
Configuration Fuzzing for Software Vulnerability Detection

Huning Dai, Christian Murphy, Gail Kaiser
Department of Computer Science

Columbia University
New York, NY 10027 USA

{hd2210, cmurphy, kaiser}@cs.columbia.edu

Abstract—Many software security vulnerabilities only reveal
themselves under certain conditions, i.e., particular configu-
rations of the software together with its particular runtime
environment. One approach to detecting these vulnerabilities is
fuzz testing, which feeds a range of randomly modified inputs to
a software application while monitoring it for failures. However,
fuzz testing makes no guarantees regarding the syntactic and
semantic validity of the input, or of how much of the input
space will be explored. To address these problems, in this paper
we present a new testing methodology called configuration
fuzzing. Configuration fuzzing is a technique whereby the
configuration of the running application is randomly modified
at certain execution points, in order to check for vulnerabilities
that only arise in certain conditions. As the application runs
in the deployment environment, this testing technique continu-
ously fuzzes the configuration and checks “security invariants”
that, if violated, indicate a vulnerability; however, the fuzzing
is performed in a duplicated copy of the original process, so
that it does not affect the state of the running application. In
addition to discussing the approach and describing a prototype
framework for implementation, we also present the results of
a case study to demonstrate the approach’s efficiency.

Keywords-Vulnerability; Configuration fuzzing; Fuzz testing;
In Vivo testing; Security invariants

I. INTRODUCTION

As the Internet has grown in popularity, security testing
is undoubtedly becoming a crucial part of the development
process for commercial software, especially for server ap-
plications. However, it is impossible in terms of time and
cost to test all configurations or to simulate all system
environments before releasing the software into the field,
not to mention that software distributors may later add
more configuration options. Fuzz testing as a form of
black-box testing was introduced to address this problem
[1]. Empirical studies [2] have proven its effectiveness in
revealing vulnerabilities of software systems. Yet, typical
fuzz testing has been inefficient in two aspects. First, it is
poor at exposing certain errors, as most generated inputs
fail to satisfy syntactic or semantic constraints and therefore
cannot exercise deeper code. Second, given the immensity
of the input space, there are no guarantees as to how much
of it will be explored [3].

To address these limitations, this paper presents a new
testing methodology called configuration fuzzing. Instead of
generating random inputs that may be semantically invalid,

configuration fuzzing mutates the application configuration
in a way that helps valid inputs exercise the deeper com-
ponents of the program-under-test and check for violations
of “security invariants” [4]. These invariants represent rules
that, if broken, indicate the existence of a vulnerability. Ex-
amples of security invariants may include: avoiding memory
leakage that may lead to denial of service; a user should
never gain access to files that do not belong to him; critical
data should never be transmitted over the Internet; only
certain sequences of function calls should be allowed, etc.

The configuration fuzzing approach is based on the obser-
vation that most vulnerabilities occur under specific condi-
tions [5], i.e., an application running with one configuration
may prevent the user from doing something bad, while
another might not. To facilitate this method, configuration
fuzzing occurs within software as it runs in the deployment
environment. This allows it to conduct tests in application
states and environments that may not have been conceived
in the lab. Therefore, this increases the effectiveness of
configuration fuzzing by continuing to check for security
invariants in the mutated configurations even after the soft-
ware is released. However, the fuzzing of the configuration
occurs in an isolated “sandbox” that is created as a clone of
the original process, so that it does not affect the end user
of the program.

In this paper, we motivate and describe the configuration
fuzzing approach to checking for software vulnerabilities,
and discuss an implementation framework. We also present
the results of empirical studies that demonstrate that the per-
formance overhead of configuration fuzzing is low enough
so that the approach may be carried out on software appli-
cations as they execute in the deployment environment with
minimal impact on the user.

II. BACKGROUND

The foundation of the configuration fuzzing methodol-
ogy is the fact that many applications, especially network-
related applications, come with numerous options in the
configuration. Take Apache HTTP server as an example: it
has more than 50 options that generate over 250 possible
settings. Though 250 is relatively small compared to the
input space, it is still impractical for testers to test all
potential combinations manually, while vulnerabilities are

often revealed in the corner cases that are overlooked. The
configuration fuzzing methodology can automate the process
of testing multiple configurations and checking for security
invariant violations.

Configuration fuzzing is designed as an extension to the In
Vivo Testing approach [6], which was originally introduced
to detect behavior bugs that reside in software products.
In Vivo Testing was principally inspired by the notion of
“perpetual testing” [7] [8], which suggests that latent defects
still reside in many (if not all) software products and these
defects may reveal themselves when the application executes
in states that were unanticipated and/or untested in the devel-
opment environment. Therefore, testing of software should
continue throughout the entire lifetime of the application.

In Vivo Testing conducts tests and checks properties of
the software in a duplicated process of the original; this
ensures that, although the tests themselves may alter the state
of the application, these changes happen in the duplicated
process, so that any changes to the state are not seen by the
user. This duplicated process can simply be created using a
“fork” system call, though this only creates a copy of the
in-process memory. If the test needs to modify any local
files, In Vivo Testing uses a “process domain” [9] to create
a more robust “sandbox” that includes a copy-on-write view
of the file system.

In previous research of In Vivo Testing, the approach of
continuing to test these applications even after deployment
was proven to be both effective and efficient in finding re-
maining misbehavior flaws related to functional correctness
[6][10], but not necessarily security defects. In this work,
we modify the In Vivo Testing approach to specifically
look for security vulnerabilities. Extending the In Vivo
Testing approach to configuration fuzzing is motivated by
two reasons.

First, many security-related bugs only reveal themselves
under certain conditions, which is the configuration of the
software together with its running environment. For instance,
the FTP server wu-ftpd 2.4.2 assigns a particular user
ID to the FTP client in certain configurations such that
authentication can succeed even though no password entry
is available for a user, thus allowing remote attackers to
gain privileges [11]. As another example, certain versions of
the FTP server vsftpd, when under heavy load, may allow
attackers to cause a denial of service (crash) via a SIGCHLD
signal during a malloc or free call [12], depending on
the software’s configuration. Because In Vivo tests execute
within the current environment of the program, rather than
by creating a clean slate, it follows that configuration fuzzing
increases the possibility of detecting such vulnerabilities that
only appear under certain conditions.

Second, the “perpetual testing” foundation of In Vivo
Testing ensures that testing can be carried out after the
software is released. Continued testing improves the amount
of the configuration space that can be explored through

fuzzing; therefore it is more likely that an instance will find
vulnerabilities under their error-prone configurations.

To address the problem of exploring a potentially large
configuration space, configuration fuzzing tests can be as-
signed to multiple machines using the distributed In Vivo
Testing approach [10], in which the testing assignments
are split amongst applications running in a homogenous
“application community” [13]. If there are many users in the
application community, it follows that many more tests will
be run, thus increasing the number of possible configurations
that are explored as a result of fuzzing, and ideally increasing
the likelihood of revealing a vulnerability.

III. APPROACH

In this section, we describe the steps that software testers
would take when using the configuration fuzzing approach.
We currently assume access to the source code, though such
assumptions could be lifted with the use of a system for
binary instrumentation such as Kheiron [14]. The general
workflow of the methodology is as follows:

A. Identifying the configuration/setting variables

Most software applications use external configuration,
such as .config or .ini files, and/or internal configuration,
namely global variables. Given an application to be tested,
the tester first locates these configuration parameters that
can be mutated. We assume that the tester can annotate the
configuration files in such a way that each field is followed
by the corresponding variable from the source code and
the range of possible values of that variable. A sample
annotated configuration file is shown in Listing 1, with the
corresponding variables and their values in braces.

P a s s i v e T e l n e t
P a s s i v e yes # [c f g . p a s s i v e t e l n e t]@{0 ,1}
X11 f o r w a r d
X11 no #[c f g . x11 fo rward]@{0 ,1}
Agent f o r w a r d
Agen t fo rward yes # [c f g . agen t fwd]@{0 ,1}
Don ’ t a l l o w a u t h e n t i c a t e d u s e r s .
NoUserAuth no #[c f g . s s h n o u s r a u t h]@{0 ,1}

Listing 1. An annotated configuration file

Our method mainly fuzzes those configuration variables
that are in charge of changing modes or enabling options.
These variables often have a binary value of 1/0 or y/n,
or sometimes a sequence of numbers representing different
modes. There are two reasons for not mutating all the
configuration variables: First, not all configuration variables
are modifiable, e.g. fuzzing the host IP address of an ftp
server will only lead to unable-to-connect errors. Changing
some of these variables will be unlikely to raise any security
problems; for example, changing the name of the host
normally will not be useful in exploiting vulnerabilities.
Second, some vulnerabilities are triggered under certain

mode/option combinations of network-related applications.
For example, WinFTP FTP Server 2.3.0, in passive mode,
allows remote authenticated users to cause a denial of service
via a sequence of FTP sessions [15]. Also, some early
versions of Apache Tomcat allow remote authenticated users
to read arbitrary files via a WebDAV write request under
certain configurations [16]. By only fuzzing the configu-
ration variables representing modes and options, the size
of the configuration space that our approach is fuzzing
decreases considerably; however, even with such a decrease,
the configuration space may still be too large to test prior
to deployment, and thus an In Vivo Testing approach is still
useful.

B. Generating fuzzing code

Given the variables to fuzz and their corresponding pos-
sible values (as specified in the configuration file), a pre-
processor produces a function that is used to fuzz the con-
figuration, as shown in in Listing 2. The function random()
generates a value randomly from zero to the number of
possible configurations, assigning different sets of values to
the chosen configuration variables.

void f u z z c o n f i g ()
{

i n t r =random () ; /∗ random number
g e n e r a t o r ∗ /

i f (r ==0) {
GLOBAL VAR A=0; /∗ A s s i g n v a l u e s t o
GLOBAL VAR B=0; c o n f i g u r a t i o n
. . . v a r i a b l e s ∗ /

} e l s e i f (r ==1){
GLOBAL VAR A=0; /∗ A s s i g n v a l u e s t o
GLOBAL VAR B=1; c o n f i g u r a t i o n
. . . v a r i a b l e s ∗ /

}
. . .

}

Listing 2. An example fuzzer

C. Identifying functions to test

The tester then chooses the functions that are to be the
instrumentation points for configuration fuzzing. These can
conceivably be all of the functions in the program, but would
generally be the points at which vulnerabilities would most
likely be revealed. The functions are annotated with a special
tag in the source code.

D. Generating test code

Given an original function named foo(), a pre-processor
first renames it to foo(), then generates a skeleton for a
test function named test foo(), which is an instance of a

configuration fuzzing test. In the test function, the config-
uration fuzzer (as described above) is first called, and then
the original function foo() is invoked.

Then, the program’s security invariants are checked.
Based on the properties of the program being tested, differ-
ent security invariants are predefined by the tester in order to
check for violations. The tester writes a surveillance function
called check invariants() according to these security invari-
ants. For example, the function could use the substring func-
tion strstr(current directory, legal directory) to check that
the user’s current directory has a specified legal directory as
its root; if this function indicates otherwise, it may indicate
that the user has performed an illegal directory traversal.
As another example, the check invariants() function may
simply wait to see if the original function foo() returns
at all; if it does not, the process may have been killed or
be hanging as a result of a potential vulnerability. These
surveillance functions run throughout the testing process,
and log every security invariant violation with the fault-
revealing configuration into a log file that can be sent to
a server for later analysis.

Listing 3 gives an example of a test function.

t e s t f o o (i n t x)
{

f u z z c o n f i g () ; /∗ Fuzz c o n f i g u r a t i o n ∗ /
foo (x) ; /∗ C a l l t h e

o r i g i n a l f u n c t i o n ∗ /
c h e c k i n v a r i a n t s () ; /∗ Check s e c u r i t y

i n v a r i a n t s ∗ /
}

Listing 3. A test function

i n t foo (i n t x)
{

i n t p i d = f o r k () ; /∗ Cr ea t e new p r o c e s s ∗ /
i f (p i d ==0) {

t e s t f o o (x) ; /∗ T e s t f u n c t i o n ∗ /
e x i t () ; /∗ T e s t e x i t s when done ∗ /

}
re turn foo (x) ; /∗ O r i g i n a l f u n c t i o n ∗ /

}

Listing 4. A wrapper example

E. Executing tests

In the last step, a wrapper function with the name foo()
(shown in Listing 4) is created. As in the In Vivo Testing
approach, when the function foo() is called, it first forks
to create a new process that is a replica of the original.
The child process (or the “test process”) calls the test foo()
function, which performs the configuration fuzzing and then
exits. Because the configuration fuzzing occurs in a separate
process from the original, the user will not see its output.

Meanwhile, the original function foo() is invoked in the
original process (as seen by the user) and continues as
normal.

IV. PERFORMANCE EVALUATION

In this section, we describe the results of experiments that
measure the performance cost incurred by the configuration
fuzzing approach.

A. Setup

We evaluated our approach’s performance by applying it
to the psftp client program, which is a part of Putty 0.60
[17], chosen because it is open-source and has multiple
configuration options. All experiments were conducted on
an Intel Core2Quad Q6600 server with 2.40GHz and 2GB
of RAM running Ubuntu 8.04.3.

The function we chose to instrument is psftp connect(),
which authenticates users’ logging in. We picked this
function because it has many related configuration vari-
ables. In the sense of testing the robustness of the au-
thentication process under different modes, we (in the
role of testers) picked five related configuration vari-
ables: cfg.passive telnet, cfg.x11 forward, cfg.agentfwd,
cfg.tcp nodelay and cfg.ssh no userauth. All of these vari-
ables can only vary from 0 to 1 making the size of the
configuration space 25. Then the framework modified the
function for configuration fuzzing.

As for security invariants, we only checked whether the
forked process (the test process) runs to completion, in order
to detect possible denial of service vulnerabilities. Although
this alone is not sufficient to find all potential vulnerabilities,
of course, it serves the purposes of the performance testing
since the overhead created by forking a new process is
expected to be significantly higher than that of checking
the invariants.

For both the original code (without instrumentation) and
the instrumented code, we simulated user inputs for the
psftp connect() function and recorded the function’s exe-
cution time. The SFTP service was provided on the test
machine, and the psftp connect() function sent requests to
IP address 127.0.0.1 rather than to other servers to eliminate
any overhead from network traffic. We ran tests in which the
function was called 10, 100, 1000, 10000 and 100000 times
in order to estimate the overhead caused by our approach.

B. Evaluation

Table I shows the results we collected from the experi-
ments. The first column shows the number of tests that had
been carried out, i.e. the number of times the psftp connect()
function was called. The second and third columns are
the total time in seconds for the original function and
the instrumented function, respectively. The overhead is
calculated in the fourth column and the average additional

Total Total Avg
Time Time Overhead Additional

Tests (Original) (Instrumented) % Time
10 6.6411 6.6635 0.337 0.002

100 66.592 66.809 0.326 0.003
1000 663.14 666.07 0.442 0.003

10000 6635.6 6659.4 0.359 0.002
100000 66384 66601 0.327 0.002

Table I
TIME COST OF PSFTP CONNECT() (IN SECONDS) WITH VARYING

NUMBER OF TESTS

time (in seconds) per instrumented test is listed in the last
column.

From the results we can see that the overhead introduced
by our approach is rather small and is unlikely to be noticed
by users. In addition, the average additional cost per test
stayed around 3ms and did not increase when the number
of tests grew. It is worth mentioning that most of the
performance overhead comes from the cost of forking a new
process, as the test processes are assigned to another core by
the In Vivo Testing framework, and do not interfere with the
original process. Thus, fuzzing more configuration variables
or checking more security invariants would be unlikely to
have much affect on the overhead, particularly when running
on a multicore machine where the test processes can be
assigned to another core.

V. RELATED WORK

One approach to detecting security vulnerabilities is en-
vironment permutation with fault injection [18], which per-
turbs the application environment during the test and checks
for symptoms of security violations. Most implementations
of this approach, such as [19] and [20], view the security
testing problem as the problem of testing for the fault-
tolerance properties of a software system. They consider
each environment perturbation as a fault and the resulting
security compromise a failure in the toleration of such faults.
However, this hampers the effectiveness of this approach, as
the number of defects it may detect is highly dependent
on the number of flaws being injected and where they are
injected.

Our approach uses the original configuration space of
the software-under-test and expects to decrease the occur-
rence of false positives. Moreover, without injecting external
faults but checking for violations of security invariants, we
eliminate the dependency on external resources. The two
approaches, however, could certainly be used in conjunction
with each other; we leave this as future work.

Another popular approach is fuzz testing [1]. Typical
fuzz testing is scalable, automatable and does not require
access to the source code. It simply feeds malformed inputs
to a software application and monitors its failures. The
notion behind this technique is that the randomly generated
inputs often exercise overlooked corner cases in the parsing
component and error checking code. This technique has been
shown to be effective in uncovering errors [2], and is used

heavily by security researchers [3]. Yet it also suffers from
several problems: a single unsigned int value can vary from
0 to 65535 indicating the immensity of the input space,
which can hardly be covered with limited time and cost.
Furthermore, by only changing the input, a fuzzer may not
put the application into a state in which the vulnerability
will appear. White-box fuzzing [21] is introduced to help
generate well formed inputs instead of random ones and
therefore increases their probability of exercising code deep
within the semantic core of the computation. It analyzes
the source code for semantic constraints and then produces
inputs based on them or modifies valid inputs. White-box
fuzzing improves the efficiency of fuzz testing; however, it
overlooks the enormous size of the input space and also
suffers from severe overhead [22].

Our approach deals with this problem by mutating the
configuration rather than randomly generating inputs of the
program-under-test. The space of the former is considerably
smaller than the latter and is more relevant in triggering
potential illegal states. In addition, extending the testing
phase into deployed environments has tolerable overhead
that end user would not even notice.

VI. FUTURE WORK

Limitations reside respectively in configuration fuzzing
and In Vivo Testing. We intend to address many of these in
future work.

For configuration fuzzing, testers’ intervention is required
to locate appropriate configuration variables in the current
implementation. An automated system could be built to
achieve this by parsing source code or external configura-
tion files with annotations. Moreover, the present fuzzer is
designed to randomly pick a configuration, which might lead
the test into invalid states. White-box fuzzing might provide
a solution to this problem.

For In Vivo Testing, the most critical limitation of the
current implementation is that anything external to the
application process itself, e.g. database tables, file I/Os, etc.,
is not replicated by forking the process and the test run
in the forked process is less likely to detect vulnerabilities
related to these external resources. We are currently looking
into a different implementation in which we replace forking
with other mechanisms, which hopefully can provide a
sandbox that addresses local file system issues by creating a
“snapshot” of the process execution state together with the
file system state.

Future work may also include improving the efficiency of
our implementation. Our system currently randomly fuzzes
the value of all chosen configuration variables. However,
there could be a way to only fuzz the values that have
not previously been tested by planning out and tracking
the different configurations, as in [23], either for a single
installation or across multiple application instances.

VII. CONCLUSION

We have presented a new testing methodology called
configuration fuzzing, which mutates the configuration of a
program and checks for violations of security invariants to
detect vulnerabilities. By integrating with the In Vivo Testing
approach, configuration fuzzing tests continue to run after
software is released without affecting the users’ experience.
We have also provided a prototype implementation of our
approach and a case study for performance analysis.

ACKNOWLEDGMENTS

The authors are members of the Programming Sys-
tems Lab, funded in part by NSF CNS-0905246, CNS-
0717544, CNS-0627473 and CNS-0426623, and NIH 1 U54
CA121852-01A1.

REFERENCES

[1] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force
Vulnerability Discovery, 1st ed. Addison-Wesley Profes-
sional, 2007.

[2] L. Jurani, “Using fuzzing to detect security vulnerabilities,”
INFIGO, Tech. Rep. INFIGO-TD-01-04-2006, 2006.

[3] T. Clarke, “Fuzzing for software vulnerability discovery,”
Department of Mathematic, Royal Holloway, University of
London, Tech. Rep. RHUL-MA-2009-4, 2009.

[4] J. Biskup, Security in computing systems challenges, ap-
proaches, and solutions. Springer-Verlag Berlin Heidelberg,
2009.

[5] C. Ramakrishnan and R. Sekar, “Model-based analysis of
configuration vulnerabilities,” Journal of Computer Security,
vol. 10, pp. 189–209, 2002.

[6] C. Murphy, G. Kaiser, I. Vo, and M. Chu, “Quality assurance
of software applications using the in vivo testing approach,”
in Proc. of the Second IEEE International Conference on
Software Testing, Verification and Validation (ICST), 2009,
pp. 111–120.

[7] “Perpetual testing project,” http://www.ics.uci.edu/
djr/edcs/PerpTest.html.

[8] D. Rubenstein, L. Osterweil, and S. Zilberstein, “An anytime
approach to analyzing software systems,” in Proc. of 10th
FLAIRS, 1997, pp. 386–391.

[9] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and
implementation of Zap: A system for migrating computing
environments,” in Proc of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI), 2002, pp. 361–
376.

[10] M. Chu, C. Murphy, and G. Kaiser, “Distributed in vivo
testing of software applications,” in Proc. of the First In-
ternational Conference on Software Testing, Verification and
Validation, April 2008, pp. 509–512.

[11] “Cve-2008-1668,” http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2008-1668.

[12] “Cve-2004-2259,” http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2004-2259.

[13] M. E. Locasto, S. Sidiroglou, and A.D. Keromytis, “Software
self-healing using collaborative application communities,” in
Proc. of the Internet Society (ISOC) Symposium on Network
and Distributed Systems Security (NDSS 2006), February
2006, pp. 95–106.

[14] R. Griffith and G. Kaiser, “A runtime adaptation framework
for native C and bytecode applications,” in 3rd IEEE Interna-
tional Conference on Autonomic Computing, June 2006, pp.
93–103.

[15] “Cve-2008-5666,” http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2008-5666.

[16] “Cve-2007-5461,” http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2007-5461.

[17] “Putty: A free telnet/ssh client,”
http://www.chiark.greenend.org.uk/
sgtatham/putty.

[18] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection
techniques and tools,” Computer, vol. 30, no. 4, pp. 75–82,
1997.

[19] W. Du and A. P. Mathur, “Testing for software vulnerability
using environment perturbation,” in Proc of International
Conference on Dependable Systems and Networks, 2000, p.
603.

[20] H. H. Thompson, J. A. Whittaker, and F. E. Mottay, “Software
security vulnerability testing in hostile environments,” in Pro-
ceedings of the 2002 ACM symposium on Applied computing.
New York, NY, USA: ACM, 2002, pp. 260–264.

[21] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed
whitebox fuzzing,” in ICSE ’09: Proceedings of the 2009
IEEE 31st International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
474–484.

[22] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated
whitebox fuzz testing,” in Network Distributed Security Sym-
posium (NDSS). Internet Society, 2008.

[23] A. Memon and A. Porter et al., “Skoll: distributed contin-
uous quality assurance,” in Proc. of the 26th International
Conference on Software Engineering (ICSE), May 2004, pp.
459–468.

