood of200 OK message
retransmissions. The above results suggest that since RE
receive buffer and application buffer are connected in series,
at least one of them has to be tuned in order to restrict
buffering delay, and tuning the receive buffer is preferable over
tuning the application buffer. This conclusion also matches
the intuition: limiting the receive buffer produces more timely
transport feedback than limiting the application buffer.

(a) 2 KB receive buffer and 1,300 B application buffer

(b) 2 KB receive buffer and default 64 KB application buffer

(c) Default 64 KB receive buffer and 1,300 B application buffer

Fig. 28. Throughput performance under varying SE sending buffer sizes

B. Increasing SE Side Buffer

So far we have explored RE receive buffer and application
buffer sizes based on the assumption that SE send buffer is
always minimized. In this section we examine the impact of
varying SE send buffer size as well. Fig. 28 show the over-
load throughput again at loads of 150 cps and 750 cps under
three different combined RE receive buffer and application
buffer settings: both buffers minimized, only receive buffer
minimized and only the application buffer minimized. We see
that the throughput values in all cases are reasonably closeto
the system capacity and do not exhibit noticeable differences.

To get a better understanding, we inspect the actually used
SE send buffer size in a test run with load 750 cps, default SE
send buffer, default RE application buffer and 2 KB RE receive

buffer. Fig. 29 shows the histogram of number of unsent bytes
in the SE send buffer when anINVITE arrives but sees a non-
empty send buffer. It shows that during over 61% of the times
when an INVITE is rejected, the send buffer size is less than
1,000 bytes; during over 99.9% of the times when an INVITE
is rejected, the send buffer size is less than 3,000 bytes; the
upper bound of number of unsent bytes seen by a rejected
INVITE is 5,216 bytes. Furthermore, the number of active
sessions at both the SE and RE are found to be within the range
of 0 to 4. These numbers are pretty reasonable considering the
total length of non-INVITE messages for each session, which
is 2,087 bytes as listed in Table I.

Fig. 29. SE send buffer unsent bytes histogram

Fig. 29 tells us that the SE send buffer size again does not
have to be minimized. This can be attributed to oursmart
forwarding algorithm which essentially prevents excessive
non-INVITE message built up in the system. Combined with
a minimized buffer at the RE, our mechanism minimizes the
number of active sessions in the system, which means there
will always be only a small number of messages in the SE
send buffer.

VIII. O VERALL PERFORMANCE OF OURSIP-OVER-TCP
OVERLOAD CONTROL MECHANISMS

We develop our overload control algorithms in Section VI
with only the RE receive buffer as its tuning parameters. The
simplified mechanisms are shown in Fig. 30. In this section
we evaluate the overall performance of these mechanisms. To
demonstrate scalability, we test on three scenarios with 1 SE,
3 SEs and 10 SEs, respectively.

A. Overall Throughput and PDD

Fig. 31 illustrates the throughput with and without our
control mechanismsin three test scenarios with varying number
of SEs and an offered load up to over 10 times the capacity.
The RE receive buffer was set to 2 KB and the SE send buffer
and RE application buffer remain at their default values. As
we can see, in all test runs with our control mechanisms, the
overload throughput maintains at close to the server capacity,
even in the most constrained case with 10 SEs and 750 cps.
There are subtle differences between ECS and ICS though, as
we mentioned in Section VI-D, that ICS is more effective
in rejecting sessions than ECS. As a result, although we
observe occurrence of200 OK retransmissions at the 10 SE,

Receiving

Entity

Sending

Entity

Minimized TCP socket

receive buffer
Smart forwarding

Session start

INVITE requests

Other in-session

requests

(a) ECS+BM+SF

Receiving

Entity

Sending

Entity

All requests

Minimized TCP socket

receive buffer
Smart forwarding

(b) ICS+BM+SF

Fig. 30. SIP-over-TCP overload control mechanisms after parameter simpli-
fication

(a) ECS+BM+SF

(b) ICS+BM+SF

Fig. 31. Overall throughput of SIP-over-TCP: with and without our overload
control mechanisms

750 cps overload test in ECS, there is no single200 OK
retransmissions in any ICS test runs.

We further compare the ICS tests with different number of
SEs. Fig. 32 shows that the numbers of active sessions in

Fig. 32. Number of active sessions in RE in scenarios with varying number
of SEs

RE for the three scenarios roughly correspond to the ratio of
the numbers of SEs (1:3:10), as would be expected because
in our testbed configuration each SE creates a new connection
to the RE which will be allocated a new set of RE buffers.
Increased number of active sessions causes longer PDDs, as
demonstrated in Fig. 33, where the overall trend and the 50
percentile values match the 1:3:10 ratio pretty well.

Fig. 33. PDD in scenarios with varying number of SEs

Fig. 32 and Fig. 33 also imply that if the number of SEs
keeps increasing until a very large number, we will eventually
still see an undesirably large number of active sessions in the
system. The PDD will also exceed the response retransmission
timer value, although the adverse effect of response retransmis-
sion on the actual performance will likely only be observable
when the number of such retransmissions accumulates to a
certain extent, because the 500 ms retransmission timer value
is smaller than the normally several-second acceptable PDD
limit, and the processing cost of200 OK responses is usually
not the most expensive among all the messages in the session.
The actual crossing point depends on the processing power of
the server.

Thus, our mechanism is most applicable to cases where the
number of SEs are reasonably small, which however, does
cover a fairly common set of realistic SIP server overload
scenarios. For example, there are typical national service
providers deploying totally hundreds of core proxy and edge
proxy servers in a hierarchical manner. The resulting server
connection architecture leaves each single server with a few
to dozens of upstream servers.

The other cases where a huge number of SEs overloading an
RE can occur, e.g., when numerous enterprises, each having
their own SIP servers, connect to the same server of a big
provider. Deploying our mechanism in those cases will still
benefit the performance, but the degree of effectiveness is
inherently constrained by the per-connection TCP flow control
mechanism itself. Since each SE adds to the number of
connections and subsequently to the total size of allocated
connection buffers at the RE. As the buffer size accumulates,
so does the delay. Indeed, the solution to this numerous-SE-
single-RE overload problem may ultimately require a shift
from the current push-based model to a poll-based model.
Specifically, instead of allowing all the SEs to send, the RE
may advertise a zero TCP window to most of the SEs and
open the windows only for those SEs that the RE is currently
polling to accept loads.

B. RE Receive Buffer Tuning

Fig. 34. Impact of RE receive buffer size on Throughput

Fig. 35. Impact of RE receive buffer size on PDD

The only tuning parameter in our mechanism is the RE

receive buffer size. We explore the impact of this parameter
under the most constrained 10 SEs with load 750 cps case for
ICS+MB+SF in Fig. 34. It is not surprising that the receive
buffer size cannot be too small because it will cause a single
message to be sent and read in multiple segments. After
exceeding a certain threshold, the receive buffer does not make
difference in overload throughput, but the smaller the buffer is,
the lower the PDD, as shown in Fig. 35. The PDD is roughly
the same as round trip delay. If the round trip delay exceeds
500 ms, we will start to see200 OK retransmissions, as in the
cases where the receive buffer is larger than 3,070bytes.

Overload control algorithms are meant to kick in when
overload occurs. In practice, a desirable feature is to require no
explicit threshold detection about when the overload control
algorithm should be activated, because that always introduces
additional complexity, delay and inaccuracy. If we keep our
overload control mechanism on regardless of the load, then we
should also consider how our mechanism could affect the sys-
temunderload performance. We find that in general both ECS
and ICS have a pretty satisfactory underload performance,
meaning the throughput matches closely with a below-capacity
offered load such as in Fig. 31, but comparatively ECS’s
underload performance is better than ICS because ICS tends
to be more conservative. We do observe the ICS mechanism
underload throughput noticeably fall below the offered load
in a few circumstances, specifically when there is only a
single SE, with a receive buffer set around or smaller than
the size of a singleINVITE, and the load is around 80% to
full system capacity. But the combination of these conditions
only represents corner cases, which can also be fixed with
appropriate parameter tuning if warranted.

Overall, in order to scale to as many SEs as possible yet
minimizing the PDD, we recommend an RE receive buffer
size that holds roughly a couple ofINVITEs.

C. Fairness

All our above tests with multiple SEs assume each SE
receiving the same request rate from respective UACs, in
which case the throughput for each UAC is the same. Now
we look at the situation where each SE receives different
request rates, and measure the fairness property of the achieved
throughput.

Fig. 36. Throughput: three SEs with incoming load ratio 3:2:1

Fig. 36 shows the throughput of a 3 SE configuration with
the incoming offered load to the three SEs distributed at a
3:2:1 ratio. As we can see, when the load is below total
system capacity, the individual throughputs via each SE follow
the offered load at the same 3:2:1 ratio closely. At light
to moderate overload until 300 cps, the higher load sources
have some advantages in competing RE resources. At higher
overload above 300 cps, each SE receives a load that is close
to or higher than the server capacity. The advantages of the
relatively higher load SEs are wearing out, and the three SEs
basically deliver the same throughputs to their corresponding
UACs.

Shen et al [55] define two types of fairness for SIP
server overload:service provider-centric fairness andend-
user-centric fairness. The former allocates the same portion
of the overloaded server capacity to each upstream server; the
latter allocates the overloaded server capacity in proportion
to the upstream servers’ original incoming load. Our results
show that the system achievesservice provider-centric fairness
at heavy overload. Obtainingend user-centric fairness during
overload is usually more complicated, some techniques are
discussed in [55].

D. Additional Discussions

During our work with OpenSIPS, we also discover subtle
software implementation flaws or configuration guidelines.For
example, an SE could block on sending to an overloaded
RE. Thus, if there are new requests coming from the same
upstream source to the SE which are destined to other REs
that are not overloaded, those new requests cannot be accepted
either because of the blocking. This is clearly a flaw that will
not easily be noticed unless we conduct systematic TCP over-
load tests. Another issue is related to the OpenSIPs process
configuration. OpenSIPS employs a multi-process architecture
and the number of child processes is configurable. Earlier
work [54] with OpenSIPS has found that configuring one
child process yields an equal or higher maximum throughput
than configuring multiple child processes. However, in this
study we find that when overloaded, the existing OpenSIPS
implementation running over TCP with a single child process
configuration could lead to a deadlock situation between
the sending and receiving entity servers. Therefore, we use
multiple child processes for this study.

IX. CONCLUSIONS

We experimentally evaluate default SIP-over-TCP overload
performance using a popular open source SIP server imple-
mentation on a typical Intel-based Linux testbed. Through
server instrumentation, we found that TCP flow control feed-
back cannot not prevent SIP overload congestion collapse be-
cause of lack of application context awareness at the transport
layer for session-based load with real-time requirements.We
develop novel mechanisms that effectively use existing TCP
flow control to aid SIP application level overload control.
Our mechanism has three components: the first isconnection
split which brings a degree of application level awareness

to the transport layer; the second is a parameter-freesmart
forwarding algorithm to release the excessive load at the
sending server before they reach the receiving server; the third
is minimization of the essential TCP flow control buffer -
the socket receive buffer, to both enable timely feedback and
avoid long queueing delay. Implementation of our mechanisms
is extremely simple without requiring any kernel or protocol
level modification. Our mechanisms work best for the SIP
overload scenarios commonly seen in core networks, where
a small to moderate number of sending servers may simul-
taneously overload a receiving server. E.g., we demonstrate
the performance improvement from zero to full capacity in
our testbed containing up to 10 SEs at over 10 times overload.
We also note that scenarios more likely occur at the edge
networks, where there are a huge number of SEs overloading
one RE, essentially require a solution which shifts from the
current push-based model to a poll-based model. Future work
is needed in this area.

Our study sheds lights both at software level and conceptual
level. At the software level, we discover implementation
flaws for overload management that would not be noticed
without conducting systematic overload study, even though
our evaluated SIP server is a mature open source server. At
the conceptual level, our results suggest an augmentation to
the long-held notion of TCP flow control: the traditional TCP
flow-control alone is incapable of handling SIP-like time-
sensitive session-based application overload. The conclusion
may be generalized to a much broader application space that
share similar load characteristics, such as database systems.
Our proposed combined techniques includingconnection split,
smart forwarding andbuffer minimization are key elements to
make TCP flow control actually work for managing overload
of such applications.

X. ACKNOWLEDGEMENT

Funding for this work is provided by NTT. The authors
would like to thank Arata Koike of NTT, Erich Nahum of
IBM Research, and Volker Hilt of Bell Labs/Alcatel-Lucent
for helpful discussions.

REFERENCES

[1] SIP forum. http://www.sipforum.org.
[2] T. Abdelzaher and N. Bhatti. Web content adaptation to improve server

overload behavior. InWWW ’99: Proceedings of the eighth international
conference on World Wide Web, pages 1563–1577, New York, NY, USA,
1999. Elsevier North-Holland, Inc.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control . RFC
2581 (Proposed Standard), April 1999. Updated by RFC 3390.

[4] J. Almeida, M. Dabu, and P. Cao. Providing differentiated levels of
service in web content hosting. InIn First Workshop on Internet Server
Performance, pages 91–102, 1998.

[5] A. Argyriou. Real-time and rate-distortion optimized video streaming
with TCP. Image Commun., 22(4):374–388, 2007.

[6] A. Bakre and B. R. Badrinath. I-TCP: indirect TCP for mobile hosts.
In ICDCS ’95: Proceedings of the 15th International Conference on
Distributed Computing Systems, page 136, Washington, DC, USA, 1995.
IEEE Computer Society.

[7] S. Baset, E. Brosh, V. Misra, D. Rubenstein, and H. Schulzrinne.
Understanding the behavior of TCP for real-time CBR workloads. In
Proc. ACM CoNEXT ’06, pages 1–2, New York, NY, USA, 2006. ACM.

[8] N. Bhatti and R. Friedrich. Web server support for tieredservices.
Network, IEEE, 13(5):64–71, Sep/Oct 1999.

[9] L.S. Brakmo and L.L. Peterson. TCP vegas: end to end congestion
avoidance on a global internet.Selected Areas in Communications, IEEE
Journal on, 13(8):1465–1480, Oct 1995.

[10] K. Brown and S. Singh. M-TCP: TCP for mobile cellular networks.
SIGCOMM Comput. Commun. Rev., 27(5):19–43, 1997.

[11] G. Camarillo, R. Kantola, and H. Schulzrinne. Evaluation of transport
protocols for the session initiation protocol.Network, IEEE, 17(5):40–
46, Sept.-Oct. 2003.

[12] Ludmila Cherkasova and Peter Phaal. Session-based admission control:
A mechanism for peak load management of commercial web sites. IEEE
Trans. Comput., 51(6):669–685, 2002.

[13] M. Colajanni, V. Cardellini, and P. Yu. Dynamic load balancing in
geographically distributed heterogeneous web servers. InICDCS ’98:
Proceedings of the The 18th International Conference on Distributed
Computing Systems, page 295, Washington, DC, USA, 1998. IEEE
Computer Society.

[14] M. Cortes, J. Ensor, and J. Esteban. On SIP performance.IEEE Network,
9(3):155–172, Nov 2004.

[15] T. Dunigan, M. Mathis, and B. Tierney. A TCP tuning daemon. In
Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference
on Supercomputing, pages 1–16, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[16] E. Nahum and J. Tracey and C. Wright. Evaluating SIP server
performance. InACM SIGMETRICS Performance Evaluation Review,
volume 35, pages 349–350, June 2007.

[17] L. Eggert and J. Heidemann. Application-level differentiated services
for web servers.World Wide Web, 2(3):133–142, 1999.

[18] R. Ejzak, C. Florkey, and R. Hemmeter. Network overloadand
congestion: A comparison of isup and SIP.Bell Labs Technical Journal,
9(3):173–182, November 2004.

[19] H. Elaarag. Improving TCP performance over mobile networks. ACM
Comput. Surv., 34(3):357–374, 2002.

[20] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A method for
transparent admission control and request scheduling in e-commerce
web sites. InProceedings of the 13th international conference on World
Wide Web, pages 276–286, New York, NY, USA, 2004. ACM.

[21] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 3782, April 2004.

[22] S. Floyd and V. Jacobson. Random early detection gateways for conges-
tion avoidance.Networking, IEEE/ACM Transactions on, 1(4):397–413,
Aug 1993.

[23] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to
the Selective Acknowledgement (SACK) Option for TCP. RFC 2883
(Proposed Standard), July 2000.

[24] R. Gayraud and O. Jacques. SIPp. http://sipp.sourceforge.net.
[25] Y. Guo, Y. Hiranaka, and T. Akatsuka. Autonomic buffer control of web

proxy server. InWWCA ’98: Proceedings of the Second International
Conference on Worldwide Computing and Its Applications, pages 428–
438, London, UK, 1998. Springer-Verlag.

[26] S. Ha, I. Rhee, and L. Xu. Cubic: a new TCP-friendly high-speed TCP
variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, 2008.

[27] G. Hasegawa, T. Terai, T. Okamoto, and M. Murata. Scalable socket
buffer tuning for high-performance web servers. InNetwork Protocols,
2001. Ninth International Conference on, pages 281–289, Nov. 2001.

[28] V. Hilt and I. Widjaja. Controlling overload in networks of SIP servers.
In Network Protocols, 2008. ICNP 2008. IEEE International Conference
on, pages 83–93, Oct. 2008.

[29] J. Hoe. Improving the start-up behavior of a congestioncontrol scheme
for TCP. In SIGCOMM ’96: Conference proceedings on Applications,
technologies, architectures, and protocols for computer communications,
pages 270–280, New York, NY, USA, 1996. ACM.

[30] IPTel.org. SIP express router (SER). http://www.iptel.org/ser.
[31] V. Jacobson. Congestion avoidance and control. InSIGCOMM ’88:

Symposium proceedings on Communications architectures and proto-
cols, pages 314–329, New York, NY, USA, 1988. ACM.

[32] A. Kamra, V. Misra, and E.M. Nahum. Yaksha: a self-tuning controller
for managing the performance of 3-tiered web sites.Quality of Service,
2004. IWQOS 2004. Twelfth IEEE International Workshop on, pages
47–56, June 2004.

[33] D. Kliazovich, F. Granelli, and D. Miorandi. Logarithmic window
increase for TCP westwood+ for improvement in high speed, long
distance networks.Comput. Netw., 52(12):2395–2410, 2008.

[34] C. Krasic, K. Li, and J. Walpole. The case for streaming multimedia
with TCP. In IDMS ’01: Proceedings of the 8th International Workshop
on Interactive Distributed Multimedia Systems, pages 213–218, London,
UK, 2001. Springer-Verlag.

[35] K. Li and S. Jamin. A measurement-based admission-controlled web
server. INFOCOM 2000. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE,
2:651–659 vol.2, 2000.

[36] M. Ohta. Overload Protection in a SIP Signaling Network. In
International Conference on Internet Surveillance and Protection, 2006.

[37] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective
Acknowledgement Options. RFC 2018, October 1996.

[38] R. Morris. Scalable TCP congestion control. InProc. IEEE INFOCOM
2000, volume 3, pages 1176–1183 vol.3, Mar 2000.

[39] E. Nahum, J. Tracey, and C. Wright. Evaluating SIP proxyserver
performance. In17th International Workshop on Networking and
Operating Systems Support for Digital Audio and Video (NOSSDAV),
Urbana-Champaign, Illinois, USA, June 2007.

[40] E. Noel and C. Johnson. Initial simulation results thatanalyze SIP based
VoIP networks under overload. InITC, pages 54–64, 2007.

[41] K. Ono and H. Schulzrinne. One server per city: Using TCPfor
very large SIP servers. InLNCS: Principles, Systems and Applications
of IP Telecommunications. Services and Security for Next Generation
Networks, volume 5310/2008, pages 133–148, Oct 2008.

[42] R. Pandey, J. Fritz Barnes, and R. Olsson. Supporting quality of service
in http servers. InPODC ’98: Proceedings of the seventeenth annual
ACM symposium on Principles of distributed computing, pages 247–256,
New York, NY, USA, 1998. ACM.

[43] J. Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981. Updated by RFC 3168.

[44] The OpenSIPS Project. http://www.opensips.org.
[45] K. Kumar Ram, I. Fedeli, A. Cox, and S. Rixner. Explaining the

impact of network transport protocols on SIP proxy performance. In
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 75–84, Texas, USA, April 2008.

[46] Light Reading. VoIP security: Vendors prepare for the inevitable. VoIP
Services Insider, 5(1), January 2009.

[47] J. Rosenberg. Requirements for Management of Overloadin the Session
Initiation Protocol. RFC 5390 (Informational), December 2008.

[48] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261 (Proposed Standard), June 2002.

[49] S. Salsano, L. Veltri, and D. Papalilo. SIP security issues: the SIP
authentication procedure and its processing load.Network, IEEE,
16(6):38–44, Nov/Dec 2002.

[50] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. RFC 3550 (Standard),
July 2003.

[51] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle. SIPstone-
benchmarking SIP server performance. April 2002. http://www.sipstone.
com.

[52] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP buffer tuning.
In SIGCOMM ’98: Proceedings of the ACM SIGCOMM ’98 conference
on Applications, technologies, architectures, and protocols for computer
communication, pages 315–323, New York, NY, USA, 1998. ACM.

[53] H. Sengar. Overloading vulnerability of voip networks. In Dependable
Systems & Networks, 2009. DSN ’09. IEEE/IFIP International Confer-
ence on, pages 419–428, 29 2009-July 2 2009.

[54] C. Shen, E. Nahum, H. Schulzrinne, and C.P. Wright. The impact of TLS
on SIP server performance. Technical Report CUCS-022-09, Columbia
University Department of Computer Science, May 2009.

[55] C. Shen, H. Schulzrinne, and E. Nahum. Session Initiation Protocol
(SIP) server overload control: Design and evaluation. InLNCS: Princi-
ples, Systems and Applications of IP Telecommunications. Services and
Security for Next Generation Networks, volume 5310/2008, pages 149–
173, Oct 2008.

[56] J. Sun, J. Hu, R. Tian, and B. Yang. Flow management for SIP appli-
cation servers. InCommunications, 2007. ICC ’07. IEEE International
Conference on, pages 646–652, June 2007.

[57] V. Hilt, E. Noel, C. Shen, and A. Abdelal. Design Considerations for
Session Initiation Protocol (SIP) Overload Control. Internet draft, 2009.
Work in progress.

[58] V. Hilt and H. Schulzrinne. Session Initiation Protocol (SIP) Overload
Control. Internet draft, October 2009. Work in progress.

[59] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen,
G. Ganger, G. Gibson, and B. Mueller. Safe and effective fine-grained
TCP retransmissions for datacenter communication. InSIGCOMM
’09: Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, pages 303–314, New York, 2009. ACM.

[60] A. Vishwanath, V. Sivaraman, and M. Thottan. Perspectives on router
buffer sizing: recent results and open problems.SIGCOMM Comput.
Commun. Rev., 39(2):34–39, 2009.

[61] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mechanisms
for service differentiation in overloaded web servers. InProceedings of
the General Track: 2002 USENIX Annual Technical Conference, pages
189–202, Berkeley, CA, USA, 2001. USENIX Association.

[62] B. Wang, J. Kurose, P. Shenoy, and D. Towsley. Multimedia streaming
via TCP: an analytic performance study. InMULTIMEDIA ’04: Proceed-
ings of the 12th annual ACM international conference on Multimedia,
pages 908–915, New York, NY, USA, 2004. ACM.

[63] M. Welsh and D. Culler. Adaptive overload control for busy internet
servers. InUSITS’03: Proceedings of the 4th conference on USENIX
Symposium on Internet Technologies and Systems, pages 4–4, Berkeley,
CA, USA, 2003. USENIX Association.

[64] M. Whitehead. GOCAP - one standardised overload control for next
generation networks.BT Technology Journal, 23(1):144–153, 2005.

[65] X. Wu, M. Chan, and A. Ananda. Improving TCP performancein het-
erogeneous mobile environments by exploiting the explicitcooperation
between server and mobile host.Comput. Netw., 52(16):3062–3074,
2008.

[66] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control
(bic) for fast long-distance networks. InIEEE Infocom. IEEE, 2004.

[67] R. Yavatkar and N. Bhagawat. Improving end-to-end performance of
TCP over mobile internetworks. InWMCSA ’94: Proceedings of the
1994 First Workshop on Mobile Computing Systems and Applications,
pages 146–152, Washington, DC, USA, 1994. IEEE Computer Society.

[68] T. Yoshino, Y. Sugawara, K. Inagami, J. Tamatsukuri, M.Inaba, and
K. Hiraki. Performance optimization of TCP/ip over 10 gigabit ethernet
by precise instrumentation. InSC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12, 2008.

[69] W. Zhao and H. Schulzrinne. Enabling on-demand query result caching
in dotslash for handling web hotspots effectively.HOTWEB ’06. 1st
IEEE Workshop on, pages 1–12, Nov. 2006.

