
Curtailed Online Boosting

Raphael Pelossof
Columbia University

500 W 120th St, New York, NY 10027
pelossof@cs.columbia.edu

Michael Jones
MERL

201 Broadway, Cambridge, MA 02139
mjones@merl.com

Abstract

The purpose of this work is to lower the average num-
ber of features that are evaluated by an online algorithm.
This is achieved by merging Sequential Analysis and Online
Learning. Many online algorithms use the example’s mar-
gin to decide whether the model should be updated. Usu-
ally, the algorithm’s model is updated when the margin is
smaller than a certain threshold. The evaluation of the mar-
gin for each example requires the algorithm to evaluate all
the model’s features. Sequential Analysis allows us to early
stop the computation of the margin when uninformative ex-
amples are encountered. It is desirable to save computation
on uninformative examples since they will have very little
impact on the final model. We show the successful speedup
of Online Boosting while maintaining accuracy on a syn-
thetic and the MNIST data sets.

1. Introduction
Many Online Algorithms base their model update on

the margin of each example in the stream. Online algo-
rithms such as Kivinen and Warmuth’s Exponentiated Gra-
dient [12] and Oza and Russell’s Online Boosting [17] up-
date their respective models by using a margin based po-
tential function. Passive online algorithms, such as Rosen-
blatt’s perceptron [20] and Crammer et al.’s online passive-
aggressive algorithms [5], define a margin based filtering
criterion for update, which only updates the algorithm’s
model if the value of the margin falls below a defined
threshold. All these algorithms fully evaluate the margin
for each example, which means that they evaluate all their
features for every example.

The running time of these algorithms is linear in the
number of features, or the dimensionality of the input space.
Since models today may have thousands of features, this
running time seems daunting, and depending on the task,
one might wish to speed up these online algorithms, by
pruning uninformative examples. We propose to early stop
the computation of feature evaluations for uninformative

examples by connecting Sequential Analysis [24, 14] to On-
line margin based algorithms.

We use Sequential Analysis to lower the number of fea-
tures evaluated for each example in the stream. Many of the
online algorithms described above will perform an insignif-
icant model update on uninformative examples. These ex-
amples are usually easily classifiable and will have a large
positive margin. By early stopping the calculation of the
margin on these easy to classify examples we speed up the
online algorithm. Our framework allows the online algo-
rithm to early stop computation on uninformative examples,
thereby concentrating most of the computational effort on
highly informative important examples.

Our approach of using Sequential Analysis breaks up the
calculation of the margin of each example in the stream.
This allows the algorithm to make a decision after the eval-
uation of each feature whether the next feature should also
be evaluated or the feature evaluation should be stopped.
We use the terms margin and full margin to describe the
summation of all the feature evaluations, and partial margin
as the summation of a part of the feature evaluations. The
margin is computed as a weighted sum of feature evalua-
tions of an example. This decision making process allows
us to early stop the evaluation of features on examples with
a large partial margin after having evaluated only a few fea-
tures. Examples with a large partial margin are unlikely to
have a full margin below the required threshold. Therefore,
by rejecting these examples early, large savings in compu-
tation are achieved.

Many discriminative machine learning algorithms use
margin based functions as a basis for their optimization.
AdaBoost for example, maximizes the margins of the ex-
amples in the training set at each iteration. An example’s
margin is the sum of its classification results weighted by
the confidence rate of each weak hypothesis. The sum can
be viewed as a random walk with varying step sizes, where
each step size is set as the weight of the equivalent vote in
the sum and where the classification result is the direction.
When training, AdaBoost weights more heavily examples
with a negative margin, and therefore concentrates on clas-

sifying those examples correctly. For large data sets it is
time consuming to evaluate the margin for all the exam-
ples. It is more efficient to speed up the process by filtering
examples which already have a large positive margin after
been evaluated by few weak hypotheses. Similarly, exam-
ples with a very large margin will have little effect in later
rounds of Online Boosting. The algorithm can be sped up
by not performing any update when these examples are en-
countered. Filtering examples can present a large advantage
when considered for online boosting algorithms.

In this work we propose a very simple sequential test to
early stop the computation of the margin. Sequential Anal-
ysis has been an active research field for over 60 years. It
is mostly used and developed by the Clinical testing and
Economics communities. In clinical testing the researcher
would like to design a test which requires the smallest num-
ber of patients to prove the efficacy of a drug. The cost of
many tests is monetarily high and patients may die through-
out the test, therefore the tests are designed sequentially, so
that the minimum number of patients will be tested. The
connection between the clinical tests and margin evaluation
is done by looking at each feature as a patient, and checking
whether a test statistic is significant enough after each fea-
ture evaluation. If at any interim point in the test there isn’t
enough significance for the test, we will early stop the test,
reject the example, and save on computational costs. We
demonstrate that this simple procedure can speed up Online
Boosting by an order of magnitude.

2. Related Work
Curtailed Online Boosting is closely related to the sam-

pling and threshold selection techniques used by cumulative
classifiers. Cumulative classifiers are trained with sampled
data sets, and set early rejection score based thresholds. The
sampling is done as a function of the margin. Curtailed On-
line Boosting sets margin based early stopping thresholds in
an online manner.

The most famous and widely accepted face detector is
the very successful Viola and Jones cascaded face detec-
tor [23, 11]. The Viola and Jones cascaded face detector
is a discriminative classifier that is trained using a batch
algorithm similar to batch AdaBoost [9]. Extending the
cascaded classifier is the cumulative classifier proposed by
Bourdev and Brandt [1]. The two main differences between
the training process of the cumulative classifier and batch
AdaBoost are re-sampling and the setting of quick rejection
thresholds. Re-sampling is used to narrow down the set of
examples the algorithm is trained on at each iteration due to
the extremely large size of the training set. The full training
set may contain over 200 million examples. Quick rejec-
tion thresholds are thresholds which stop the processing of
examples that can be easily classified as non faces, thereby
making the detector extremely fast using selective process-

ing [1, 25].
The training process incorporates multiple stages, first

a boosted classifier is created by training AdaBoost on a
frontal face data set. At each boosting round the algorithm
re-samples a set of new examples for the next round. This
subset usually consists of progressively harder to classify
examples. At each round a feature is selected, and Ad-
aBoost assigns a weight to it. This process repeats until
a desired classification accuracy rate has been met. When
the training process terminates, early stopping thresholds
are selected. These thresholds are an integral part of the cu-
mulative classifier, since they cut down the amount of pro-
cessing used by the classifier by a few orders of magnitude.
The thresholds are set to early stop processing of easy to
classify negative examples. Since most of the examples are
usually negative in face detection, the thresholds speed up
the detector about 200 times on average.

When training their AdaBoost based detector, both Jones
and Viola [11] and Bourdev and Brandt [1] use re-sampling
to reduce their training set from 200 million examples to
20 thousand. While maintaining high accuracy this process
speeds up feature selection and the training time by a few
orders of magnitude. In the online setting it’s not possible
to sample since the algorithm can only keep one example
at a time in the memory. The equivalent to sampling in the
online setting is filtering. In filtering an example is selected
for processing if it matches a certain criteria. We would
like the filtering process and the sampling process to select
a similar set of examples. Similarly to sampling, we filter
each example according to its margin.

Another closely related learning paradigm to filtered on-
line boosting is selective sampling active learning. In se-
lective sampling the active learning algorithm is presented
with a set of unlabeled examples and it decides which ex-
amples labels to query at a cost. The algorithm’s task is
to pay for labels as little as possible while achieving spec-
ified accuracy and reliability rates [6, 3, 22]. Typically, for
selective sampling active learning algorithms the algorithm
would ignore examples that are easy to classify, and pay for
labels for harder to classify examples that are close to the
decision boundary [6]. We will use the motivation behind
active learning to select which examples to update our clas-
sifier with.

In a supervised setting, we do not actually have to pay
for labels, however similarly to selective sampling active
learning we would like to save computation by updating our
model only on hard to classify exmaples. Previous work on
selective sampling [4, 10, 3] put emphasis on querying ex-
amples that are hard to classify, and therefore have either
a small absolute margin, or a negative margin. Examples
with a large absolute margin will be discarded and their la-
bel is not requested, equivalently, our model is not updated
on such uninformative examples.

θ

1

−1

n
coordinate

j

−αj

margin

ρj
+αj

(a) Margin evaluation as a random walk. At coordinate j feature j
can vote either +αj or −αj . We are interested in calculating the
probability that the random walk after n steps will end below the
threshold θ given the current position ρj . Equivalently, we want to
calculate what is the probability that the full margin ρn is smaller
than a given threshold θ given the current margin ρj . This probability
naturally changes after every step of the random walk.

n
coordinate

Accept H0

Test Statistic

β

1− α

P1j

P0j

P̃1j

P̃0j

(b) Sequential testing of the test statistic. At each coordinate the
sequential test requires a sufficient amount of confidence in order
to continue testing. Feature evaluation stops when this requirement
no longer holds. We upper bound the actual statistic defined by the
sequential test, which results in a slightly less efficient test, however
the required accuracy is maintained.

Figure 1. Curtailed Online Boosting as a Random Walk

To speed up the computation we look at the computation
of the margin in more detail. The margin is computed as a
dot product between the hypothesis vector and an example.
In the case of Online Boosting the margin is computed as a
sum of weak hypotheses votes given an example. With high
dimensional data, or large sets of weak hypotheses evaluat-
ing this sum exactly may be very expensive. By looking at
the evaluation of the margin as a random walk, we are able
to compute traversal probabilities which are required by Se-
quential Analysis. The view of the margin evaluation as
a random walk was presented and discussed previously by
Freund and later by Long and Servedio [8, 15, 16]. Break-
ing up the margin as it’s computed by boosting algorithms
to its summands, we can view the margin computation as a
random walk, where each hypothesis’ vote is a random step,
and the hypothesis’ index is time. This view allows us to use
probabilistic bounds to predict the value of the margin given
a partial computation of the margin.

3. Online prediction of the margin
Our task is to find a filtering framework that would

speedup Online Boosting by quickly rejecting examples of
little importance. We measure the importance of an exam-
ple by the size of its margin, the distance from the deci-
sion boundary geometrically. We define θ as the importance
threshold, where examples that are important to us have a

margin smaller than θ. This approach in a different setting
was proposed by Bradley et al. [2].

We would like to bound the probability of the margin
being smaller than θ given the margin computed so far. Let
the margin of an example (xi, yi) at coordinate n be defined
by

ρn = yi

n∑
j=1

αjhj(xi) =
n∑
j=1

αjuij ,

where αj is the weight assigned to the jth weak hypothe-
sis hj by some online algorithm, and uij = yihj(xi). Let
the label of the i’th example be defined by yi ∈ {−1, 1},
the classification of the j’th weak hypothesis be defined by
hj ∈ {−1,+1}, and the weight assigned to the j’th weak
hypothesis α ∈ R. We define ρn as the full margin, ρj as
the partial margin, and ρn−j = ρn − ρj as the remaining
margin. Once we computed the partial margin at coordinate
j we know its value ρj . Our task is to bound the following
probability (see Figure 1(a):

P (reject example|current margin) (1)
= P (ρn ≥ θ|ρj) (2)
= P (ρn − ρj ≥ θ − ρj). (3)

Hoeffding’s inequality upper bounds the probability of a
sum S of random variables sj deviating from its expec-
tation by more than t where the summands are bounded

sj ∈ [aj , bj]

P (S − E[S] ≥ t) ≤ exp
(
− 2t2∑n

j=1(bj − aj)2
)
. (4)

To apply this bound to margins we need to convert equation
3 to the form used by the Hoeffding bound:

P (ρn−j ≥ θ − ρj) =
P (ρn−j − E[ρn−j] ≥ θ − ρj − E[ρn−j]). (5)

We need to compute a new adaptive threshold t to match
the bound. Let t = θ − ρj − E[ρn−j], aj = −αj , bj = αj .
Combining equations 3 - 5 we get the following inequality

P (ρn ≥ θ|ρj) ≤ exp

(
− (θ − ρj − E[ρn−j])2

2
∑n
j=1 α

2
j

)
.(6)

Where threshold θ, the margin computed so far ρj , and the
weights αj are given known. This upper bound will de-
crease if the expected full margin ρj + E[ρn−j] is too far
from the specified threshold θ in either the positive or neg-
ative direction. However, we would like examples with a
large negative margin to have a high probability of ending
below the threshold theta. We can further upper bound this
quantity:

exp

(
− (θ − ρj − E[ρn−j])2

2
∑n
j=1 α

2
j

)
≤ exp

(
−max(θ−ρj−E[ρn−j],0)

2

2
Pn

j=1 α
2
j

)
(7)

Extending this upper bound will end up giving us higher
probabilities for large negative margins.

What is left to calculate the upper bound is to compute
the expectation of the remaining margin E[ρn−j]. For sim-
plicity we will assume that the probability of each weak
hypothesis to vote either −1 or +1 is 0.5, and therefore
the expectation is E[ρn−j] = 0. Further modeling about
the statistics of margins can be incorporated to give tighter
bounds, however, experimentation shows that this simple
assignment works very well. Finally we get:

P (ρn ≥ θ|ρj) ≤ exp

(
−max(θ − ρj − E[ρn−j], 0)2

2
∑n
j=1 α

2
j

)

≈ exp

(
−max(θ − ρj , 0)2

2
∑n
j=1 α

2
j

)
. (8)

If we L2 normalize the votes then the denominator in 8 is
equal to 1. We can compute ||α|| in an online fashion by
updating every time a vote is updated.

4. Curtailed Online Boosting
In his ground breaking paper [24] Wald describes a

nearly optimal stopping algorithm for hypothesis testing.
The optimal stopping tests are designed to early reject the
null hypothesis. Stochastic Curtailment was later intro-
duced by Lan at al. [14] as a method to incorporate in-
formation sequentially as the test progressed. We can use
these tests for early stopping margin calculations.

Deterministic curtailment of the margin calculations can
be computed in an online manner. The curtailment will stop
the sequential computation of the margin if it’s not possible
at coordinate j for the margin to end up below the specified
threshold θ (see figure 1(a).) At each coordinate we can
compute the largest possible remaining vote max(ρn−j) =∑n
k=n−j+1 |αj |, and test whether ρj − max(ρn−j) ≤ θ.

If this doesn’t hold, then it’s not possible for the full mar-
gin to be smaller than the required threshold given the cur-
rent threshold and the remaining features to be evaluated.
Stochastic curtailment extends this idea of early stopping
by introducing a probabilistic framework to the testing pro-
cedure.

With a slight abuse of mathematical notation we can de-
fine two hypotheses as:

H0 : ρn ≥ θ|ρj
H1 : ρn < θ|ρj , (9)

where we would like to test the probability of the entire
margin ρn being larger than a certain given threshold af-
ter having evaluated the partial margin ρj . The intuition is
that if at a certain point the probability is extremely low for
the full margin to be below the required threshold, we stop
calculations on that specific example, reject the alternative
hypothesis H1 and accept H0.

Wald defines the stopping rule as:
Accept H1 if

p1j

p0j
≥ A =

1
α

(10)

Accept H0 if
p1j

p0j
≤ B =

β

1− α, (11)

where p1j is the likelihood that the margin satisfies the al-
ternative hypothesis, and p0j is the likelihood the the mar-
gins satisfies the null hypothesis. The upper bound on the
Type I errors, rejecting H0 when H0 is true, is given by
α, and Type II errors, accepting H0 when H1 is true, by
1 − β. We are more interested in type II errors (β) since
we would rather pay the penalty of more computation than
erroneously not update our model on informative examples.

Without making assumptions on the underlying distribu-
tion which generates the hypotheses and the data, we don’t
know these exact quantities, however, we can upper bound

them. We know from equation 7:

p1j = P (ρn ≥ θ|ρj) (12)

≤ exp

(
−max(θ − ρj − E[ρn−j], 0)2

2
∑n
j=1 α

2
j

)
.

Let us define p̃1j = exp
(
−max(θ−ρj−E[ρn−j],0)

2

2
Pn

j=1 α
2
j

)
, and

p̃0j
.= 1 − p̃1j . We know p0j = 1 − p1j , and p1j ≤ p̃1j ,

therefore p0j ≥ 1 − p̃1j , which is equivalent to p0j ≥ p̃0j .
Combining both inequalities we get the stopping rule for the
margin calculation (see figure 1(b))

p1j

p0j
≤ p̃1j

p̃0j
.

If we only consider a one sided early stopping test, we have
the following weaker early stopping rule:

Accept H0 if
p̃1j

p̃0j
≤ β

1− α.

By conducting the test at each evaluation of a hypoth-
esis we are actually increasing the difficulty of the test
[19, 13, 7]. To overcome this problem we can use a pro-
gressively harder test. The test will start with less stringent
constraints on continuation, which will become more strin-
gent as more features are evaluated. We can therefore con-
sider the following interim test at each feature evaluation

Accept H0 if
p̃1j

p̃0j
≤ β

1− α +
log j
log n

− 1.

If the margin is fully evaluated then our new test obeys
the original test’s error requirements. If the modified test
early terminates then the original test has already terminated
since our test is a weaker one, which means that the error
requirements are still maintained. In our experimentation
we did not need to modify the test, however it is actually
more stringent than the error requirement imposed by α.

The fact that we set E(ρn−j) = 0 violates the Hoeffding
bound. However, in experimentation, we see that the type II
error rates (β) are approximately accurate, and that we still
get an order of magnitude speedup. Curtailed Online Boost-
ing is detailed in algorithm 1, with L2 normalized votes. It
is based on a slightly modification of Online Boosting to
the more prevalent AdaBoost weighting rule [21, 18]. The
algorithm does not detail the bayesian feature selection for
clarity. However, it can easily be incorporated similarly to
Online Boosting.

5. Experiments
We set two experiments to test the speed and accuracy

of Curtailed Online Boosting. The first a synthetic experi-
ment which enables us to see how the algorithm spends it

Algorithm 1 Curtailed Online Boosting
Input: h1, ..., hn; (x1, y1), ..., (xm, ym), ε, θ, α, β
Initialize: w+

j = ε, w−j = ε, αj = 0, j = 1, .., n, z1 = 1
Define uij = yihj(xi)
for i = 1 to m do
d1 = 1
ρ0 = 0
for j = 1 to n do
ρj = ρj−1 + αjuij/

√
zi

p̃1j = exp
{−0.5 max(θ − ρj , 0)2

}
if p̃1j

1−p̃1j
≤ β

1−α then
Continue (exit for loop)

else
w−j ← w−j + dj1[uij=−1]

w+
j ← w+

j + dj1[uij=+1]

αj = 1
2 log

w+
j

w−j

dj+1 = dje
−αjuij

end if
end for
update zi =

∑n
k=1 α

2
k by updating coordinates 1..j

end for
Output: α1, ..., αn

computational power. The second, a real world experiment
- the MNIST dataset, which shows the speed advantage of
Curtailed Online Boosting.

5.1. Synthetic data

The synthetic experiment was set up to test the computa-
tional efficiency of Curtailed Online Boosting. Two trans-
lated sin waves were sampled from to create a set of posi-
tive and negative examples. These examples were then split
randomly to the training and test sets. Each of the sets con-
tains 100, 000 examples. First AdaBoost was trained on
the sets to obtain a set of 100 features. The features we
used are thresholded planes. These features are not online-
learnable, and therefore were set beforehand. Figure 2(a)
shows a random subset of 5000 examples from the test set
and the resulting decision boundary found by Curtailed On-
line Boosting. We set θ = 0, α = 0.95, β = 0.8. The al-
gorithm fully calculated the margin of only 1233 examples
out of the 100, 000 which is about 1% of the training set.
The average number of hypotheses evaluated per example
is 18 out of 100 which is a 5x speedup over Online Boost-
ing. Throughout the learning process, only 282 examples
actually had a margin below the required threshold of 0, out
of which 6% were not fully evaluated due to early stopping.
This is far below the type II error rate of 20% that we set.
Figure 2(b) shows an efficiency map of the algorithm. Plot-
ted are 5000 randomly chosen training points. The figure

Decision boundary of Curtailed Online Boosting

 Positive Example
 Negative Example
 Decision Boundary

(a) The synthetic two sin waves learning problem. Curtailed Online
Boosting is trained with 100 boosting stumps and run over 100, 000
examples. The stumps used are thresholded linear separators which
were selected using AdaBoost. Plotted is part of the test set, in blue
the positive class, in red the negative class, and the learned decision
boundary in black.

 Most Computation
 Least Computation
 Decision Boundary

(b) Computational Efficiency Plot. The size and color of each point
shows the amount of features evaluated by Curtailed Online Boost-
ing throughout the learning process. The larger and more red a point
is, the more features were evaluated and updated while processing
it. The figure shows that the algorithm puts the most computational
effort when processing examples by the decision boundary. A subset
of 5000 random training points are plotted. The jumps in the com-
putation allocation are due to the structure of the decision surface.

Figure 2. Synthetic experiment.

shows how most of the computation is allocated to exam-
ples that are on the decision boundary, and substantially less
computation is allocated to examples that are easily classi-
fiable. Figure 3(a) compares the test error of AdaBoost,
Online Boosting, and Curtailed Online Boosting as training
progresses. All three algorithms had the weak hypotheses
fixed throughout training for comparison.

5.2. MNIST

The MNIST dataset consists of 28 × 28 images of the
digits [0, 9]. The dataset is split into a training set which in-
cludes 60, 000 images, and a test set which includes 10, 000
images. All the digits are represented approximately in
equal amount in each set. Similarly to the synthetic experi-
ment, we trained a classifier in an offline manner with sam-
pling to find a set of weak hypotheses. When training we
normalized the images to have zero mean and unit variance.
We used hj(x) = sign(‖xj − x‖2 − τ) as our weak hy-
pothesis. The weak learner found for every boosting round
the vector xj and threshold τ that create a weak hypothesis
which minimizes the training error. As candidates for xj
we used all the examples that were sampled from the train-

ing set at that boosting round. We partitioned the multi-
class problem into 10 one-versus-all problems, and defined
a meta-rule for deciding the digit number as the index of
the classifier that produced the highest vote. Each of the
digit classifiers was trained with 1, 000 features. We set
α = 0.95, β = 0.8, and θ was set individually for each
classifier in the range θ ∈ [0,−0.5]. The generalization er-
ror rate of the combination rule using each of the methods
can be seen in figure 3(b). The generalization error rates for
each classifier can be seen in table 1. At the beginning of the
training process the votes αj are a very bad estimate of the
end votes. This causes the random walk to be highly unre-
liable, and the curtailment process inefficient. We therefore
initialized our model with a small batch of the first 5, 000
examples to avoid these estimation errors. The efficiency
results in table 1 exclude the full margin computation of the
initial 5, 000 out of 60, 000 examples. If we were to add
these examples then the average number of features eval-
uated would increase by about 66 features. The filtering
error rate is not affected since we fully compute the margin
of these examples. The results show that an order of mag-
nitude speedup is possible while maintaining generalization

0 1 2 3 4 5 6 7 8 9 10
x 104

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2
Generalization error of the different classifiers

Number of examples

G
en

er
al

iza
tio

n
er

ro
r −

 L
og

 s
ca

le

AdaBoost
Online Boosting
Curtailed Online Boosting

(a) Synthetic: Test error for the different boosting algorithms as
more examples are trained on. Online Boosting and Curtailed Online
Boosting approach the accuracy of batch AdaBoost as more exam-
ples are presented. However, Curtailed Online Boosting performs a
full model update only on 1% of the examples.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.02

0.04

0.06

0.08

0.1

0.12

0.14
MNIST: Generalization Error while Training

Number of Examples x105
G

en
er

al
iza

tio
n

Er
ro

r

AdaBoost
Online Boosting
Curtailed Online Boosting

(b) MNIST: Combined classifier test error as the number of train-
ing examples is increased. Online Boosting and Curtailed Online
Boosting converge to the same error rate, however Curtailed Online
Boosting is about 7 times faster.

Figure 3. Generalization Error on synthetic and MNIST data sets.

Table 1. MNIST test error in % for each classifier, and curtailment efficiency

Classification Error in %
Digit 0 1 2 3 4 5 6 7 8 9

AdaBoost, 1000 features 0.31 0.19 0.8 0.89 0.9 1 0.47 0.79 1.6 1.3
Online Boosting, 1000 features 0.35 0.27 0.79 1 0.85 1 0.55 0.97 1.8 1.4
Online Boosting, 200 features 0.47 0.28 1.55 1.69 1.60 1.61 0.85 1.31 3.61 2.34

Curtailed Online Boosting 0.43 0.31 0.84 1.1 1.1 0.99 0.74 0.94 1.4 1.4
Curtailed Online Boosting Computational Efficiency

Avg. Num. Features Evaluated 145 175 135 153 108 141 107 101 202 150
Speedup 7 6 7 7 9 7 9 10 5 7

Type II errors in % 22 20 21 19 11 18 23 20 15 14

accuracy.

6. Discussion and Future Work

We showed that by using Sequential Analysis we can
come up with a very simple rule to speed up online al-
gorithms which maintains accuracy. However, we did not
estimate the expected remaining margin accurately, which
leaves room for improvement of the testing procedure. By
making a few assumptions on the weak hypotheses and the
margin distribution, we believe that a bound on the aver-
age number of features evaluated can be obtained. Further-

more, by obtaining upper and lower bounds on the random
walk, we’ll be able to use both of Wald’s stopping rules.
Another improvement would be to extend the inequalities to
deal with absolute scores instead of signed margins, thereby
making the algorithm more robust to noise.

References

[1] L. Bourdev and J. Brandt. Robust object detection via soft
cascade. In Computer Vision and Pattern Recognition, vol-
ume 2, pages 236–243, Washington, DC, USA, 2005. IEEE
Computer Society. 2

[2] J. K. Bradley and R. E. Schapire. Filterboost: Regression
and classification on large datasets. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Neural Information Pro-
cessing Systems, pages 185–192, Cambridge, MA, 2008.
MIT Press. 3

[3] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case
analysis of selective sampling for linear classification. Jour-
nal of Machine Learning Research, 7:1205–1230, 2006. 2

[4] D. Cohn, R. Ladner, and A. Waibel. Improving generaliza-
tion with active learning. In Machine Learning, pages 201–
221, 1994. 2

[5] K. C. Crammer, O. Dekel, J. Keshet, and Y. Singer. Online
passive-aggressive algorithms. Journal of Machine Learning
Research, 7:551–585, 2006. 1

[6] S. Dasgupta, A. T. Kalai, and C. Monteleoni. Analysis of
perceptron-based active learning. In In COLT, pages 249–
263, 2005. 2

[7] T. R. Fleming, D. P. Harrington, and P. C. O’Brien. Designs
for group sequential tests. Controlled Clinical Trials, 5(4,
Supplement 1):348 – 361, 1984. 5

[8] Y. Freund. An adaptive version of the boost by majority al-
gorithm. Machine Learning, 43(3):293–318, 2001. 3

[9] Y. Freund and R. E. Schapire. A decision-theoretic gener-
alization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119–139,
1997. 2

[10] Y. Freund, E. Shamir, and N. Tishby. Selective sampling us-
ing the query by committee algorithm. In Machine Learning,
pages 133–168, 1997. 2

[11] M. Jones and P. Viola. Face recognition using boosted local
features. In Interantional Conference on Computer Vision,
2003. 2

[12] J. Kivinen and M. K. Warmuth. Exponentiated gradient ver-
sus gradient descent for linear predictors. Information and
Computation, 132(1):1–63, 1997. 1

[13] K. G. Lan and D. L. DeMetz. Discrete sequential boundaries
for clinical trials. Biometrika, 70(3):659–663, 1983. 5

[14] K. G. Lan, R. Simon, and M. Halperin. Stochastically cur-
tailed tests in long-term clinical trials. Sequential Analysis,
1(3):207–219, 1982. 1, 4

[15] P. M. Long and R. A. Servedio. Martingale boosting. Learn-
ing Theory, pages 79–94, 2005. 3

[16] P. M. Long and R. A. Servedio. Adaptive martingale boost-
ing. In Neural Information Processing Systems, 2008. 3

[17] N. Oza and S. Russell. Online bagging and boosting. In
Artificial Intelligence and Statistics, pages 105–112. Morgan
Kaufmann, 2001. 1

[18] R. Pelossof, M. Jones, I. Vovsha, and C. Rudin. Online co-
ordinate boosting. Arxiv, 2008. 5

[19] S. J. Pocock. Group sequential methods in the design and
analysis of clinical trials. Biometrika, 64(2):191–199, 1977.
5

[20] F. Rosenblatt. The perceptron: A probabilistic model for
information storage and organization in the brain. Psycho-
logical Review, 65(6):386–408, 1958. 1

[21] R. E. Schapire and Y. Singer. Improved boosting algo-
rithms using confidence-rated predictions. Machine Learn-
ing, 37(3):297–336, 1999. 5

[22] B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of Wisconsin–
Madison, 2009. 2

[23] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern
Recognition, 2001. 2

[24] A. Wald. Sequential tests of statistical hypotheses. The An-
nals of Mathematical Statistics, 16(2):117–186, 1945. 1, 4

[25] R. Xiao, L. Zhu, and H.-J. Zhang. Boosting chain learning
for object detection. In International Conference on Com-
puter Vision, page 709, Washington, DC, USA, 2003. IEEE
Computer Society. 2

