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Challenges arise in assuring the quality of applications that do not have test oracles, i.e., for which

it is impossible to know what the correct output should be for arbitrary input. Metamorphic

testing has been shown to be a simple yet effective technique in addressing the quality assurance
of these “non-testable programs”. In metamorphic testing, if test input x produces output f (x),

specified “metamorphic properties” are used to create a transformation function t, which can be

applied to the input to produce t(x); this transformation then allows the output f (t(x)) to be
predicted based on the already-known value of f (x). If the output is not as expected, then a defect

must exist.

Previously we investigated the effectiveness of testing based on metamorphic properties of
the entire application. Here, we improve upon that work by presenting a new technique called

Metamorphic Runtime Checking, a testing approach that automatically conducts metamorphic

testing of individual functions during the program’s execution. We also describe an implemen-
tation framework called Columbus, and discuss the results of empirical studies that demonstrate

that checking the metamorphic properties of individual functions increases the effectiveness of the
approach in detecting defects, with minimal performance impact.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-

cation; D.2.5 [Software Engineering]: Testing and Debugging

General Terms: Reliability, Verification

Additional Key Words and Phrases: Software Testing, Oracle Problem, Metamorphic Testing

1. INTRODUCTION

It has long been known that there are software applications for which it is difficult
to detect subtle errors, faults, defects or anomalies because there is no reliable
“test oracle” to indicate what the correct output should be for arbitrary input.
Applications in the fields of scientific computing, optimizations, machine learning,
etc. are among those that fall into a category of software that Weyuker describes as
“Programs which were written in order to determine the answer in the first place.
There would be no need to write such programs, if the correct answer were known”
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[Weyuker 1982]. Although some defects in such programs - such as those that cause
the program to crash or produce results that are obviously wrong to someone who
knows the domain - are easily found, subtle errors in performing calculations or in
adhering to specifications can be much more difficult to identify.

One approach to testing such “non-testable programs” [Weyuker 1982] is to use
a “pseudo-oracle” [Davis and Weyuker 1981], in which multiple implementations
of an algorithm process an input and the results are compared; if the results are
not the same, then one or both of the implementations contains a defect. This is
not always feasible, though, since multiple implementations may not exist, or they
may have been created by the same developers, or by groups of developers who are
prone to making the same types of mistakes [Knight and Leveson 1986].

In the absence of multiple implementations, metamorphic testing [Chen et al.
1998] can be used to produce a similar effect. Metamorphic testing is a general
technique for creating follow-up test cases based on existing ones, particularly those
that have not revealed any defects, by reusing input test data to create additional
test cases whose outputs can be predicted. In metamorphic testing, if input x
produces an output f (x ), the function’s (or application’s) so-called “metamorphic
properties” can be used to guide the creation of a transformation function t, which
can be applied to the input to produce t(x ); this transformation then allows us
to predict the output f (t(x )), based on the (already known) value of f (x ). If the
output is not as expected, then a defect must exist. Of course, this can only show
the existence of defects and cannot demonstrate their absence, since the correct
output cannot be known in advance (and even if the outputs are as expected,
both could be incorrect), but metamorphic testing provides a powerful technique
to reveal defects in non-testable programs by use of a built-in pseudo-oracle.

Previously we have investigated the effectiveness of the technique in which meta-
morphic testing of programs without test oracles is conducted by specifying the
metamorphic properties of the entire application [Murphy et al. 2009a]. Testing is
done automatically as the program executes: the properties are specified prior to
execution and then checked after the program is complete. Here, we improve upon
that work by presenting a new technique in which the metamorphic properties of
individual functions 1 are used to conduct system testing of software that has no
test oracle, enabling finer-grained runtime checking and increasing the number of
test cases; our goal is to demonstrate that such a technique is more effective at
identifying defects than simply specifying properties of the application as a whole.

This paper makes three contributions:

(1) We introduce a new type of testing called Metamorphic Runtime Checking. This
is a technique for testing applications without test oracles in which, in addition
to specifying the metamorphic properties of the application as a whole, we do
so for individual functions as well. While the program is running, we apply
functions’ metamorphic properties to derive new test input for those functions,
so that it should be possible to predict the corresponding test output; if it is
not as predicted, then there is a defect in the implementation. This is a new

1In this paper, we will use the generic term “functions” to refer to methods, procedures, subrou-

tines, etc., depending on the programming language.
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approach that differs from previous work in system-level metamorphic testing
in that it is the metamorphic properties of individual functions, not only the
entire application, that are specified as well.

(2) We also present a new implementation framework called Columbus that sup-
ports Metamorphic Runtime Checking by conducting metamorphic tests on
the individual functions as the program executes. Columbus conducts the tests
with minimal performance overhead, and ensures that the execution of the tests
does not affect the state of the original application, so as not to affect further
tests in that process.

(3) Finally, we describe the results of new empirical studies of real-world non-
testable programs (from the domain of machine learning) to demonstrate the
effectiveness of our technique, and compare these results to those in previous
work [Murphy et al. 2009a] to show that conducting metamorphic testing based
on the properties of individual functions exhibits an improvement in detecting
defects over testing based solely on system-level metamorphic properties.

The rest of this paper is organized as follows. Section 2 motivates our work and
discusses other approaches to using metamorphic testing to address non-testable
programs. Section 3 introduces the Metamorphic Runtime Checking approach, and
Section 4 provides some insight into how to devise the properties that can be used
in metamorphic testing. Sections 5 and 6 explain the model and architecture of the
Columbus framework, respectively. Section 7 discusses the results of our empirical
studies, and Section 8 describes the effect the approach has on the time it takes to
conduct tests. Section 9 discusses related work, and Section 10 presents limitations
and future work. Section 11 concludes.

2. BACKGROUND

2.1 Motivation

This line of research began with work in which we addressed the dependability of a
machine learning (ML) application commissioned by a company for potential future
experimental use in predicting impending electrical device failures, using historic
data of past failures as well as static and dynamic information about the current
devices [Murphy and Kaiser 2008]. Classification in the binary sense (“will fail”
vs. “will not fail”) is not sufficient because, after enough time, every device will
eventually fail. Instead, a ranking of the propensity of failure with respect to all
other devices is more appropriate. The application uses a variety of ML algorithms
in its implementation. We do not discuss the full application further in this paper;
see [Gross et al. 2006] for details.

The dependability of the implementation of this system addresses real-world con-
cerns, rather than just academic interest. Although it may be impossible to accu-
rately predict all power outages (which can be due to weather, human error, hungry
rats chewing on power cables, etc.) there have been cases in which outages might
have been prevented via timely maintenance or replacement of devices that were
likely to fail, such as the 2008 blackout in Miami 2 and the 2005 blackout in Java

2http://www.cnn.com/2008/US/02/26/florida.power/index.html
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and Bali.3 A dependable application in this domain may save money and even lives
if it can accurately predict which devices are most likely to fail.

The impact of our research goes far beyond the particular application for which
our investigations began. Formal proofs of an ML algorithm’s optimal quality do not
guarantee that an application implements or uses the algorithm correctly. As these
types of applications become more and more prevalent in society [Mitchell 1983],
ensuring their quality becomes more and more crucial. Over fifty different real-
world applications, ranging from facial recognition to computational biology, use
implementations of the Support Vector Machines [Vapnik 1995] algorithm alone.4

Additionally, ranking is widely used by Internet search engines (e.g., [Brin and
Page 1998]), also apparently using similarly non-testable algorithms. And other
ML applications like those used for security and intrusion detection systems are
clearly becoming more critical as important data is stored online and attackers
seek to access it or gain control of systems.5 Thus, ensuring the dependability of
these sorts of applications takes on increased significance.

2.2 Metamorphic Testing Examples

As described above, metamorphic testing is not a technique that indicates the cor-
rectness of individual outputs, but seeks to determine whether a function or appli-
cation fulfills its expected “metamorphic properties”. Even when we cannot know
whether the output is correct, we at least know that a violation of the metamorphic
properties indicates a defect.

A metamorphic property can be defined as the relationship by which the change
to the output of a function can be predicted based on a transformation of the input
[Chen et al. 1998]. Consider a function that calculates the standard deviation of a
set of numbers. Certain transformations of the set would be expected to produce
the same result: for instance, permuting the order of the elements should not affect
the calculation; nor would multiplying each value by -1, since the deviation from
the mean would still be the same. Furthermore, other transformations will alter
the output, but in a predictable way: if each value in the set were multiplied by 2,
then the standard deviation should be twice that of the original set.

Metamorphic properties can exist for an entire application, as well. Consider an
application that reads a text file of test scores for students in a class, computes their
average, and uses the function described above to calculate the standard deviation
of the average and determine the students’ final grades based on a curve. Aside
from the properties of that function, the application itself has some metamorphic
properties, too: permuting the order of the students in the input file should not
affect the final grades; nor should multiplying all the scores by 10 (since the students
are graded on a curve). These system-level properties are not necessarily the same
as those of the constituent functions, but the function-level properties would still
be expected to hold.

As a more complex example, metamorphic testing can be used for applications
in the domain of machine learning. For instance, anomaly-based network intru-

3http://www.thejakartapost.com/news/2005/08/19/massive-blackout-hits-java-bali.html
4http://www.clopinet.com/isabelle/Projects/SVM/applist.html
5http://www.sans.org/top20/
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sion detection systems build up a model of “normal” behavior based on what has
previously been observed; this model may be created, for instance, according to
the byte distribution of incoming network payloads (since the byte distribution in
worms, viruses, etc. may deviate from that of normal network traffic [Wang and
Stolfo 2004]). When a new payload arrives, its byte distribution is then compared
to that model, and anything deemed anomalous causes an alert. For a particular
input, it may not be possible to know a priori whether it should raise an alert,
since that is entirely dependent on the model. However, if while the program is
running we take the new payload and randomly permute the order of its bytes, the
result (anomalous or not) should be the same, since the model only concerns the
distribution, not the order. If the result is not the same, then a defect must exist
in the implementation.

Clearly metamorphic testing can be very useful in the absence of an oracle: if
the metamorphic property is sound, then regardless of the particular values, if the
different outputs for the different inputs do not have the expected relationship, then
a defect must exist in the implementation. Although the use of simple relationships
for conducting software testing is not unique to metamorphic testing (e.g., testing
based on algebraic properties [Cody Jr. and Waite 1980] or programs that can check
their work [Blum and Kannan 1995]), the approach can be used on a broader domain
of any functions that display metamorphic properties, particularly in applications
without test oracles.

2.3 Previous Work in Metamorphic Testing

Others have previously applied metamorphic testing to situations in which there
is no test oracle, e.g. [Chen et al. 2002a; Zhou et al. 2004]. In some cases, these
works have looked at situations in which there cannot be an oracle for a particular
application [Chen et al. 2002b], as in the case of “non-testable programs”; in others,
the work has considered the case in which the oracle is simply absent or difficult
to implement [Chan et al. 2007]. Other efforts into the automation of metamor-
phic testing have typically focused on either testing individual units in isolation
[Chen et al. 2002b], or on system testing by considering the properties of entire
applications [Chan et al. 2007; Murphy et al. 2009a; Xie et al. 2009].

Although these works have shown the approach to be simple and effective, we in-
tend to show that the technique can be improved using metamorphic testing of the
individual functions that display such properties, within the context of the entire
application. That is, as opposed to performing system testing based on properties
of the entire application, or by conducting unit testing of isolated pieces of code,
we present a technique for testing applications that do not have test oracles by
checking the metamorphic properties of its individual functions as the full applica-
tion runs, instead of testing the functions in isolation. We also present new results
demonstrating that system testing that is done in this manner can discover de-
fects that are not found when only using the metamorphic properties of the entire
application.

3. APPROACH

Here we introduce a new technique called Metamorphic Runtime Checking. This
technique, used for system testing of applications that do not have test oracles, is
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based on checking the metamorphic properties of individual functions, in addition
to those of the entire system. This technique is used to ensure that the properties
hold as the program executes; any violation of the properties indicates a defect.

In our approach, metamorphic tests are logically attached to the functions that
they are designed to test. Upon a function’s execution, the corresponding tests are
executed as well: the arguments are modified according to the specification of the
function’s metamorphic properties, and the output of the function with the original
input is compared to that of the function with the modified input; if the results are
not as expected, then a defect has been exposed.

For instance, in the standard deviation example presented above, whenever the
function is called, its argument can be passed along to a test method, which will
multiply each element in the array by -1 and check that the two calculated output
values are equal; at the same time, another test method can multiply each element
by 2 and check that the new output is twice as much as the original. This does not
require a test oracle for the particular input; the metamorphic relationship specifies
its own pseudo-oracle. It is true that if the new output is as expected, the results
are not necessarily correct, but if the result is not as expected, then a defect must
exist.

The steps of the Metamorphic Runtime Checking approach are as follows:

(1) Identify metamorphic properties. The tester must first devise the meta-
morphic properties of the application as a whole, and of the functions that will
be used in the testing. We discuss this further in Section 4.

(2) Specify the properties in the source code. Once the metamorphic prop-
erties have been determined, the source code must be annotated so that the
functions’ properties can be checked at runtime. In Section 6.2, we describe the
mechanism for specifying properties and instrumenting the code in our current
implementation of the testing framework.

(3) Convert the specifications into tests. In this step, the developer uses a
preprocessor to convert the specifications into test methods. These tests will
be added to the original source code, as described in Section 6.3.

(4) Conduct system testing. Once the metamorphic properties are specified and
the code is instrumented with the tests, system testing can commence. The
properties are checked as the individual functions execute, and any outputs
that deviate from what is expected are indicative of defects in the code.

The approach is not limited only to “pure” functions that do not have side effects,
nor to metamorphic properties that depend only on a function’s formal parameters
as input and its return value as output. In the above example, for instance, if the
standard deviation function operates on an array that is part of the system state,
and/or has no return value, but rather updates a global variable as a side effect,
the metamorphic property can still be checked by considering the array as the
“input” and the value of the global variable as the function’s “output”. Functions
need not have any input parameters or any return values to have metamorphic
properties: the properties can just specify the expected relationship between the
system states before the function call and the states after the call. Details of how
this is accomplished in Metamorphic Runtime Checking are described in Section
ACM Transactions on Software Engineering and Methodology, Vol. x, No. x, xx 20xx.
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additive Increase (or decrease) numerical values
by a constant

multiplicative Multiply numerical values by a constant

permutative Permute the order of elements in a set

invertive Reverse the order of elements in a set

inclusive Add a new element to a set

exclusive Remove an element from a set

Table I. Classes of metamorphic properties

6.2.
Because Metamorphic Runtime Checking must allow the functions under test to

be run multiple times, it must permit these functions to have side effects, but ensure
that the side effects of the additional invocations do not affect the process’ system
state after the test is completed. Clearly, changes to the state caused by calling
the function again with modified inputs would be undesirable, and may lead to
unexpected system behavior later on. Thus, the metamorphic tests are conducted
in a “sandbox”, as described below in Section 5.

4. DEVISING METAMORPHIC PROPERTIES

An open issue in the research on metamorphic testing is, “how does one know what
the metamorphic properties of the function/application are?” In this section, we
describe some guidelines that testers can use when devising the properties used in
metamorphic testing.

4.1 Mathematical Properties

Many programs without test oracles rely on mathematical functions (i.e., those
that take numerical input and/or produce numerical output), since the point of
such programs is to perform calculations, the results of which cannot be known
in advance; if they could, the program would not be necessary. In previous work
[Murphy et al. 2008], we categorized different classes of metamorphic properties
that are common in such mathematical functions, and showed that many applica-
tions in the particular domain of interest (machine learning) exhibit these types of
properties. The six classes are summarized in Table I; the classes are not meant
to imply that the output will not be changed by such transformations, but rather
that any change to the output would be predictable.

A simple example (for expository purposes only) of a function that exhibits these
different classes of metamorphic properties is one that calculates the sum of a set of
numbers. Consider such a function Sum that takes as input an array A consisting
of n real numbers. Based on the different classes of metamorphic properties listed
in Table I, we can derive the following:

(1) Additive: If every element in A is increased by a constant c to create an array
A’, then Sum(A’ ) should equal Sum(A) + nc.

(2) Multiplicative: If every element in A is multiplied by a constant c to create
an array A’, then Sum(A’ ) should equal Sum(A) * c.

(3) Permutative: If the elements in A are randomly permuted to create an array
A’, then Sum(A’ ) should equal Sum(A).

ACM Transactions on Software Engineering and Methodology, Vol. x, No. x, xx 20xx.
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(4) Invertive: If the elements in A are placed in reverse order to create an array
A’, then Sum(A’ ) should equal Sum(A).

(5) Inclusive: If a value t is included in the array to create an array A’, then
Sum(A’ ) should equal Sum(A) + t.

(6) Exclusive: If a value t is excluded from the array to create an array A’, then
Sum(A’ ) should equal Sum(A) - t.

These are admittedly very trivial examples, but more complex numerical func-
tions that operate on sets or matrices of numbers - such as sorting, calculating
standard deviation or other statistics, determining distance in Euclidean space,
etc. - tend to exhibit similar properties as well. As we pointed out in [Murphy
et al. 2009b], such functions are good candidates for metamorphic testing because
they are essentially mathematical, and demonstrate well-known properties such as
distributivity and transitivity.

4.2 Considerations for General Properties

Although the classes of metamorphic properties listed in Table I have been useful
in detecting defects (including the experiment discussed below in Section 7), they
are generally only applicable to functions and applications that deal with numerical
inputs and outputs. Although non-testable programs tend to fall into this category
(machine learning, scientific computing, etc.), non-testable programs in domains
like computational linguistics and discrete event simulation work with non-numeric
data, and these classes of properties may not be applicable.

As a general guideline for creating metamorphic properties, we propose the fol-
lowing. We also provide examples from the domain of discrete event simulation.
Such applications can be considered non-testable because the software is written to
produce an output (the simulation) that was not already known in advance; if it
were known in advance, then the simulator would not be necessary.

First, consider the metamorphic properties of all applications in the given
domain. That is, there may be properties that are shared by all applications that
operate in the domain, because of the nature of that domain. For instance, in dis-
crete event simulation, regardless of the particular algorithm, there are generally
“resources” that are modeled in the simulation. These resources may be doctors
and nurses in a hospital, or assembly line workers in an industrial factory, or postal
workers that deliver mail. No matter what algorithm is used, and no matter what
is being simulated, all of these share some common metamorphic properties. For
instance, increasing the number of resources would be expected to lower each re-
source’s utilization rate, assuming the amount of work to be done remains constant.
As another example, if the timing of all events in the simulation is multiplied by a
constant factor, then the resource utilization should not change, since the ratio of
the time spent working to the total time of the simulation would not be affected
(because each are scaled up by the same factor).

Next, consider the properties of the algorithm chosen to solve a particular
problem in that domain. That is, within the domain, one chooses an algorithm
to solve a given problem, and that algorithm will itself have metamorphic proper-
ties. For instance, simulators can be used to model the process by which patients
are treated in a hospital emergency room [Evans et al. 1996]. The process of sim-
ACM Transactions on Software Engineering and Methodology, Vol. x, No. x, xx 20xx.
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ulating a patient’s visit to the hospital emergency room might use an algorithm
whereby steps and substeps are represented in a tree, and the entire process is es-
sentially a traversal of that tree [Raunak et al. 2009]. This architectural detail leads
to numerous metamorphic properties relating to tree traversal: for instance, tree
rotation is expected not to change the result of an inorder traversal; also, the tree
can be broken into its constituent left and right subtrees, the combined traversal
of which should be the same as the traversal of the entire tree. As another exam-
ple, the selected algorithm may allow for steps of the process to run in parallel; a
metamorphic property may be that changing the ordering of the parallel steps in
the process specification should not affect the output (since they all execute at the
same time, their ordering should not matter).

Then, consider the properties specific to the implementation of the algo-
rithm used to solve the problem. A given application that uses the chosen al-
gorithm may have particular metamorphic properties based on features of its im-
plementation, the programming language it uses, how it processes input, how it
displays its output, etc. For instance, in simulating the operation of a hospital
emergency room, the process definition language Little-JIL [Cass et al. 2000] and
its corresponding simulator tool (Juliette Simulator, or JSim6) may be used to
specify the steps that an incoming patient goes through after arriving in the ER.
In this implementation, the unique identifiers for the different resources (doctors,
nurses, etc.) are specified in a plain-text file; since this particular simulator treats
all resources as being equal, this implementation exhibits the metamorphic prop-
erty that permuting the order of the resources in the text file should not affect the
simulated process.

Last, consider properties that are applicable only to the given input that is
being used as part of the test case. Often it is the case that some metamorphic
properties of an application will only hold for certain inputs. Consider an input
to the hospital emergency room simulation in which the number of resources is
sufficiently large so that no patient ever needs to wait. For this particular input,
increasing the number of resources should not affect the simulation, since those
resources would go unused. But this particular property would not be expected to
hold if there were too few resources, of course.

Although the examples provided here are specific to the domain of discrete event
simulation (and simulation of a hospital emergency room in particular), it is clear
that such an approach could be used in other domains that include non-testable
programs, such as machine learning or scientific computing.

In our experience with Metamorphic Runtime Checking, we noted anecdotally
that the metamorphic properties of the entire application were often also reflected
in one or more individual functions within the code. That is, if one can identify a
property of the application, then it is often the case that there will be a function (or
perhaps even more than one) that exhibits the same property. Investigation of this
phenomenon is outside the scope of this particular work, but during our experiments
we observed that often there would be data structures that represented the program
input data (either all of it, or a significant part of it); any function that took such a
data structure as a parameter was likely to exhibit the same metamorphic property

6http://laser.cs.umass.edu/documentation/jsim/
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as the entire application since, essentially, the input to the function was the same
as the input to the program.

4.3 Automated Detection

We are not aware of any investigation into the automatic discovery of metamorphic
properties, though this may be possible by building upon other techniques de-
signed to detect similar characteristics of code. For example, dynamic approaches
for discovering likely program invariants (such as Daikon [Ernst et al. 1999] and
DIDUCE [Hangal and Lam 2002]) observe program execution and formulate hy-
potheses of invariants by relaxing different constraints on variables and/or using
machine learning techniques to generate rules. Such techniques tend to focus on
lower-level implementation details regarding application state and not on higher-
level properties regarding function input and output, but could still be used as a
basis for a dynamic approach. The automatic detection of metamorphic properties
may also build upon the work in the dynamic discovery of algebraic specifications
[Henkel and Diwan 2003], though that work has tended to focus on data structures
and abstract datatypes, and not on how a function should react when its arguments
are modified.

It could be argued that static analysis techniques such as model checking may be
able to determine whether these properties hold, though such methods rely on an
initial hypothesis of the property to be checked, and are not intended to discover the
properties in the first place [Clarke et al. 1999]. Furthermore, many metamorphic
properties may be “hidden” within an implementation, and not detectable through
analysis of the source code. As a very simple example, a sine function that uses a
Taylor series sin(x ) = x - (x3/3!) + (x5/5!) - (x7/7!) obscures the metamorphic
property that sin(x ) = sin(x + 2π).

Another approach would be to use machine learning techniques to automatically
detect metamorphic properties by considering “similarities” in code. That is, if
different pieces of code are known to exhibit a given property, then it may be
possible to speculate that “similar” code (by some definition of “similarity”) may
exhibit the same property. This could also be done using techniques aimed at
detecting code clones (e.g., [Gabel et al. 2008]), which typically look for semantic
and/or syntactic resemblance, but could conceivably be modified to indicate that
two pieces of code exhibit the same metamorphic properties. Such approaches may
be feasible in simple cases for the mathematical properties described in Table I,
though further investigation is required to determine how the approach fares on
arbitrary pieces of more complex code.

4.4 Summary

Though there may be no “silver bullet” when it comes to devising the metamorphic
properties of a given function or application, we would argue that in any software
testing approach, the tester still must have some knowledge or understanding of
the program in order to devise test cases. Semantic knowledge of the program or
function to be tested is required for writing use cases, devising equivalence classes,
creating test input, and designing regression tests [Myers et al. 1979; Everett and
McLeod Jr. 2007]. Even purely random testing approaches demand that the tester
understand the input and output domain [Hamlet 1994]. Thus, metamorphic test-
ACM Transactions on Software Engineering and Methodology, Vol. x, No. x, xx 20xx.
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Fig. 1. Model of Metamorphic Runtime Checking

ing is no different from other black-box techniques in that it is assumed that the
tester will have enough knowledge of the code to create test cases (in this case,
metamorphic properties), as guided by the program or function specifications and
a general understanding of what the code is meant to do.

5. MODEL

Metamorphic Runtime Checking is a technique by which metamorphic tests are
executed in the running application, using the arguments to instrumented functions
as they are called. The arguments are modified according to the specification of the
function’s metamorphic properties, and the output of the function with the original
input is compared to that of the function with the modified input; if the results are
not as expected, then a defect has been exposed.

This must be done in such a manner that any changes to the state of the process
are the result of only the main (original) function execution, and not from any
function calls that are only for testing purposes. In other words, there must not be
any observable modification of the application state; however, the tests themselves
do need to be able to modify the state because the functions are necessarily being
called multiple times, which could have side effects. Thus, the modifications to
the state that are caused by the tests must not affect the application, so that the
application can keep executing and testing can continue.

One solution is to run the tests in the same process as the user state and then
transactionally roll them back (an idea explored in [Locasto et al. 2007]). Another
approach is to create a “sandbox” so that the test function runs in a separate cloned
process that does not affect the original; the sandbox must also make sure that the
test function does not affect external entities such as the file system.

Additionally, the tests should execute in parallel with the application: the test
code should not preempt the execution of the application code, which can continue
as normal. Figure 1 demonstrates the model we will use for conducting these tests.
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Note that Metamorphic Runtime Checking does not force the execution of any
particular function or corresponding test; rather, it only tests the functions that
are actually executed, using the function’s arguments and the current system state
to check that the metamorphic properties still hold.

6. ARCHITECTURE

In order to facilitate the execution of Metamorphic Runtime Checking, we require
a framework that conducts the function-level tests during actual runs of the appli-
cation, using the same internal state as that of the original function. A system like
Skoll [Memon et al. 2004] is a candidate for something on which to build, but it is
primarily intended for execution of regression tests and determining whether builds
and installs were successful, and not for testing the system as it runs; other assertion
checking techniques (as surveyed in [Clarke and Rosenblum 2006]) or monitoring
tools (such as Gamma [Orso et al. 2003]) could be used, but they generally do not
allow for calling a function again with different arguments (which we require), and
do not safeguard against visible side effects.

For reasons of familiarity and simplicity, we have implemented C and Java proto-
types of the Metamorphic Runtime Checking framework, called Columbus, based on
a framework we already had access to that implements what is known as “In Vivo
Testing” [Murphy et al. 2009]. Though not specifically focused on metamorphic
testing or testing applications without oracles, In Vivo Testing is an approach in
which tests are executed in the context of the running application without affecting
the application state. In Vivo tests are designed to ensure that properties of given
subsystems or units hold true no matter what the application’s state is, particularly
as the application runs in the deployment environment (“in vivo”) as opposed to
the development environment (“in vitro”).

6.1 Overview of In Vivo Testing

The foundation of the In Vivo Testing approach is the fact that many (if not all)
software products are released into deployment environments with latent defects
still residing in them [Pavlopoulou and Young 1999], as well as our claim that these
defects may reveal themselves when the application executes in states that were
unanticipated and/or untested in the development environment. For large, complex
software systems, it is typically impossible in terms of time and cost to reliably test
all possible system states and all possible configuration options before releasing the
product into the field. For instance, Microsoft Internet Explorer has over 19 trillion
possible combinations of configuration settings [Cohen et al. 2006]. Even given
infinite time and resources to test an application and all its configurations, once
a product is released, the other software packages on which it depends (libraries,
virtual machines, etc.) may also be updated; therefore, it would be impossible to
test with these dependencies prior to the application’s release, because they did not
exist yet.

To address this problem, In Vivo Testing is an approach in which software con-
tinues to test itself, even in the deployment environment. To accomplish this, tests
are conducted “from within” the running application, using the current accumu-
lated state of the component under test, as opposed to testing from a clean or
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constructed state, as is typical in unit testing.7 Developers create tests that are
designed to ensure that properties of given subsystems or units hold true no matter
what the application’s state is. In the simplest case, they can be thought of as
program invariants and assertions, though they go beyond checking the values of
individual variables or how variables relate to each other, and focus more on the
conditions that must hold after sequences of variable modifications and method
calls. Additionally, whereas assertion checking is necessarily “read-only”, so as not
to affect the state of the system, In Vivo tests are allowed to have side effects, but
changes to the state of the process are hidden from the end user.

It is important to note that In Vivo tests are not intended to replace unit or
integration tests; rather, they are tests designed to run within the context of an
executing application, which may be in a previously untested or unanticipated
state. Additionally, it is not a requirement of In Vivo Testing to run the tests in
the field, of course; in Metamorphic Runtime Checking, we primarily intend to run
the tests in the development environment, but build upon In Vivo Testing to have
the ability to conduct metamorphic testing “from within”, i.e., within the context
of the application’s state, automatically while the application is running.

6.2 Specifying Metamorphic Properties

For the functions that are to be tested, the Columbus framework must be provided
with executable test code that specifies the metamorphic properties to be checked
within the running program. This test code would be written by the software
developer or tester (as opposed to a third-party developer or the end-user). We
currently assume access to the source code, since the instrumentation of the func-
tions is done at compile-time. Given that it is the software developers and testers
who will write the tests and instrument the code, we feel that this assumption is
reasonable. However, as it may not always be possible or desirable to recompile
the code, an approach to dynamically instrumenting the compiled code, such as in
Kheiron [Griffith and Kaiser 2006], could be used instead.

To aid in the generation of these tests, as presented in [Murphy et al. 2009b],
we have created a pre-processor to allow testers to specify metamorphic proper-
ties of a function using a special notation in the comments. Figure 2 shows such
properties for an implementation of the sine function, which exhibits two meta-
morphic properties: sin(α) = sin(α + 2π) and sin(α) = -sin(-α). The parameter
“\result” represents the return value of the original function call, so that outputs
can be compared; this notation is typical in specification languages such as Java
Modeling Language [Leavens et al. 2006]. These properties can then be used by the
pre-processor in the testing framework to generate the test code shown in Figure 3.

The testing approach is not limited only to those functions that take input values
and return an output, as in the “sine” example; nor is it limited to simple meta-
morphic properties that can easily be expressed or specified using annotations in
the comments. Consider a function calculate sum that determines the sum of the
elements in an array referred to by a pointer p, and stores that value in a vari-
able sum. The tester can then write a test function that permutes the elements
in p, multiplies them by a random number, calls calculate sum, and checks that

7http://junit.sourceforge.net/doc/cookbook/cookbook.htm
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/*@

* @meta sine(angle + 2 * M PI) == \result
* @meta sine(-angle) == -1 * \result

*/

double sine(double angle) { ... }

Fig. 2. Specifying metamorphic properties

int test sine(double angle, double result) {
double s0 = sine(angle + 2 * M PI);

double s1 = sine(-angle);

return (s0 == result && s1 == -1 * result);

}

Fig. 3. Example of a Metamorphic Runtime Checking test generated by the pre-processor

int* p;

int sum;

/*@

* @meta test calculate sum()

*/

void calculate sum() { ... }

int test calculate sum() {
int temp = sum; // remember the old value

/*...code to randomly permute p...*/

int r = rand();

/*...code to multiply values in p by r...*/

calculate sum();

// check that the property holds

return temp == sum * r;

}

Fig. 4. Example of a manually created Metamorphic Runtime Checking test

the value of sum is as expected. Figure 4 shows how the tester could then spec-
ify that the metamorphic property of calculate sum is described in the function

test calculate sum.
Note that because test calculate sum is called after calculate sum, the frame-

work ensures that the variable sum will already have been set by the original func-
tion call and will have the appropriate result by the time it is accessed in the first
line of the test function. Additionally, the test is executed in a sandboxed process,
so the tester does not have to worry about the fact that sum will be overwritten
by the additional invocation of calculate sum.

6.3 Instrumentation and Test Execution

Before compiling the source code, the tester uses the Columbus pre-processor to first
generate test code from the specifications, and then to instrument each annotated
function with its corresponding test. During instrumentation, functions to be tested
are renamed and wrapped by another function. Figure 5 shows pseudocode for the
wrapper of a function f.
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Once an instrumented function is to be executed, as shown in Figure 5, the func-
tion is first called with its input arguments, the “wrapped” original function is
called, and any return value is stored in a variable called “result” (line 9). Depend-
ing on the configuration, if a test is to be run at this point (line 10), the framework
then generates a new process as a copy of the original to create a sandbox in which
to run the test code (line 11), ensuring that any modification to the local process
state caused by the test will not affect execution of the “real” application, since
the test is being executed in a separate process with separate memory. At this
point, the original process continues by returning the result and carrying on as
normal (line 19); meanwhile, in the test process, the original input and the result
of the original function call are passed as arguments to the test function (line 13).
Within that function, the input can be modified and the outputs can be compared
according to the metamorphic properties, without having to worry about changes
to the application state. Note that the application and the test run in parallel in
two processes: the test does not block normal operation of the application after
the sandbox is created. Depending on the configuration and the hardware, the test
process may be assigned to a separate CPU or core, so as not to further preempt
the original process.

1 /* original function */

2 int f(int x) { ... }
3

4 /* test function */

5 boolean test f(int x, int result) { ... }
6

7 /* wrapper function */

8 int f(int x) {
9 int result = f(x);

10 if (should run test("f")) {
11 create sandbox and fork();

12 if (is test process()) {
13 if ( test f(x, result) == false) fail();

14 else succeed();

15 destroy sandbox();

16 exit();

17 }
18 }
19 return result;

20 }

Fig. 5. Wrapper of instrumented function

In our current implementation of the Columbus framework, we use a process
“fork” to create the sandbox, which gives each test process its own memory space
to work in, so that it does not alter that of the original process. In our investigations
so far, this has been sufficient for our testing purposes. However, to ensure that
the metamorphic test does not make any changes to the file system, we have also
integrated Columbus with a thin OS virtualization layer that supports a “pod”
(PrOcess Domain) [Osman et al. 2002] abstraction for creating a virtual execution
environment that isolates the process running the test and gives it its own view of
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the process ID space and a copy-on-write view of the file system. However, whereas
the overhead of using a “fork” can be as little as a few milliseconds (see Section
8), the overhead of creating new “pods” can be on the order of a few seconds, so
they should only be used for tests that actually affect the file system. Testers can
indicate that a “pod” is needed for a test via an annotation in the specification of
the metamorphic property.

When the test is completed, the framework logs whether or not it passed (Figure 5
lines 13-14), the process in which the test was run notifies the framework indicating
that it is complete so that the framework can perform any necessary cleanup (line
15), and finally the test process exits (line 16).

Note that Metamorphic Runtime Checking does not preclude “traditional” meta-
morphic testing in which the entire application itself is also run a second time
with transformed inputs, so that system-level metamorphic properties can also be
checked once the process has run to completion. This means that both system-
level and function-level properties can be checked during execution, increasing the
likelihood of detecting defects.

6.4 Testing in the Deployment Environment

Although Metamorphic Runtime Checking is designed to utilize the metamorphic
properties of individual functions to conduct system testing in the lab (i.e., the
development environment), the Columbus framework can also be used to conduct
tests in the deployment environment, as the software runs in the field. In practice,
particular combinations of execution environment and state may not always be
tested in development prior to release of the software, and one way to further
explore whether these properties hold in additional cases is to check them in the
field, as the application is running. When testers use this approach in the field,
they get a wide range of input values that represent actual usage, as opposed to a
smaller set of test cases that are conjured up in the lab.

To support this, the Columbus framework can be configured to limit the maxi-
mum number of concurrent tests that the system is allowed to execute at any given
time. This prevents the testing framework from launching so many simultaneous
tests that they flood the CPU and essentially block the main application. A system
administrator can also set a maximum allowable performance overhead, so that
tests will be run only if the overhead of doing so does not exceed the threshold.
The system tracks how much time it has spent running tests compared to how much
time it has been running application code, and only allows for the execution of tests
when the overhead is below the threshold. Alternatively, the administrator can con-
figure the framework so that, for each instrumented function with a corresponding
test, there is a probability ρ with which that function’s test will be run. The con-
figuration is read at run-time so it can be modified by a system administrator at
the deployment site if necessary.

In the case in which a test fails in the field, the failure is logged to a local
file. Additionally, the system administrator can configure what action the system
should take when a failure is detected, on a case-by-case basis. In some cases, the
administrator may want the system to simply continue to execute normally and
ignore the failure; it may be desirable to notify the user of the failed test; and, last,
the administrator may choose to have the program terminate.
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As this paper is focused on detecting defects in applications without test oracles,
we do not further explore the implications of testing in the deployment environment,
except to discuss the performance overhead in Section 8. See [Murphy et al. 2009]
for more details on testing applications in the field using In Vivo Testing.

7. EMPIRICAL STUDIES

In [Murphy and Kaiser 2009], we showed that system-level metamorphic testing
is more effective at detecting defects than other approaches, including the use of
“pseudo-oracles” or runtime assertion checking; others have independently reported
similar findings [Hu et al. 2006]. Here, we improve upon those results, and present a
new empirical study that demonstrates that Metamorphic Runtime Checking with
function-level properties is more effective than using system-level properties alone.

In these experiments, we investigated four real-world “non-testable programs”
from the domain of machine learning (the authors of this paper were not involved
in the development of any of these programs). The first two are classification
algorithms: Support Vector Machines (SVM) [Vapnik 1995], as implemented in
the popular Weka [Witten and Frank 2005] 3.5.8 open-source toolkit for machine
learning in Java; and C4.5 [Quinlan 1993] release 8, which uses a decision tree
and is written in C. The third is the ranking algorithm MartiRank [Gross et al.
2006], also written in C, developed by researchers at Columbia University’s Center
for Computational Learning Systems. Last is an application that is not itself an
example of ML, but rather uses ML as a critical sub-component: the anomaly-based
intrusion detection system PAYL [Wang and Stolfo 2004], implemented in Java by
researchers in Columbia University’s Intrusion Detection System Lab.

7.1 Machine Learning Background

In supervised machine learning, data sets consist of a collection of examples, each
of which has a number of attribute values and, in some cases, a label. The examples
can be thought of as rows in a table, each of which represents one item from which
to learn, and the attributes are the columns of the table. The label indicates how
the example is categorized. These applications execute in two phases. The first
phase (called the learning phase) analyzes a set of training data; the result of this
analysis is a model that attempts to make generalizations about how the attributes
relate to the label. In the second phase (called the classification phase), the model
is applied to another, previously-unseen data set (called the testing data) where the
labels are either hidden or absent, with the goal of accurately predicting the label
values once they are known. Classification and ranking use supervised machine
learning.

Unsupervised ML applications also execute in training and testing phases, but
in these cases, the training data sets specifically do not have labels. Rather, an
unsupervised ML application seeks to learn properties of the examples on its own,
such as the numerical distribution of attribute values or how the attributes relate
to each other. This model is then applied to testing data, to determine whether (or
to what extent) the same properties exist. Anomaly-detection systems are types
of applications that use unsupervised machine learning, as are data mining and
collaborative filtering.
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7.2 Applications Investigated

C4.5 [Quinlan 1993] is a commonly used algorithm for building decision trees, in
which branches represent decisions based on attribute values and leaves represent
how the example is to be classified. Like other decision tree classifiers, it takes
advantage of the fact that each attribute in the training data can be used to make
a decision that splits the data into smaller subsets. During the training phase, for
each attribute, C4.5 measures how effective it is to split the data on a particular
attribute value, and the attribute with the highest “information gain” (a measure of
how well similar labels are grouped together [Kullback and Leibler 1951]) is the one
used to make the decision. The algorithm then continues recursively on the smaller
sublists. During classification, the rules of the tree are applied to each example,
which is classified once it reaches a leaf.

MartiRank [Long and Servedio 2005] is a ranking algorithm that is used as part
of a prototype application for predicting electrical device failures [Gross et al. 2006]:
the examples in the data sets have labels of 0 (“negative example”) or 1 (“positive
example”), indicating whether the device failed during a particular time period. In
the learning phase, MartiRank executes a number of “rounds”. In each round the
set of training data is broken into sub-lists; there are N sub-lists in the N th round,
each containing 1/N th of the total number of positive examples. For each sub-list,
MartiRank sorts that segment by each attribute, ascending and descending, and
chooses the attribute that gives the best “quality”. The quality is assessed using a
variant of the Area Under the Curve (AUC) [Hanley and McNeil 1982] calculation
that is adapted to ranking rather than binary classification. The model, then,
describes for each round how to split the data set and on which attribute and
direction to sort each segment for that round. In the second phase, MartiRank
applies the segmentation and sorting rules from the model to the testing data set
to produce the final ranking. The goal of the second phase is that, once the labels
are revealed, positive examples (those with a label of 1) are toward the top of the
ranking, and negative examples (with a label of 0) are toward the bottom.

The Support Vector Machines (SVM) algorithm [Vapnik 1995] is a commonly-
used classification algorithm in real-world applications, ranging from facial recog-
nition to computational biology.8 In the learning phase, SVM treats each example
from the training data as a vector of N dimensions (since it has N attributes),
and attempts to segregate examples from different classes with a hyperplane of N -
1 dimensions. In the learning phase, the goal is to find the hyperplane with the
maximum margin (distance) between the “support vectors”, which are the exam-
ples that lie closest to the surface of the hyperplane; the resulting hyperplane is
the model. In the classification phase, examples in the testing data are classified
according to which “side” of the hyperplane they fall on. The Weka implementation
of SVM that we tested uses the Sequential Minimal Optimization (SMO) technique
[Platt 1999], which breaks the large quadratic programming optimization problem
into smaller problems that can be solved analytically and thus avoids a large matrix
computation with limited loss of quality in the results.

PAYL [Wang and Stolfo 2004] is an anomaly-based intrusion detection system,

8http://www.clopinet.com/isabelle/Projects/SVM/
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Application Type Metamorphic Property

C4.5 Permutative Permuting the order of the examples in the training data should not
affect the model

C4.5 Multiplicative Multiplying each attribute value in the training data by a positive
constant (in our case, two) should yield a model in which the values
at each decision point have also been multiplied by two

C4.5 Additive Adding a positive constant (in our case, one) to each attribute value
in the training data should yield a model in which the values at each
decision point have also been increased by one

C4.5 Invertive Negating each attribute value in the training data, followed by
negating each attribute value in the testing data, should result in
the same classification

MartiRank Permutative Permuting the order of the examples in the training data should not
affect the model

MartiRank Multiplicative Multiplying each attribute value in the training data by a positive
constant (in our case, two) should not affect the model

MartiRank Additive Adding a positive constant (in our case, one) to each attribute value
in the training data should not affect the model

MartiRank Invertive Negating each attribute value in the training data, followed by
negating each attribute value in the testing data, should result
in the same ranking

PAYL Permutative Permuting the order of the packets in the training data set should not
affect the model

PAYL Permutative Permuting the order of the bytes within the payload (“message”) in
each packet should not affect the model

SVM Permutative Permuting the order of the examples in the training data should not
affect the model

SVM Multiplicative Multiplying each attribute value in the training data by a positive
constant (in our case, two) should not affect the model

SVM Additive Adding a positive constant (in our case, one) to each attribute value
in the training data should not affect the model

SVM Invertive Negating each attribute value in the training data, followed by
negating each attribute value in the testing data, should result in
the same classification

Table II. System-level metamorphic properties used in testing

and is an example of an application that uses unsupervised machine learning.
In PAYL, the training data simply consists of a set of TCP/IP network packets
(streams of bytes), without any associated labels or classification. During its learn-
ing phase, it computes the mean and variance of the byte value distribution for
each payload length in order to produce a model of what is considered “normal”
network traffic. During the second (“detection”) phase, each incoming packet is
scanned and its byte value distribution is computed. This new payload distribution
is then compared against the model (for that payload length); if the distribution of
the new payload is above some threshold of difference from the norm, PAYL flags
the packet as anomalous and generates an alert. PAYL may also raise an alert in
other circumstances, for instance if the payload length had not been seen in the
training data.
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ID App. Function Function Description Metamorphic Property
C1 C4.5 FormTree Creates a decision tree Permuting the order of the examples

in the training data should not affect
the tree

C2 C4.5 FormTree Creates a decision tree Multiplying each element in the training
data by a constant should yield the same
tree, but with the values at decision
points also increased

C3 C4.5 FormTree Creates a decision tree Negating each element in the training data
should yield the same tree, but with the
values at decision points negated and the
comparison operators reversed

C4 C4.5 Classify Classifies an example Multiplying the values in the example
should yield the same classification if
the values at decision points are also
similarly increased

M1 MartiRank pauc Computes the “quality” If the ranking is reversed, the quality
[Hanley and McNeil 1982] of a should be equal to one minus the original
ranking result

M2 MartiRank sort examples Sorts a set of examples based Permuting the order of the elements and
on a given comparison function negating them returns the same result,

but with the elements in the reverse order
M3 MartiRank sort examples Sorts a set of examples based Multiplying the elements by a constant

on a given comparison function should return the same result
M4 MartiRank insert score Inserts a value into an array Calling the function a second time with

used to hold top N scores the same value to be inserted should not
affect the array of scores

P1 PAYL computeTCP- Computes probability of different Changing the byte values and permuting
LenProb lengths of TCP packets their order should not change the results

P2 PAYL testTCPModel Returns the distance between an Permuting the order of the elements in
instance and the corresponding the model and multiplying all values by
“normal” instance in the model a constant c should affect the

result by a factor of c
S1 SVM buildClassifier Creates a model from a set of Randomly permuting the order of the

instances (training data) instances should yield the same model
S2 SVM buildClassifier Creates a model from a set of Negating the values of the instances

instances (training data) should yield the same model but with
all values negated

S3 SVM buildClassifier Creates a model from a set of Adding a constant to the values of
instances (training data) the instances should yield the same

model but with all values increased
S4 SVM SVMOutput Computes output (distance from If all instances in model have values

hyperplane) for given instance negated, and given instance does as
well, the output should stay the same

Table III. Function-level metamorphic properties used in testing

7.3 Experimental Setup

In these experiments, mutation testing was used to systematically insert defects
into the source code; the goal was to determine whether the mutants could be
killed (i.e., whether the defects could be detected) using our approach. Mutation
testing has been shown to be suitable for evaluation of effectiveness, as experiments
comparing mutants to real faults have suggested that mutants are a good proxy
for comparisons of testing techniques [Andrews et al. 2005]. These mutations fell
into three categories: (1) comparison operators were switched to their logical oppo-
sites, e.g., “less than” was switched to “greater than or equal”; (2) mathematical
operators were switched to their opposites, e.g., addition was switched to subtrac-
tion; and (3) off-by-one errors were introduced for loop variables, array indices, and
other calculations that required adjustment by one. Based on our discussions with
the researchers who implemented MartiRank and PAYL, we chose these types of
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mutations because we felt that these represented the types of errors most likely to
be made in these types of applications. All functions in the programs were can-
didates for the insertion of mutations; each variant that we created had exactly
one mutation (i.e., we did not create any program variants with more than one
mutation).

To determine which variants were suitable for testing, the output of each was
compared to the output of the application with no mutants, which was considered
the “gold standard”. To obtain this initial output, we used the following data sets:
for SVM and C4.5, the “iris” data set from the UC-Irvine repository [Newman
et al. 1998] (150 examples, five attributes); for MartiRank, a real-world data set
from the prototype electrical device failure application described in Section 2, con-
taining 10,000 examples and 119 attributes; and for PAYL, network traffic on our
department’s LAN over a one-hour period (2790 examples). If the outputs of the
gold standard and the variant were the same, the mutation would be considered
unsuitable for testing, since the mutation may not have been on the execution path,
or may have been an “equivalent mutant” that did not affect the overall output.
Additionally, if the mutation yielded a fatal error (crash), an infinite loop, or an
output that was clearly wrong (for instance, being nonsensical to someone familiar
with the application, or simply being blank), that variant was also discarded since
our approach would not be needed to detect such defects.

Once we determined which mutant variants could be used for our experiment, we
then used the guidelines set forth in [Murphy et al. 2008] and described above in
Section 4 to devise system-level metamorphic properties for the entire applications.
These properties are described in Table II. We verified each of these properties
with the “gold standard” to ensure that they actually would hold.

Next we investigated the source code, determined the metamorphic properties at
the function-level, and verified that they would also hold in the “gold standard”.
Note that we are not the developers of any of the four applications used in the
experiment, so we did not have particularly intimate knowledge of the code (we
did, admittedly, have direct access to the developers of MartiRank and PAYL).
Even without being very familiar with the code, though, when it came to identifying
metamorphic properties for use in the experiment, we were able to use the guidelines
described above. The function-level metamorphic properties are listed in Table III;
note that these properties are not necessarily the same as the ones for the entire
system, they are separate properties that apply to the particular selected functions.
Each of the applications used in this experiment had the same number of system-
level and function-level metamorphic properties specified (four for SVM, C4.5, and
MartiRank; two for PAYL).

For each variant, we first used metamorphic testing with only the system-level
properties to see whether the violation of the properties would be detected. If
so, then the mutant was considered to be killed. We then repeated this for the
function-level metamorphic testing using the Columbus framework for Metamorphic
Runtime Checking.

Since Metamorphic Runtime Checking extends system-level metamorphic testing
by adding the ability to test function-level properties, it is obvious that Metamor-
phic Runtime Checking will be at least as effective in revealing the defects in these

ACM Transactions on Software Engineering and Methodology, Vol. x, No. x, xx 20xx.



22 · Christian Murphy and Gail Kaiser

applications. The goal of this experiment is to measure how much more effective it
will be, and analyze the results and understand why some defects are more likely
to be found than others.

7.4 Findings

Overall, as shown in Table IV, Metamorphic Runtime Checking detected 189 of the
222 defects, compared to 145 detected when using the approach based on system-
level metamorphic properties alone; this is an improvement of 30%.

Mutants killed with
Total Mutants killed with Metamorphic Runtime

Application Mutants System-level properties Checking

C4.5 28 27 (96%) 27 (96%)

MartiRank 69 50 (72%) 61 (88%)

PAYL 40 2 (5%) 29 (73%)

SVM 85 66 (77%) 72 (85%)

Total 222 145 (65%) 189 (85%)

Table IV. Comparison of Results

7.5 Analysis

In this section, we analyze the results of the Metamorphic Runtime Checking ex-
periment and comment on the sensitivity of the results with respect to the different
metamorphic properties used.

The improvement shown for the testing of PAYL is admittedly low-hanging fruit,
since the system-level approach had very little success. In particular, only very
basic properties could be used: permuting the ordering of the input data (which
were network packets), and permuting the ordering of the bytes within those packet
payloads. It was not possible to conduct system-level metamorphic tests based on
modifying the values of the bytes inside the payloads (say, increasing them), not
because of a limitation of the approach, but because the application itself only al-
lowed for particular syntactically and semantically valid inputs that reflected what
it considered to be “real” network traffic. However, once we could use Metamorphic
Runtime Checking to put the metamorphic tests “inside” the application, we were
able to circumvent such restrictions and perform tests using properties of the func-
tions that involved changing the byte values. Thus, we were able to create more
complex metamorphic tests that revealed 27 additional defects.

In SVM, permuting the function input (property S1) was particularly effective
in killing the off-by-one mutants not detected by system-level testing. In these
mutations, for-loops omitted either the first or last value in an array, thus the
mathematical calculations would yield different results because different permuta-
tions meant that different elements were being left out. For instance, consider a
function f (A) =

∑
i

Ai , where A is an array of values. One would expect that

permuting the order of the elements in A would not affect the result. But clearly if,
say, the first element of A is not included in the sum, then permuting the elements
ACM Transactions on Software Engineering and Methodology, Vol. x, No. x, xx 20xx.



Metamorphic Runtime Checking of Non-Testable Programs · 23

will put a different one first, and thus the result will change, in violation of the
metamorphic property.

For C4.5 and MartiRank, the metamorphic properties based on multiplication
(C2, C4, and M3) were unable to reveal any new defects. The explanation is that
for the operations that were changed by the mutations, they would still yield the
expected results because of the distributive properties of multiplication. Consider,
for an example, a function f (x, y) = x + y. We would expect it to have the
metamorphic property f (2x, 2y) = 2f (x, y). Now consider a mutation of this
function in which the plus sign has been replaced with a minus sign: f ’(x, y) = x -
y. Although there is an defect in the code, clearly the metamorphic property f ’(2x,
2y) = 2f ’(x, y) still holds; thus, the metamorphic property based on multiplication
would not show a violation.

However, this is not necessarily the case for addition (property S3), which does
not have similar distributive properties. Consider the same function f (x, y) = x
+ y. We would expect it to have the metamorphic property f (x + 2, y + 2) = x
+ 2 + y + 2 = f (x, y) + 4. Now consider the same mutation of this function in
which the plus sign has been replaced with a minus sign: f ’(x, y) = x - y. Now the
metamorphic property f ’(x + 2, y + 2) = f ’(x, y) + 4 no longer holds, because
f ’(x + 2, y + 2) = x + 2 - (y + 2) = x - y = f ’(x, y); thus, the metamorphic
property based on addition would show a violation. This property is more effective
in applications based on calculation and computation (like SVM) than it is in
applications based on comparison and sorting (like MartiRank).

7.6 Discussion

The most interesting result was that many of the newly discovered defects were in
functions other than the ones in which the metamorphic properties were actually
being checked (we could not check all functions because not all functions have
metamorphic properties). The defects actually existed outside those functions, but
put the system into a state in which the metamorphic property of the function
would be violated. For instance, the pauc function in MartiRank uses an array of
numbers (which is part of the application state) and performs a calculation on them
to determine the “quality” [Hanley and McNeil 1982] of the ranking, returning a
normalized result (i.e., between 0 and 1). One of the metamorphic properties of
that calculation (property M1) is that reversing the order of the values in the array
should produce the “opposite” result, i.e., pauc(A) = 1 - pauc(A’ ) where A’ is the
array in which the values of A are in reverse order. However, a defect in a separate
function that deals with how the array was populated caused this property to be
violated because the data structure holding the array itself was in an invalid state,
even though the code to perform the calculation was in fact correct (we know this,
of course, because we know where the defect was seeded in that case).

In particular, the values in the array were being stored in a doubly-linked list, so
that MartiRank could calculate the “quality” of the list by looking at it forwards
(ascending) and backwards (descending). One mutation in the function that created
the linked list caused some of the links to “previous” nodes to point to the wrong
ones, as in Figure 6. In this case, traversing the linked list in the forward direction
would give ABCDE, but backwards would give EDBCA. The metamorphic property
that pauc(A) = 1 - pauc(A’ ) would only hold if A’ were, in fact, the exact opposite
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Fig. 6. A doubly-linked list in which elements B, C, and D point to the wrong nodes.
The defect that caused this error was detected using a metamorphic property of
another function.

ordering of A, but clearly in this case it is not. Note that in this case, Metamorphic
Runtime Checking detected a defect caused by an invalid application state, and
not a defect in the function under test itself (i.e., the one with the metamorphic
property).

Property M1 was very effective at detecting the defects that had not been found
using the system-level approach (including the one described above), especially
those related to math operator defects in MartiRank. In particular, the system-level
metamorphic properties only considered how the results of different calculations
compared to each other, but not their actual values. Consider a simple defect in
the system such that the pauc function used to calculate the quality of the ranking
(described above) returns a value that is 0.1 more than it should be. At the system
level, the properties that were specified could not access the value returned by
pauc, since the results of the individual calculations were not directly reflected in
the program output. Rather, the properties at this level were only influenced by
relationships such as: if pauc(A) > pauc(B), then pauc(A’ ) < pauc(B’ ), where
A’ and B’ are the inverse orderings of A and B, respectively. Even though the
function was producing the wrong result (due to the error in the doubly-linked list,
as described above), this system-level property still held. However, when we used
Metamorphic Runtime Checking, we could see that there was a violation in the
property of pauc, revealing the defect.

These results demonstrate the real power of our testing technique: without much
knowledge of the details of the entire implementation, we were able to detect many
of the defects by simply specifying the expected behavior of particular functions,
even though the defects were not always in those functions; rather, those defects
created violations of the metamorphic properties because they put the system into
an invalid state. Although we have yet to demonstrate this quantitatively, alter-
native approaches to detecting such invalid states (such as checking data structure
integrity [Demsky and Rinard 2003] or algebraic specifications [Nunes et al. 2006])
require more intimate familiarity with the source code, such as the details of pointer
references or data structures, or dependencies between variables, as opposed to sim-
ply specifying how a function should behave when its inputs are modified, using
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the guidelines described above to identify metamorphic properties.

8. EFFECT ON TESTING TIME

Although Metamorphic Runtime Checking is more effective at detecting defects
than metamorphic testing based on system-level properties alone, this checking
of the properties comes at a cost, particularly if the tests are run frequently. In
system-level metamorphic testing, the program needs to be run once more with the
transformed input, and then each metamorphic property is checked exactly once
(just at the end of the program execution). In Metamorphic Runtime Checking,
though, each property can be checked numerous times, depending on the framework
configuration and the number of times each function is called.

During our empirical studies, we measured the impact of the Columbus frame-
work on the time it took to conduct testing. We instrumented the functions listed
in Table III and varied the probability ρ with which a metamorphic test would be
executed while the application ran. In order to get a better measurement of the
upper bounds of the effect of Metamorphic Runtime Checking, we did not place
any limits on the maximum allowable performance overhead or on the number of
simultaneous test processes.

Tests were conducted on a server with a dual-core 3GHz CPU running Ubuntu
7.10 with 2GB RAM. Table V and Figure 7 show the results of the experiment,
with ρ equal to 0% (with the functions instrumented but no tests executed), 25%,
50%, 75%, and 100% (with all instrumented function calls resulting in tests).

Application Number of tests ρ = 0% ρ = 25% ρ = 50% ρ = 75% ρ = 100%
C4.5 4,719 14.3s 17.8s 19.3s 20.6s 22.9s
MartiRank 26,791 22.6s 32.9s 43.2s 52.1s 60.7s
PAYL 2,300 1.5s 4.4s 7.4s 10.5s 13.5s
SVM 13,694 5.7s 26.0s 47.0s 66.1s 83.6s

Table V. Results of Performance Tests. The five rightmost columns indicate the
time to complete execution with different values of ρ.

The linear nature of the resulting graphs indicates that, as one would expect, the
overhead increases linearly with the number of tests that are executed. The slope
of the lines results from a combination of the number of tests that are run and the
implementation language: the line for SVM is very steep because many tests were
run and the overhead is greater for Java applications (since Java does not have any
“fork” utility, it needed to be implemented via a Java Native Interface call, which
added extra overhead); the line for C4.5 is less steep because fewer tests were run
and there is less overhead for C.

On average, the performance overhead for the Java applications was around 5.5ms
per test; for C, it was only 1.5ms per test. This cost is mostly attributed to the
time it takes to create the sandbox and fork the test process.

This impact can certainly be substantial from a percentage overhead point of
view if many tests are run in a short-lived program, and some ML programs can
run for hours or even days, so care must be taken in configuring the framework.
However, for the programs we investigated in our study, the overhead was typically
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Fig. 7. Graph indicating performance overhead caused by different values of ρ for
the different applications.

on the order of a few minutes, which we consider a small price to pay for detecting
that the output of the program was incorrect.

9. RELATED WORK

9.1 Testing Non-Testable Programs

Baresi and Young’s 2001 survey paper [Baresi and Young 2001] describes various
approaches to testing software without a test oracle. Some of those approaches are
described here:

Programming languages such as ANNA [Luckham and Henke 1984] and Eiffel
[Meyer 1992], as well as C and Java, have built-in support for assertions that
allow programmers to check for properties at certain control points in the program
[Leveson et al. 1990; Rosenblum 1995]. In Metamorphic Runtime Checking, the
tests can be considered runtime assertions; however, approaches using assertions
typically address how variable values relate to each other, but do not describe
the relation between sets of inputs and sets of outputs, as we do in metamorphic
testing. Additionally, the assertions in those languages are not allowed to have
side effects; in our approach, the tests are allowed to have side effects (in fact
they almost certainly will, since the function is called again), but these side effects
are hidden from the user. Last, complex assertions (such as checking for data
structure integrity [Demsky and Rinard 2003]) typically preempt the application by
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running sequentially with the rest of the program, whereas in Metamorphic Runtime
Checking the program is allowed to proceed while the properties are checked in
parallel.

Extrinsic Interface Contracts are similar to assertions except that, rather than
embedding the specifications in the source code, they are kept separate from the
implementation, as in the programming language ADL [Sankar and Hayes 1994].
Another example would be algebraic specifications [Cody Jr. and Waite 1980],
which are similar to metamorphic properties, though algebraic specifications often
declare legal sequences of function calls that will produce a known result, typically
within a given data structure (e.g. pop(push(X )) == X in a Stack), but do not
describe how a particular function should react when its input is changed. The
runtime checking of algebraic specifications has been explored in [Nunes et al. 2006]
and [Sankar 1991], though neither work considered the particular issues that arise
from testing without oracles, or issues related to side effects. Even in the cases in
which algebraic specifications are used to act as oracles, work to date has focused
primarily on consistency checking of abstract data types [Sankar et al. 2003] and
has not sought to create (pseudo-)oracles for applications and functions that do not
otherwise have them.

Formal specification languages like Z [Abrial 1980] or Alloy [Jackson 2002] can be
used to declare the specific properties of the application, typically in advance of the
implementation to communicate intended behavior to the developers. However,
Baresi and Young point out that a challenge of using specification languages as
oracles is that “effective procedures for evaluating the predicates or carrying out
the computations they describe are not generally a concern in the design of these
languages”, i.e., the language may not be powerful enough to describe how to
know whether the implementation is meeting the specification. Although previous
work has demonstrated that formal specification-based assertions can be effective
in acting as test oracles [Coppit and Haddox-Schatz 2005], the specifications need
to be complete in order to be of practical use in the general case, as pointed out in
[Sankar et al. 2003].

Using debugging or trace tools to observe the execution of an application may
indicate whether or not it is functioning correctly, if for instance it is conforming to
certain properties (like a sequence of execution calls or a change in variable values)
that are believed to be related to correct behavior; or, conversely, to see if it is
not conforming to these properties. We have, in fact, investigated this technique
previously with some success [Murphy and Kaiser 2008], but noted that often the
creation of an oracle to tell if the trace is correct can be just as difficult as creating
an oracle to tell if the output is correct in the first place, assuming it is even possible
at all.

9.2 Testing Machine Learning Applications

Although there has been much work that applies machine learning techniques to
software engineering in general and software testing in particular (e.g., [Briand
2008], [Cheatham et al. 1995], [Zhang and Tsai 2003], etc.), we are not currently
aware of any work in the reverse sense: applying software testing techniques to
machine learning applications, particularly those that have no reliable test oracle.
Orange [Demsar et al. ] and WEKA [Witten and Frank 2005] are two of several
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frameworks that aid ML developers, but the testing functionality they provide is
focused on comparing the quality of the results, and not evaluating the “correctness”
of the implementations. Repositories of “reusable” data sets have been collected
(e.g., the UCI Machine Learning Repository [Newman et al. 1998]) for the purpose
of comparing result quality, i.e., how accurately the algorithms predict, but not for
the software engineering sense of testing: an implementation may predict very well,
but still have defects.

Testing of intrusion detection systems [Mell et al. 2003; Nicholas et al. 1996], in-
trusion tolerant systems [Madan et al. 2004], and other security systems [Balzarotti
et al. 2008] has typically addressed quantitative measurements like overhead, false
alarm rates, or ability to detect zero-day attacks, but does not seek to ensure that
the implementation is free of defects, as we do here.

9.3 Metamorphic Testing

Beydeda [Beydeda 2006] first brought up the notion of combining metamorphic
testing and self-testing components so that an application can be tested at runtime,
but did not investigate an implementation or consider the effectiveness on testing
applications without oracles. Gotleib and Botella [Gotleib and Botella 2003] have
described how the process of metamorphic testing can be conducted automatically,
but their work focuses more on the automatic creation of input data that would
reveal violations of metamorphic properties, and not on automatically checking that
those properties hold after execution.

Test case selection (i.e., choosing the combination of metamorphic properties
and functions to test so that defects are most likely to be revealed) in metamorphic
testing is detailed in [Chen et al. 2004] and [Mayer and Guderlei 2006]. This
can be based on common metrics like statement or path coverage, or test case
dominance (where one test case subsumes others). However, test case selection is
not necessarily an issue here, since the Metamorphic Runtime Checking approach
conducts tests based on the functions that are actually called while the program is
running, and does not seek to drive the execution of particular functions.

9.4 Self-Testing Software

While the notion of “self-checking software” is by no means new [Yau and Cheung
1975], much of the recent work in self-testing components has focused on COTS
component-based software. This stems from the fact that users of these components
often do not have the components’ source code and cannot be certain about their
quality. Approaches to solving this problem include using retrospectors [Liu and
Richardson 1998] to record testing and execution history and make the information
available to a software tester, and “just-in-time testing” [Liu and Richardson 2002]
to check component compatibility with client software. Work in “built-in-testing”
[Wang et al. 2000] has included investigation of how to make components testable
[Beydeda 2005; Beydeda and Gruhn 2003; Brenner et al. 2007; Mariani et al. 2004],
and frameworks for executing the tests [Denaro et al. 2003; Mao et al. 2007; Merdes
et al. 2006], including those in Java programs [Deveaux et al. 2001], or through the
use of aspect-oriented programming [Mao 2007]. However, none of these address
the issue of testing applications without test oracles, or of using properties of the
individual functions to perform system testing.
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Other “perpetual testing” [Osterweil 1996] approaches to testing software as it
runs in the field include the monitoring, analysis, and profiling of deployed software,
as surveyed in [Elbaum and Hardojo 2004], and in particular tools like Gamma [Orso
et al. 2003], Skoll [Memon et al. 2004], and Cooperative Bug Isolation [Liblit et al.
2003]; Columbus differentiates itself from these others by explicitly addressing the
problems associated with testing applications without test oracles.

10. LIMITATIONS AND FUTURE WORK

The most critical limitation of the current Columbus implementation is that any-
thing external to the application process itself, e.g. database tables, network I/O,
etc., is not included in the sandbox and modifications made by a metamorphic test
may therefore affect the external state of the original application. Although this
appears to limit the usefulness of the approach, we note, however, that in our test-
ing, the current sandbox implementation (which provides the test process with its
own memory space and own view of the file system) would have been sufficient for
the applications we tested: none of the applications used an external database, and
the metamorphic properties that were checked in the network intrusion detection
system PAYL did not involve network I/O. For database-driven applications, it
may be possible to automate the creation of sandboxed database tables using copy-
on-write technology (as in Microsoft SQL Server 9) or “safe” test case selection
techniques that ensure that there will be no permanent changes to the database
state as a result of the tests [Willmor and Embury 2005; 2006]; we leave these as
future work.

Another implementation issue is that the test functions are called after the func-
tion to be tested, rather than at the same point in the program execution. This
limitation grew out of the necessity to pass the result of the original function call
to the test functions. Another reason for this implementation decision is that, since
the function calls are in different processes, challenges would arise in comparing the
outputs if the results are pointers, which would point to memory in separate process
spaces. The possible side effect of our implementation is that the original function
call may alter the system state in such a way that the metamorphic property would
not be expected to hold by the time the test function is called, possibly introducing
false positives. In our testing, none of the selected metamorphic properties fell into
this trap, but further investigation needs to be performed to determine how often
this problem may arise.

One possible direction for future work lies in fault localization. Because the
approach tests individual functions, it will be clear which function’s test revealed a
violation of its metamorphic properties. However, it may not necessarily be the case
that the function itself contains the defect, since the system may be in an invalid
state due to a defect in another part of the code (as shown in our experiments).
We have begun to investigate other fault localization techniques based on taking
process checkpoints, though these are currently outside the scope of this particular
work.

Finally, the applications we investigated were all deterministic, but approaches
like Statistical Metamorphic Testing [Guderlei and Mayer 2007] and Heuristic Meta-

9http://msdn.microsoft.com/en-us/library/ms175158.aspx
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morphic Testing [Murphy et al. 2009a] could be incorporated into the framework
to address non-determinism. Future work should also explore the application of
these techniques to other domains of non-testable programs, such as discrete event
simulation, optimization, and other fields of scientific computing.

11. CONCLUSION

We have introduced Metamorphic Runtime Checking, a new system testing ap-
proach based on checking the metamorphic properties of individual functions in
applications without test oracles. We have also described an implementation frame-
work called Columbus, and shown that this approach improves upon other tech-
niques in which metamorphic testing is conducted based on system-level properties.

This work goes beyond applying a system testing approach to individual func-
tions: rather, we use properties of the functions to conduct system testing, and
have shown that such properties can detect defects even in functions that are not
themselves being tested.

Addressing the testing of applications without oracles has been identified as a
future challenge for the software testing community [Bertolino 2007]. We hope
that our findings here help others who are also concerned with the quality and
dependability of such non-testable programs.
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