Editorial Manager(tm) for World Wide Web Journal

Manuscript Draft

Manuscript Number:

Title: Automating Content Extraction of HTML Documents

Article Type: Manuscript

Section/Category:

Keywords: DOM trees, content extraction, reformatting, HTML documents, accessibility,

speech rendering, text summarization.

Corresponding Author: Suhit Gupta Columbia University

First Author: Suhit Gupta

Order of Authors: Suhit Gupta; Gail E Kaiser, B.S., M.S., Ph.D; Peter Grimm, B.E.;
Michael F Chiang, M.D.; Justin Starren, M.D.

Abstract:

* Manuscript

Automating Content Extraction of HTML Documents

Automating Content Extraction of HTML Documents

Suhit Gupta Gail E. Kaiser Peter Grimm
Columbia University Columbia University Columbia University
Dept. of Comp. Sci. Dept. of Comp. Sci. Dept. of Elec. Eng.

New York, NY 10027, US New York, NY 10027, US New York, NY 10027, US
001-212-939-7184 001-212-939-7000 001-212-939-7000

suhit@cs.columbia.edu kaiser@cs.columbia.edu pmg23@columbia.edu

Michael F. Chiang Justin Starren
Columbia University Columbia University
Depts. of Ophthalmology Depts. of Biomedical

and Biomedical Informatics Informatics and Radiology
New York, NY 10032, US New York, NY 10032, US
001-212-305-9535 001-212-305-3443
chiang@dbmi.columbia.edu starren@dbmi.columbia.edu

Abstract. Web pages often contain clutter (such as unnecessary images and extraneous links) around the
body of an article that distracts a user from actual content. Extraction of “useful and relevant” content
from web pages has many applications, including cell phone and PDA browsing, speech rendering for
the visually impaired, and text summarization. Most approaches to making content more readable
involve changing font size or removing HTML and data components such as images, which takes away
from a webpage's inherent ook and feel. Unlike “Content Reformatting”, which aims to reproduce the
entire webpage in a more convenient form, our solution directly addresses “Content Extraction”. We
have developed a framework that employs an easily extensible set of techniques. It incorporates
advantages of previous work on content extraction. Our key insight is to work with DOM trees, a W3C
specified interface that allows programs to dynamically access document structure, rather than with raw
HTML markup. We have implemented our approach in a publicly available Web proxy to extract
content from HTML web pages. This proxy can be used both centrally, administered for groups of users,
aswell as by individuas for personal browsers. We have aso, after receiving feedback from users about
the proxy, created arevised version with improved performance and accessibility in mind.

Categories and Subject Descriptors. 1.7.4 [Document and Text Processing]: Electronic Publishing;
H.3.5[Information Storage and Retrieval]: Online Information Services — Web-based Services

General Terms. Human Factors, Algorithms, Standardization.

Keywords. DOM trees, content extraction, reformatting, HTML documents, accessibility, speech
rendering, text summarization.

Copyright isheld by Suhit Gupta, Gail Kaiser, Peter Grimm, Michael Chiang, Justin Starren
2004 Kluwer Academic Publishers. Printed in the Netherlands.

Automating Content Extraction of HTML Documents

1. Introduction

Web pages are often cluttered with distracting features around the body of an article that distract
the user from the actual content they’re interested in. These “features’ may include pop-up ads, flashy
banner advertisements, unnecessary images, or links scattered around the screen. Automatic extraction
of useful and relevant content from web pages has many applications, ranging from enabling end users
to accessing the web more easily over constrained devices like PDAs and cellular phones to providing
better access to the web for the visually impaired.

Most traditional approaches to removing clutter or making content more readable involve
increasing font size, removing images, disabling JavaScript, etc., or a combination of these methods, all
of which eliminate the webpage' s inherent look-and-feel. Examples include WPAR [18], Webwiper [19]
and JunkBusters [20]. All of these products involve hardcoded techniques for certain common web page
designs as well as fixed “blacklists’ of advertisers. This can produce inaccurate results if the software
encounters a layout that it hasn’t been programmed to handle. Another approach has been content
reformatting which reorganizes the data so that it fits on a PDA; however, this does not eliminate clutter
but merely reorganizes it. Opera [21], for example, utilizes their proprietary Small Screen Rendering
technology that reformats web pages to fit inside the screen width. We propose a “ Content Extraction”
technique that can remove clutter without destroying webpage layout, making more of a page’'s content
viewable at once. These techniques should also work on web pages made up of multiple content bodies,
even if they are separated by the distracting features or with them interspersed within the different
sections of content.

Content extraction is particularly useful for the visually impaired and blind [48]. A common
practice for improving web page accessibility for the visualy impaired is to increase font size and
decrease screen resolution; however, this also increases the size of the clutter, reducing effectiveness.
Screen readers for the blind, like Hal Screen Reader by Dolphin Computer Access [46] or Microsoft’s
Narrator [47], don't usualy automatically remove such clutter either and often read out full rav HTML.
Webaim Screen Reader [49] and IBM Homepage Reader [50] do attempt to enhance usability by
pruning out duplicate pieces of information however they tend to be slow and do not give enough
control to the user in directly selecting what a user may be interested in [48]. Therefore, both groups
benefit from extraction, as less material must be read to obtain the desired results.

Natural Language Processing (NLP) and information retrieval (IR) algorithms can also benefit
from content extraction, as they rely on the relevance of content and the reduction of “standard word
error rate” to produce accurate results [13], where the error rate is number of words incorrectly
processed from the original format. Content extraction allows the algorithms to process only the
extracted content as input as opposed to cluttered data coming directly from the web [14]. Currently,
most NLP-based algorithms require writing specialized extractors for each web domain [14][15]. While
generalized content extraction is less accurate than hand-tailored extractors, they are often sufficient [22]
and reduce labor involved in adopting information retrieval systems.

While many algorithms for content extraction already exist, it appears that few working
implementations can be applied in a general manner. Our solution employs a series of techniques that
address the aforementioned problems, and makes it easy to implement and experiment with additional
algorithms.

Automating Content Extraction of HTML Documents

In order to analyze a web page for content extraction, we pass web pages through an open source
HTML parser, which creates a Document Object Model (DOM) tree, an approach also adopted by Chen
et a. [56]. The Document Object Model (www.w3.0org/DOM) is a standard for creating and
manipulating in-memory representations of HTML (and XML) content. By parsing a webpage's HTML
into a DOM tree, we can not only extract information from large logical units similar to Buyukkokten’'s
“Semantic Textual Units” (STUs, see[3][4]), but can also manipulate smaller units such as specific links
within the structure of the DOM tree. In addition, DOM trees are highly transformable and can be easily
used to reconstruct a complete webpage. Finally, increasing support for the Document Object Model
makes our solution widely portable.

One caveat is important to note: Determining the specific content that an arbitrary author
intended to portray or, more significantly from our perspective, which an arbitrary user prefers to read,
is very hard. Crunch extracts the “content” heuristically, with heuristics customizable by an
administrator and/or by a savvy user; there is probably no precise “one size fits al” algorithm that could
achieve this goal. In particular, we do not attempt to model either author or user tasks, nor their
corresponding context or intentions, but any non-intrusive approach to doing so would also likely be
heuristic and thus also imprecise. Therefore, one of the limitations of our framework is that Crunch may
remove items from the web page that the user may be interested in, and may present content that the user
is not particularly interested in. One way to ameliorate this restriction may be to summarize all removed
materials in meaningful chunks, and produce this information in another pane or at the bottom of the
page; another approach may be to “learn” on a per-user and/or per website basis, e.g., from data
gathered via user studies like the one we report.

In section 2, we discuss the existing solutions out there. In sections 3 and 4, we describe our
approach at an abstract level and addressing system implementation issues, respectively. Section 5
presents the initial findings from our ongoing user study. We consider potential future work in section 6,
finally concluding in section 7. The appendices present additional materials for interested readers.

2. Related Work

There is a large body of related work in content identification and information retrieval that
attempts to solve similar problems using various other techniques. Finn et al. [1] discuss methods for
content extraction from “single-article” sources, where content is presumed to be in a single body. The
algorithm tokenizes a page into either words or tags; the page is then sectioned into 3 contiguous
regions, placing boundaries to partition the document such that most tags are placed into outside regions
and word tokens into the center region. This approach works well for single-body documents, but
destroys the structure of the HTML and doesn’t produce good results for multi-body documents, i.e.,
where content is segmented into multiple smaller pieces, common on Web logs (“blogs’) like Slashdot
(http://slashdot.org). In order for content of multi-body documents to be successfully extracted, the
running time of the algorithm would become polynomial time with a degree equal to the number of
separate bodies, i.e., extraction of adocument containing 8 different bodies would run in O(N®), N being
the number of tokens in the document.

McKeown et al. [8][15] similarly use semantic boundaries to detect the largest body of text on a
webpage (by counting the number of words) and classify that as content. This method works well with
simple pages. However, this algorithm produces noisy or inaccurate results handling multi-body
documents, especially with random advertisement and image placement.

Automating Content Extraction of HTML Documents

Rahman et al. [2] propose another technique that uses structural analysis, contextual analysis,
and summarization. The structure of an HTML document is first analyzed and then decomposed into
smaller subsections. The content of the individual sections can then be extracted and summarized.
Contextual analysis is performed with proximity and HTML structure analysis in addition to “natural
language processing involving contextual grammar and vector modeling” [2]. However, this proposal
has yet to be implemented. Furthermore, while the paper lays out prerequisites for content extraction, it
doesn’t propose methods to do so.

Many approaches have been suggested for formatting web pages to fit on the small screens of
cellular phones and PDAs. For instance, the Opera browser [16] uses the handheld CSS media type.
Bitstream ThunderHawk [17] uses intelligent font resizing: “[It] renders the text using the Kaasila
family of fonts, fine tunes images using ThunderHawk’s graphic scaling, compacts the data, and sends
the page to the ThunderHawk client on the wireless device” [27]. The Skweezer Proxy [28] simply
reorganizes the physical layout of the webpage retaining all original content. In general, the reformatting
for small screens approaches basically end up only reorganizing the content of the webpage to better fit
on the constrained device but still require a user to scroll and hunt for content.

Buyukkokten et al. [3][10] define “accordion summarization” as a strategy where a page can be
shrunk or expanded much like the instrument. They aso discuss a method to transform a web page into
a hierarchy of individual content units called Semantic Textual Units, or STUs. First, STUs are built by
analyzing syntactic features of an HTML document, such as text contained within paragraph (<P>),
table cell (<TD>), and frame component (<KFRAME>) tags. These features are then arranged into a
hierarchy based on the HTML formatting of each STU. STUs that contain HTML header tags (<H1>,
<H2>, and <H3>) or bold text () are given a higher level in the hierarchy than plain text. This
hierarchical structure is finaly displayed on PDAs and cellular phones, but typically showing different
content than the origina work. In particular, once the STU has been identified, Buyukkokten, et al.
[3][4] perform summarization on the STUs to produce the content that is then displayed on PDAs and
cell phones. While Buyukkokten's hierarchy is similar to our DOM tree-based model, DOM trees
remain highly editable because they abstract the tags away from the content, unlike the STUs, but can
easily be reconstructed back into a complete webpage — although summarization filters could similarly
be applied to select subtrees. Further, DOM trees are a widely-adopted W3C standard, easing support
and integration of our technology.

Kaasinen et al. [5] discuss methods to divide aweb page into individual units likened to cardsin
a deck. Like STUs, a web page is divided into a series of hierarchical “cards’ that are placed into a
“deck”. This deck of cardsis presented to the user one card at a time for easy browsing. The paper also
suggests a simple conversion of HTML content to WML (Wireless Markup Language), resulting in the
remova of simple information such as images and bitmaps from the web page so that scrolling is
minimized for small displays. The cards are created by thisHTML to WML conversion proxy [5]. While
this reduction has advantages, the method proposed in that paper shares problems with STUs. The
problem with the deck-of-cards model is that it relies on splitting a page into tiny sections that can then
be browsed as windows. But this means that it is up to the user to determine on which cards the actual
contents are located, and since this system was used primarily on cell phones, scrolling through the
different cardsin the entire deck soon became tedious.

Chen et al. [56] propose a similar approach to the deck of cards method, except in their case
using the DOM tree for organizing and dividing up the document. They propose showing an overview of

Automating Content Extraction of HTML Documents

the desired page so the user can select the portion of the page he/she is truly interested in. When
selected, that portion of the page is zoomed into full view. One of their key insights is that their
overview page is actually a collection of semantic blocks that the original page has been broken up into,
each one color coded to show the different blocks to the user. This, very nicely, provides the user with a
table of contents from which to select the desired section. While thisis an excellent idea, it still involves
the user clicking on the block of choice, and then going back and forth between the overview and the
full view.

None of these concepts solve the problem of automatically extracting just the content, although
they do provide simpler means in which the content can be found. These approaches perform limited
analysis of web pages themselves and in some cases information is lost in the analysis process. By
parsing a webpage into a DOM tree, we have found that one not only gets better results but has more
control over the exact pieces of information that can be manipulated while extracting content.

3. Our Approach

Our solution employs multiple extensible techniques that incorporate the advantages of the
previous work on content extraction like accordion summarization and content discovery, and attempts
to avoid the common pitfalls like noisy results and slow performance. Since a content extraction
algorithm can be applied to many different applications, for examplein the fieldsof NLP and IR, as well
as assistive technologies like those that help the visually impaired, we implemented it so that it can be
easily used in this variety of cases. Through an extensive set of preferences, the extraction algorithm can
be highly customized for different uses. These settings are easily editable through the GUI, through
method calls that have been exposed through a simple API, or direct manipulation of the settings file on
disk. The GUI itself can also easily be easily integrated (as a Swing JPanel for Crunch 1.0 or as a
standard widget for Crunch 2.0) into any Java project, or one can customize it directly. The content
extraction algorithm is also implemented as an interface for easy incorporation into other programs. The
content extractor’ s broad set of features and customizability allow othersto easily add their own version
of the algorithm to any product. Further discussion on Crunch as a framework can be found in Section
4.2.

In order to analyze a web page for content extraction, the page is first passed through an HTML
parser that creates a DOM tree representation of the web page. We use OpenXML [21] as our HTML
parser in Crunch 1.0 and NekoHTML [23] in Crunch 2.0. One of the advantages of using these HTML
parsers is that they take care of correcting the HTML. HTML on the Internet can be extremely
malformed and most popular browsers like Internet Explorer and Mozilla are able to handle incorrect
HTML by making the closest guess to what the HTML should be; however, DOM parsers are highly
susceptible as parsing is usualy done on a per tag basis. Since the parsers that we chose correct the
HTML before forming the DOM tree, we do not have to dea with error resiliency. Once parsed, the
resulting DOM document can be seamlessly shown as a webpage to the end-user by flattening the tree
and producing back the HTML.

This process accomplishes the steps of structural analysis and structural decomposition
analogous to those done by several other techniques (see Section 2). The DOM tree is hierarchically
arranged and can be analyzed in sections or as a whole, providing a wide range of flexibility for our
extraction agorithm. Just as the approach mentioned by Kaasinen et a. modifies the HTML to
restructure the content of the page, our content extractor navigates the DOM tree recursively, using a

Automating Content Extraction of HTML Documents

series of different filtering techniques to remove and adjust specific nodes and leave only the content
behind. In our first attempt, Crunch 1.0, we designed a one-pass system that extracted content by
running a series on filters one after the other, i.e., the selected filters just ran sequentialy on the output
produced by the previous filters. This caused problems at times when parts of a webpage that the user
wanted were removed. In Crunch 2.0, we amended this by making it a multi-pass system. Here we keep
multiple copies of a webpage in memory and a filter checks for the optimal copy to work on. A large
number of examples demonstrating the results of different filter settings are shown in Appendix A.

Crunch as a framework handles the webpage, but the filters that are plugged into the framework
make it dynamic and customizable. The framework defines a standard API, shown in Appendix B,
which a programmer implements when creating a plug-in. The programmer also decides the order in
which the filters are run in order to maximize the benefit of each one. An example construction of a
Crunch 2.0 plug-in is given in Section 4.2. Each of the filters can be easily turned on and off either by
the user, the administrator or the programmer, and can potentially be customized to a certain degree
through a GUI if provided by the programmer.

There are two sets of filters that we have implemented, with different levels of granularity, in
both Crunch 1.0 and 2.0. The first set of filters simply ignores tags or specific attributes within tags but
keep track of them in memory. With these filters, images, links, scripts, styles, and many other elements
can be quickly removed from the web page. This process of filtering is similar to Kaasinen’s conversion
of HTML to WML. However, the second set of filters is more complex and agorithmic, providing a
higher level of content extraction. This set, which can be extended, currently consists of the
advertisement remover, the link list remover, the removed link retainer and the empty table remover. In
Crunch 2.0, we also added filters that allow the user to control the font size and word wrapping of the
output, and heuristic functions guiding the multi-pass processor, to evaluate the acceptability of the
output as each filter pass edits the DOM tree. This ensures that we don’t suffer from some of the pitfalls
of version 1.0 where occasionally pages returned null outputs after passing through Crunch, e.g., link
heavy pages like www.msn.com, as shown later in Figures 11 and 12. Finally, in the newer version, we
have attempted to allow for greater control on most of the filters by adding supplementary options. For
example, users now have the ability of controlling, at a finer granularity, complex web pages where
certain HTML structures are embedded within others, e.g., within table cells.

The advertisement remover uses a common and efficient technique to remove advertisements. As
the DOM tree is parsed, the values of the “src” and “href” attributes throughout the page are surveyed to
determine the servers to which the links refer. If an address matches against a list of common
advertisement servers, the node of the DOM tree that contained the link is removed. This process is
similar to the use of an operating systems-level “hosts’ file to prevent a computer from connecting to
advertiser hosts. Hanzlik [6] examines this technique and cites a list of hosts, which we use for our
advertisement remover. In order to avoid the common pitfall of deploying a fixed blacklist of
advertisers, our software also periodically updates the list from http://accs-net.com, a site that specializes
in creating such blacklists. Thisis atechnique employed by most ad blocking software.

Thelink list remover employs a filtering technique that removes all “link lists’, which are bodies
of content either in the page or within table cells for which the ratio of the number of links to the number
of non-linked words is greater than a specific threshold (known as the link/text removal ratio). When the
DOM parser encounters a table cell, the Link List Remover tallies the number of links and non-linked
words. The number of non-linked words is determined by taking the number of letters not contained in a

Automating Content Extraction of HTML Documents

link and dividing it by the average number of characters per word, which we preset as 5 (although it may
be overridden by the user and could, in principle, be derived from the specific web page or web
domain). If the ratio is greater than the user-determined link/text removal ratio (default ratio is set to
0.35), the content of the table cell (and, optionally, the cell itself) is removed. This algorithm succeedsin
removing most long link lists that tend to reside aong the sides of web pages while leaving the text-
intensive portions of the page intact.

After these steps, we have found that numerous tables that are either completely empty or have
several empty cells take up large swaths of space remain on the webpage. The empty table remover
removes tables that are empty of any “substantive” information. The user determines, through settings,
which HTML tags should be considered to be substance and how many characters within a table are
needed to be viewed as substantive, set much like the word size or link-to-text ratio settings set earlier.
This does not require much prior knowledge of HTML since the syntax of the markup language is
simple and matches words from the English language closely, e.g., table, form, etc. The table remover
checks atable for substance after it has been parsed through the filter. If atable has either no substance
or less than some user defined threshold, it is removed from the tree. This algorithm effectively removes
any tables left over from previous filters that contain small amounts of unimportant information. This
filter istypically run towards the end to maximize its benefit.

While the above filters remove non-content from the page, the removed link retainer adds link
information back at the end of the document to keep the page browsable. The removed link retainer
keeps track of al the text links that are removed throughout the filtering process. After the DOM treeis
completely parsed, the list of removed links is added to the bottom of the page. In this way, any
important navigational links that were previously removed remain accessible, and since the parser had
parsed them initially as separate units, each menu or navigational link is kept intact and they can all be
viewed without any loss of original setup or style.

After the entire page is parsed and modified appropriately, it can be output in either HTML or as
plain text (filters could be added to trandate to another output format such as WML). The plain text
output removes all the tags and retains only the text of the site, while eliminating most white space. The
result is a text document that contains the main content of the page in a format suitable for
summarization, speech rendering or storage. This technique is significantly different from Rahman et al.
[2], which states that a decomposed webpage should be analyzed using NLP techniques to find the
content. It is true that NLP techniques may produce better results, but at the cost of far more time
consuming processing. Our agorithm doesn’t technically find the content but instead eliminates likely
non-content. In this manner, we can still process and return results for sites that don’t have an explicit
“main body”.

Crunch, however, does have some limitations;

1) Crunch cannot filter non-HTML content like Flash. It allows a boolean choice of whether to keep or
remove such structures but it can't help edit or filter within the animation itself.

2) Dynamically generated pages often aren't filtered so nicely for the same reason as above. The script,
whether it be javascript, ASP or JSP is either left completely disabled, causing dynamic pages to not
load correctly, or left on which leaves al respective scripts active on the page.

Automating Content Extraction of HTML Documents

3) Crunch does not distinguish between different users. There is only one set of options, whether an
individual is using the proxy or whether it is set up as groupware.

4) There are no artificially intelligent heuristics or machine learning a gorithms implemented yet, e.g., to
learn auser’ s browsing patterns and change user (or group) settings dynamically.

4. Implementation
4.1 CRUNCH 1.0
4.1.1. Overview

In order to make our extractor easy to use, we implemented it as a web proxy (program and
instructions are accessible at http://www.psl.cs.columbia.edu/proxy). The proxy can be used as a
personal filter by individual users as well as a central system for groups of people. In the case where
Crunch is set up as groupware, users can access the proxy by simply setting their browser to do so, as
most modern browsers can now point to externa proxies for filtering content. This alows an
administrator to set up the extractor and provide content extraction services for a group. The proxy is
coupled with a graphical user interface (GUI) to customize its behavior. The separate screens of the GUI
are shown in Figures 1-3. Figure 1 shows the very broad options that can be turned off or on that ignore
certain tags completely. Figure 2 has more advanced options that give more granular control, while
Figure 3 show controls on output. The current implementation of the proxy isin Javafor cross-platform
support, and has been successfully tested on Windows, MacOS, Linux and Solaris.

The Content Extraction framework itself has a complexity of O(N + P), where N is the number
of nodes in the DOM tree after the HTML page is parsed and P is the sum of the complexities of the
plug-ins; therefore the overall complexity is O(N) without plug-ins. Crunch 1.0 isimplemented as a one-
pass system, so it is the plug-ins that truly determine the running time of the system. For example, the
plug-in that edits tables has an algorithm whose worst case running time is O(M?) for complex nested
tables; without such nesting, the typical running time is O(M), where M is the number of elements
composing the table; so the overall running time of the system works out to be O(N + M?) with the table
plug-in. During tests, the algorithm performs quickly and efficiently following proxy customization. The
proxy can handle most web pages, including those with badly formatted HTML, because of the
corrections automatically applied while the page is parsed into a DOM tree. However, sites that are
extremely link heavy produce bad results, when the link to text ratio approaches 100%, we experienced
anomalous behavior.

Automating Content Extraction of HTML Documents

Extractor Settings

Extractor Settings

[¥] Ignore All Advertisements
[¥] lgnore Scripts

[lgnore Styles

[v| lgnore Style Attribute in <DIV> tags
[¥| lgnore Non-Link Images
[v| lgnore Image Links

[lgnore Text Links

[l lgnore Forms

[lgnore <INPUT= tags

[lgnore <BUTTON> tags

[lgnore <SELECT> tags

|v| lgnore <META> tags

[v| lgnore <IFRAME> tags

[l Ignore Table Cell Widths
[v| lgnore <EMBED> tags

[l lgnore Link Lists
[v] Text Links
[C] Image Links
[¥] lynore Only Text and Links
Link/Text Removal Ratio

[v| Enahle <HOSCIPT> tags

[Display ALT Links

0.25

[Display ALT Links [v] Remove Empty Tables

[v] <IMG:>
[v] <z
[l <INPUT=
[C] <SELECT>
Minimum Text Length

Tags to Consider as Substance:

[v] <TEXTAREA>
[C] <BUTTON>
[C] <FORM>

[C] <IFRAME>

12

[L Ignore Settings L Advanced Settings Loutput Settings |

[Ignore Settings l Advanced Settings Loutput Settings |

| Commit Changes " Cancel Changes

| Commit Changes " Cancel Changes

Depending on the type and complexity of the web page, the content extraction suite can produce
awide variety of output. The algorithm performs well on pages with large blocks of text such as news
articles and mid-size to long informational passages. Most navigational bars and extraneous elements of
web pages such as advertisements and side panels are removed or reduced in size. Figures 4 and 5 show
an example.

When printed out in text format, most of the resulting text is directly related to the content of the
page, making it possible to use summarization and keyword extraction agorithms efficiently and
accurately. An example of text format extraction performed on the webpage in Figure 5 is shown in
Figure 6.

Figurel Figure2

Extractor Settings

Qutput Format

(@) HTML onky
" Text only
HTML Output Settings

[C] Append Links to Bottom of Page
Text Output Settings

[¥] Limit number of line breaks

Maximum number of line breaks |2

[L Ignore Settings L Advanced Settings L Output Settings

‘ Commit Changes H Cancel Changes

Figure3

Automating Content Extraction of HTML Documents

P by o o] o Sy F ey 35 XM ‘ | ey | =
i ki o
: E e s s e il e e e

Figure 4 —Before

laibbas Wams far TSty WL I e
TIFOL =meeenmeees w1 mow nires

Figure5 - After

I'r‘rJ'rTrl'.rr\-I:I'.rr‘fll.lr\. :rl.‘lm'ntmﬂbfi't.-ul romifin

L e

anlon ke Tew Pelpraited oy

srda ngbeuary . Bt

franm 1H' alea-Tor-che Th-

riay, ANTo et 13 e ra En ek ererurd
AP WL gD T
L et bre VEAITE Fia rally =)

1w Bkl ik

Teza ko 203 of &

tharca P ed ;u-

e

Surday Frtrusr

I b Dl
fm‘lhl-.‘cv tebald e Lluhﬂl
o Gl = “|I.‘.1- Tiormie'f un Glmp i

MR [T q.-.;.:...nu!lﬁ‘w‘.l:
lemeetT lock &7 glackl el wn r

i CL52 Bl LLIo moonhooff
waatlen Iz “urzuans

(=
lian e itag-b:
g g

Trom 1n"1r#-¢ul1

To ki

el Ty = hwps 5
wdus |u.rm1ln u :I-

Fgr ewls aikw
23 “:11Mp ur\-&y“

rﬁ|+J
whan ke pla (Tegred Fou -:-ln I
g B pe i gl by B bt g et L firg draanirg

'{F Faly, r IERL]
sul abrel SEX 2 |lm¢u||lr|- a.u an
s TR

rhlaalan’ly dwey 10
e T N-rmun-a
kb

1 rm mlsh
L L wouid Ba 3 chame Tor ches
Eai] s
i
.,.é'm..m LI e

Te MCLT wPAT etula
1- -\.H |r-|l -"l.l\'.lnﬂ <lzy

" Zhoul Eewdile Eergrrcrtad by

r .;.-.; ,m- 87 Bpmir Feaele 1 e e
117 v ml:r r1|"h'--d-lﬂf-l||

Pt
e S aned uuL _M' alrBla

s P |rh::;-=1b1r to cerrerdaz :::::t “{arad warr, a1 =t 11
Ja =il Irewaliy Takd SLeb=rlil by
.uru.l !151|.H\l Th, i
huz an uglrcdng 1ot ;::m Fats qr 4 Bipzibe ity

AE srTves Cibba iy’ s e

4-piaps g n ©

et A e 1hst awl la 35,000 r
s iy i wiih

i
= .;;r'u'uc :

e, i]
rwn.rw-dwh- irm‘.:..

o | e or 47
J45 Ty marlin Tlu-:r-.“ll"'-‘F: knd
ay B4 l'\;’ ila FROIES

LU RFITEL T TAGIRE PO mflu N ERrErE rutinier detsste, Reelin, Ry
&, 1 -

Pars B murull-d by oF dalad

AP CReagh AL Fegilded '3 Ui 1=, §

Figure 6 —Text Only

The initial implementation of the proxy was designed for simplicity in order to test and design
content extraction algorithms. It spawns a new thread to handle each new connection, limiting its
scalability. Most of the performance drop from using the proxy originates from the proxy’s need to
download the entire page before sending it to the client.

4.1.2. lllustrative examples

Figures 7 and 8 show an example of atypical page from www.spacer.com and a filtered version
of that page, respectively. This is another good example of a site that is presented in a content-rich
format. On the other hand, Figures 9 and 10 show the front page of www.planetunreal.com, a site
dedicated to the Unreal Tournament 2003 first-person shooter game (www.epicgames.com), before and
after content extraction. Despite producing results that are rich in text, screenshots of the game are aso
removed, which the user might deem relevant content.

Automating Content Extraction of HTML Documents

SPACEDAILY

YOUR PORTALTO SPACE

Making Space Fc

Get Our Free Newsletter

Nov 11,2002

QFINION SPACE

Securing The Space Age

The Spacefaring Weh 2.19

Scottsdale — Now 08, 2002

With the ending of the Industrial Age, the future
disappeared. Cnce a familiar land with agreed—on
boundaries, aftershocks from the fall of communism
and industrialism shattered its landscape lke the
mythic cataclysm that felled Atlantis. The future now
is what Shakespeare and the Elingons called it, an
undiscovered country writes John Carter McEnight in
his latest Spacefaring Web report.

SPACEDAILY OPINION SPACE

MARSDAILY

SPACEWAR Securing The Space Age

SPACE TRAVEL The Spacefaring Weh 2.19

ROCEET SCIENCE

TERRADAILY

DRAGON SPACE

SPACEMART

OBSERVATION agreed—on boundaries,

TECH SPACE aftershocks from the fall of

NaNOTECH | communism and

SPACEDATABASE industrialism shattered its

YESTERDAY'S SPACE 2 lendscape like the mythic

CONTACT US L cataclysm that felled

ADRATES = Atlantis. The future nowis
what Shakespeare and the

SEARCH - n Klingons called it, an

SPACEDAILY undiscovered country writes John Carter McKnightin

r his latest Spacefaring Web report.

[SPACEDAILY

SpY - Pl

planet £
AUOreIE

es | Shop! |

Figure 7 —Before

UNREAL I1 REAL |
CHAMPIONSHIP T(

TheDint:

THE UT203 PATCH IS OUT! T
aFstuss

Mon : Nov 11 - 2002

Figure 9 —Before

SPACE TRAVEL

Paris — Nov 04,2002

From Cyrane de Bergerac’s 17th century frip to the Moon
and Jules Verne's 19th century Nautilus submarine right up
to William Gibson’s navigations through cyberspace and
Eim Stanley Robinson’s colonisation of Mars, authors have
alwrays signposted the shape of things to come.

TERRADAILY

Ocean Temperatures Affect Intensity Of South Asian
Monsoons

Greenbelt - Nov 08, 2002

Warmer or colder sea surface temperatures (SST) may
affect one of the world’s key large—scale atmospheric
circulations that regulate the intensity and breaking of
rainfall associated with the South Asian and Australian
mensocons, according to new research from NASA,

TECH SPACE

Figure 8 - After

The

THE UT2003 PAT:
b

Mon - Nov 11- 2002

The Third Reich Released! - -

d link. o pl:
Unreal Towname:

Figure 10 - After

CUTERPLANETS

New Horizons Passes Another Dew
Laurel — Nov 08, 2002

NASA’s first mnission to Pluto has st
milestone, as the Nesr Horizons tea:
completed its second major system:
Horizons held its Preliminary Desigr
The Johns Hopkins University Appl
(&PL) in Laurel, Md, which manag
NASA,

TECH SFACE

NASA Develops New Tools For A
Moffett Field - Nov0s, 2002
Scientists and engineers investigatir
ruch more effectively and efficient
softwrare tool developed by NASA
Crganizer,

SPACE SCIENCE

an Updates

Figures 11 and 12 show www.msn.com in its pre- and post-filtered state. Since the site is a portal
which contains links and little else, the proxy does not find any coherent content to keep. We
investigated heuristics that would leave such pages either untouched, or aternatively employ only the
most basic filters that only remove advertisements and banners, and implemented such techniques in

Crunch 2.0 (see Section 4.2).

11

Automating Content Extraction of HTML Documents

The hest gifts at amazing prices! Save up to 80% at Smart.
\j Search the Weh: Search
T] MSN Home MyMSN [Signln,.
MSN Home | My MSN | Hotmail | Search | Shopping | Money | People & Chat
Search the Weh: Search | [Down]
= Down’
. e Down.
Movie stars to sports heroes: 11 famous US veterans I o I APPLY
Today on MSN Strietly Business | Back 10 to
» Health benefit to » 10stepsto:
coffee? » Isvourdata
» Bonds wins 5th MVP » Best states:
® E-mail scamsto refirees
avoid » Bizethics: §
e [z Harry Pottera legal may;
fraud? good enoug
v Say cheese
Services 1Is your ’look’ passe?
Broadband Access Sexy sweaters, hip fotes your Week Py Dote
Internet Access & tips on where to shop 1 white
Specials ® 10 'most safisfying’ really
Find o -
® Best ‘comfort food’ in smile
Air Tickets us
Auto Price Quotes ® Pearlnecklace: 30%
Build & Family Tree off
Find 2 Job e Behind the scenes at an S1 swimsuit photo
Getan Apartment shoot
Hotel Deals ® [s 'nofireworks, no future’ a first—date myth?
Maps & Directions MSN Top Headlines
C1d Friends
Personals MSNBC News
Weather it A AT T A O i b
Figure 11 — Before Figure 12 - After

From these examples one may get the impression that input fields are affected irregularly by our proxy;
this is because the run-time decision of leaving them in or removing them from the page is dependent on
the tables or frames they are contained in. Forms are handled as one semantic unit, where either a form
is displayed or not based on the user setting. Additionally, we should mention that there isn’t any sort of
preservation of objects that may be lost after the HTML is passed through our parser, except links can be
retained as explained above. The user would have to change the settings of the proxy and reload the
page to see the previously removed content. However, a different set of filters could be developed to
move rather than just remove content, for forms or other identifiable HTML elements or data.

4.1.3. Implementation details

The life cycle of the process that gets a page to the client’s browser through the proxy from a
very high level is - the client passes arequest for the webpage to the proxy which opens a socket, fetches
the original content of the page, and parses the page to create a DOM tree representation. It is then
passed through the different filters based on the settings set by the user. The edited DOM tree is then
either flattened into the HTML form, and sent back to the client’s browser, or stripped of all HTML tags
and only the text content is sent to the client for rendering. The architectural diagram of Crunch 1.0 is
shown in Figure 13.

12

Automating Content Extraction of HTML Documents

Proxy -
Proxy Listener
GET Request —| Yl | GUI

Client Spawn thread

¥ Filters
‘ Proxy Thread (

Socket

HTTP
Request

Proxy Filter

Content Extractor

HTML
v Parser
V‘\ ‘—‘—‘ Settings || |
Internet e Filter 9
Webpage

I

Figure 13. Architectural diagram of the system

In more detail, in order to analyze a web page for content extraction, the page is passed through
an HTML parser that creates a Document Object Model tree. The algorithm begins by starting at the root
node of the DOM tree (the <HTML> tag), and proceeds by parsing through its children using arecursive
depth first search function called filterNode(). The function initializes a Boolean variable
(mCheckChildren) to true to allow filterNode() to check the children. The currently selected node is then
passed through a filter method called passThroughFilters() that analyzes and modifies the node based on
a series of user-selected preferences. At any time within passThroughFilters(), the mCheckChildren
variable can be set to false, which alows the individua filter to prevent specific subtrees from being
filtered. That is, certain filters can elect to produce the final result at a given node and not allow any
other filters to edit the content after that. After the node is filtered accordingly, filterNode() is
recursively called using the children if the mCheckChildren variableis still true.

The filtering method, passThroughFilters(), performs the majority of the content extraction. It
begins by examining the node it is passed to see if it is a “text node” (data) or an “element node”
(HTML tag). Element nodes are examined and modified in a series of passes. First, any filters that edit
an element node but do not delete it are applied. For example, the user can enable a preference that will
remove al table cell widths, and it would be applied in the first phase because it modifies the attributes
of table cell nodes without deleting them.

The second phase in examining element nodes is to apply al filters that delete nodes from the
DOM tree. Most of these filters prevent the filterNode() method from recursively checking the children
by setting mCheckChildren to false. A few of the filters in this subset set mCheckChildren to true so as
to continue with a modified version of the original filterNode() method. For example, the empty table
remover filter sets mCheckChildren to false so that it can itself recursively search through the <TABLE>
tag using a bottom-up depth first search while filterNode() uses a top-down depth first search. Finaly, if
the node is a text node, any text filters are applied (there are currently none, but there may be in the
future).

13

Automating Content Extraction of HTML Documents

4.2 CRUNCH 2.0

4.2.1. Overview

Crunch 1.0 nicely demonstrated the proof-of-concept design of the system as a framework, but
certain problems needed to be addressed in order for Crunch to be widely used. Most notably, the
HTML parser we were using, OpenXML, had serious performance problems and memory leaks, and
was no longer under active development. We also wanted to move to a staged event architecture and
asynchronous callbacks to avoid threading scalability issues. There were also unacceptable results when
Crunch’s initial set of filters were applied to certain classes of websites, as exemplified by the link-
heavy MSN example above producing essentially a blank page. Further, the user interface for Crunch
was not very friendly for administrators and probably inaccessible to typical end users.

After releasing Crunch 1.0 in September 2002, we also received several suggestions from early
users for additions and improvements. An informal user study of blindfolded students was conducted in
May 2003 followed by a formal user study with blind and visually impaired users begun in December
2003; the first results from the latter are discussed in Section 5. The NLP group at Columbia University
tried using Crunch briefly for their Newsblaster [8][9] project, which is a system that automatically
tracks, clusters and summarizes each day’s news programmaticaly. They used Crunch as their input
mechanism in order to run their natural language processing algorithms on content extracted by Crunch
rather than noisy data streams coming straight from the web.

As indicated in section 3, Crunch 2.0 is similar to its predecessor. However, we spent time on
improving its performance and user interface, and several changes were made in the supplied set of
heuristic filters, e.g., to show more useful results for link-heavy pages. We optimized the content
extractor filter even though function is inherently the same. Additiona filters were added that allow the
user to control the font size and word wrapping of the output. Perhaps most importantly, heuristic
functions were added in the form of a multi-pass system that evaluates the output the DOM tree passed
through each filter. This prevents link-heavy pages like www.msn.com from returning blank pages as
output, as shown in Figures 11 and 12; with the new result-checking heuristics of Crunch 2.0, we instead
got the better results shown in Figures 14 and 15 for alink-heavy page.

i-« .3 0 » B @ 4 -l s - a8 > Bz

wer || [TEXINEWS B s

Figure 14 - Example of alink-heavy page Figure 15 - Output from Crunch 1.0 Figure 16 - Output from Crunch 2.0

14

Automating Content Extraction of HTML Documents

Finally, in the newer version, we have attempted to allow for greater flexibility to most of the
filters by adding supplementary options to each. For example, users now have the ability of controlling,
at afiner granularity, complex web pages where certain HTML structures are embedded within others,
like having the ability to control not only the content on the entire page but also within table cells. The
filters in Crunch 2.0, we find, a'so work better because of the improvements in parsing, mainly due to
the replacement in our HTML parser from OpenXML [21] to NekoHTML [23]. Appendix A show
several suites of screenshots with different sets of Crunch 2.0 filters applied.

Like Crunch 1.0, the complexity of the newer version remains at O(N+P); however, the worst
case running time increases to O(N*P), where N is the number of nodes in the DOM tree after the
HTML pageis parsed and P is the complexity of the plug-ins with highest running time. The increase in
worst case complexity is due to the fact that we have switched to a multi-pass system. Therefore, in case
of a bad result, a filtered webpage may have to revert to a previous state and re-run through the proxy
with adifferent set of options; this may happen for any number of nodes in the DOM tree.

4.2.2. Technical improvementsin version 2
Even though the basic architecture of the system is the same as shown in Figure 13, there are
some notable changes. Besides those discussed below, Appendix C shows some important differencesin

the internal coding of the proxy and plug-ins.

1) Replaced OpenXML with NekoHTML

The original version of Crunch used OpenXML [21] as the HTML parser. OpenXML had
problems with efficiency, which didn’t seem likely to be fixed since OpenXML is apparently no longer
an active project. So we switched the HTML parser to NekoHTML [23]. NekoHTML is an HTML
scanner and tag balancer that parses HTML for Xerces, an XML implementation that is part of the
Apache project [51]. It has many benefits, most notably the increased speed, but a key longer-term
benefit is that we are now using a parser that is under active development. NekoHTML currently has
some problems parsing some pages, most notably the output not always rendering the same as the input,
e.g., with certain complex nested tables and some CSS pages. However, most of these errors are minor
cosmetic ones that our proxy attempts, usualy successfully, to fix in the multi-pass scheme.
Additionally, the developers of NekoHTML are apparently working on this problem.

2) Performance tuning

As mentioned above, a speed improvement was achieved through switching to NekoHTML. The
other major contributor to increased speed was the optimization of Crunch’s networking code. The code
was originally written using the Java 10 package. Switching to the Java NIO package was considered
and we wrote a small testbed, but ran into excessive complications using NIO’ s asynchronous call backs.
Therefore, we instead optimized the Java IO code by collapsing multiple writes and reads into fewer
writes and reads, dealing with timeouts more efficiently, and removing unnecessary or redundant callsin
the transfer loops. Server performance and bandwidth utilization now seems adequate, but we have not
yet conducted a performance study with large loads.

15

Automating Content Extraction of HTML Documents

We moved to the staged event architecture and asynchronous callbacks to avoid threading
scalability issues. The concept of the staged event architecture was introduced formally by Welsh [55]
for performance gains in highly concurrent server applications, so that they are able to “ support massive
concurrency demands’ [55]. We took the same concept and extended it in our framework so that Crunch
can meet the demands of severa parallel requestsin a groupware setup.

3) Switch to SWT

The Java Swing GUI was replaced with SWT, IBM's Standard Widget Toolkit [24]. This was
done to enhance the user interface for ease of administration. SWT is highly responsive, partially due to
its use of IJNI and native routine calls that can take advantage of the operating system's built-in
optimizations. It also uses native GUI widgets to provide a look and feel consistent with that of the
operating system, while remaining operating system independent. Not only does the GUI match the
operating system's theme, SWT generally looks much better than Java's AWT and Swing. As an added
benefit, SWT alows the program to be compiled into a binary executable, resulting in a faster startup
time, asmaller distribution, less memory used, and an easier installation for novice users.

The resulting user interface was redesigned to be more responsive, perform faster and generaly
be more user friendly, whether for the administrator or for the end user. Screenshots of the proxy are
shown in Figures 17-22, where we see the basic settings and the available plug-insin Figures 17-19 and
the actual plug-in setting controlsin Figures 20-22.

** Crunch 2.0 [M [=lB3} ** crunch z.0 B N [=[B3}] ** crunch z.0 [[3]
File Help File Help File Help
StatU5| Proxy Settings | Plugins I Status PV Status | Prowy Settings Flugins |
T Plugins [~ Description
Current Status: | Processing requests V.E'hUSE ~ o 3 i Eontepnt i
Listening on: I 0.0.0.0/0.0.0,0:4000 Listen Port <000 :émﬂr SI;-_'Q”" This plugin simplifies web pages by ;l
| Connections Server Socket Timeout (ms) | 1000 1o Hacler removing excess cuttet,
Ci tion Count | 8
PSR I Sacket Timeaut {ms) 5000
—Address r_Skatus ~
1127.0.0.1:5234 10, Streaming Data To Client Filter Content
1127.0.0.1:3283 3. Connecting ko Server Filter T [
1127.0.0,1:3284 3. Conmecting ko Server e | !
1127.0.0.1:3285 3. Conmecting ko Server Filter Homepages v
1127.0.0.1:3285 3. Conmecting ko Server
1127.0.0.1:3288 1. Reading Client First Line
1127.0.0.1:3289 1. Reading Client First Line
1127.0.0,1:3293 0, Initializing
Commit | Revert ¥ Enable Cnnﬁgure...l
Figure 147 Figure 18 Figure 19

The User Interfacefor Crunch 2.0: The three basic tabs viewing activity, changing basic settings, and viewing the plug-ins available

16

Automating Content Extraction of HTML Documents

b B [m| B} 7 Crunch 2.0: Content Ext B |=[B3)] * crunch 2.0: Content Extracks
I Advanced Settings | Oubput Settings | Ignore Settings I Oukput Settings | Ignore Settings | Advanced Settings
™ Ignore Al Advertisemants [Ignore Link Lisks — Oukpuk Forrat
[Ignore Scripts I | Text Links % HTML anly
¥ Ignore <HNOSCRIPT = tags ¥ Image Links " Text only
[~ Ignote Styles ™ Iomare only: Text and Links ~HTML Output Settings
I™" Ignare Style Attribute in <DV tags Uik Tiext Remawal Fatio | 0.25 [~ Append Links ko Botkam of Page
u Igniore Mon-Link Images F B)
r el T T W EEae Empty Tables Texk Gutput Sebtings
) I™ | Lirnit murber of line breaks
W e e Uiils Tags ta Consider as Substance:
I s C =ivG: [T =TEXTHRES: I axzimum number of line breaks I 2z
= =BT
[~ Ignote Text Links r r
=IHPIT = =FORME=
| Ignore Farms | Ignore <IMPLT > kags r r
=SELECT = =IFRAMES
u Ignore <BUTTON> tags u Ignore <SELECT = tags r r
[~ Ignore <META=tags | Ignore <IFR&ME> tags i Text Length I 12
[~ Ignore Table Cell Widths [~ Ignore <EMBED: tags
Commit | Rervett | Okl Cancel | Commit | Rervett | Okl Cancel | Commit | Rervett | Okl Cancel |
Figure 20 Figure2l Figure 22

The Advanced User Interfacefor Crunch 2.0: The options available to customize the current plug-ins

4) Accessibility

Of the plethora of benefits to using SWT, many of which are mentioned above, the most
important is accessibility. One of Crunch’s purposes is to assist disabled persons in browsing the web,
yet the previous version of Crunch itself, i.e., the actual application and the administrative user interface,
were highly inaccessible.

There are three basic categories of accessibility support: mobility enablement, visual
enhancement, and screen readers [25]. Mobility enablement is provided in that all settings can be easily
accessed through the keyboard without any assistance through the mouse. SWT provides keyboard
accelerators in the API, as well as intelligently supporting tabbing through GUI components. SWT uses
the operating system’s theme for its look and feel, which means that the operating system is allowed to
handle usability and visual enhancements. The best example of this is Window’s accessibility features
[25], such as large fonts and high contrast themes, being incorporated into the GUI. SWT also supports
Microsoft Active Accessibility Support (MAAS) [26], so by default there is support for screen readers
that read content from the window with focus and its associated widgets.

Usually a person requiring a screen reader will not be able to position a mouse pointer finely
enough to successfully use a mouse [25], so it isimportant that mobility enhancement features coincide
nicely with screen readers. Since SWT uses native APIs, screen readers and other accessibility options
are able to work nicely together to provide the disabled with a viable way of configuring Crunch 2. As
an added benefit to Windows users, SWT can use Windows themes in the same way that it uses
accessibility feature of the operating system [25]. Examples screenshots of the proxy in the high contrast
scheme are shown in Figures 23-29. Note that Figure 29 shows how the user can also adjust the font size
of the website text from within the proxy.

17

Automating Content Extraction of HTML Documents

% Crunch 2.0
File Help
Proxy Settings|Plugins

Current Status:
Listening on: | 0.0.0.0/0.0.0.0:4000

Connections

Address Status
5. Reading Server First L
5. Reading Server First L
3. Connecting to Server
5. Reading Server First L
5. Reading Server First L

Figure23

2 Crunch 2.0
File Help

Proxy Settings|Plugins
Verbose

Listen Port 4000
Server Socket Timeout (ms)| 1000

Socket Timeout (ms) 5000
Filter Content

text/html

Filter Homepages

Filter Types

Figure24

2 Crunch 2.0
File Help

Plugins
———rDescription
Content Extractor
This plugin simplifies
web pages by
removing excess
clutter.

Content Extractor
Sample Plugin
Size Modifier

Enable

Figure25

TheBasic User Interfacefor Crunch 2.0 in high contrast format

& Crunch 2.0: Content Extractor Settings[_ [O][X|

Ignore Settings Ad{l'éh"c'é'd”Sé't'fihg'é' Output Settings

O Ignore Link Lists

o <IFRAME>

Figure 26

% Crunch 2.0: Content Extractor Settings[_ [T]%| | # Crunch 2.0: Content Extractor Settings|_ [T

Tgnore Settings [Advanced Settings
O Ignore All Advertisements
O Ignore Scripts

& Ignore <
O Ignore Styles

O Ignore Style Attribute in <DIV> tags

O Ignore No

ol

Olg

[m|
O Ignore Text Links
O Ignore Forms O Ignore <INPUT> tags
O Ignore <BUTTON> tags O Ignore <SELECT > tags
O Ignore <META> tags O Ignore <IFRAME> tags
O Ignore Table Cell Widths O Ignore <EMBED> tags

O Relative Font Size

Image Scaling Factor

Figure29

Ignore Settings E'Oﬂ'tup"l]'t Settings
Output Format

@ HTML only

© Text only

HTML Output Settings————————————
O Append Links to Bottom of Page

Figure 28

The Advanced User Interfacefor Crunch 2.0in high contrast format

4.2.3. Example plug-ins for PDAs

One very important requirement is that Crunch is able to support other people's heuristics,
following a modular approach, so more features can easily be added as plug-ins. The extension APIs for
both Crunch 1.0 and 2.0 are shown in Appendix B.

18

Automating Content Extraction of HTML Documents

One common application for content reformatting and filtering is for Personal Digital Assistants.
PDA'’s have small screens that make viewing unmodified web pages very difficult. Most web pages are
designed for resolutions upwards of 800x600 while a mgjority of PDA’s are only 240x320. There are
several applications that try to solve this problem.

Bitstream Inc. makes a browser called ThunderHawk (previously mentioned in Section 2). While
it is easy to view content on ThunderHawk using Crunch, it is also possible to do very similar
processing using a plug-in for Crunch. The resize algorithm was created to demonstrate this ability,
showing that a plug-in that performs font replacement and element/image scaling is easy to integrate.
Part of the integrated plug-in is shown in Figure 26 (there in high contrast format). Using this, Crunch is
now able to give similar results as given by ThunderHawk itself.

Another solution for modifying web pages for small PDA screens is the Skweezer Proxy [28].
Skweezer isimplemented very similarly to Crunch in that it acts like a proxy and modifies the content of
the webpage before sending it to the client. It reformats web pages such that they wrap intelligently,
which prevents unnecessary side scrolling. Crunch can be set to co-exist with Skweezer by using
Skweezer as proxy between Crunch and the Internet. Since Skweezer is not open-source, we were
unable to integrate it as a plug-in but instead re-implemented a similar algorithm to Skweezer as a plug-
in test case.

To implement Skweezer one would create a class that extends ProxyFilter (see Appendix B). The
method that should do the actual processing is the process(Document, Document, Document) method. It
should be thread safe because multiple threads can be accessing it at the same time.

public abstract Docunent process(
Docurent ori gi nal Docunent ,
Document previ ousDocunent ,
Docunent current Docunent) ;

Crunch 2 can load the plug-in at initialization by editing the constructor of Crunch2.javato have
theline

proxy.regi st erPl ugi n(new Skweezer Pl ugi n());

appended to the already existing plug-ins.

proxy. regi sterPlugi n(new Content Extractor());
proxy. regi st er Pl ugi n(new Sanpl ePl ugi n());
proxy. regi sterPl ugi n(new Si zeMwbdifier());

The order these lines appear in is the order the plug-ins are applied to filtered content. In this manner,
we can add any number of plug-ins.

5. User Study: Web accessibility by visually disabled users

5.1 INTRODUCTION: WEB ACCESSIBILITY

Direct-manipulation graphical users interfaces (GUIs) are widely considered to be a major
advance in human-computer interaction because they allow users to perform tasks in a safe, effective,

19

Automating Content Extraction of HTML Documents

efficient, and enjoyable manner [29-30]. The popularization of GUIs is in part responsible for the rapid
growth of computer and Internet technologies during the past decade. However, this trend threatens to
create significant barriers to accessibility by visualy disabled patients, who are unable to rely on the
graphical cues and symbolic representations that are fundamental to GUIs[31-33].

At the same time, the number of visually impaired users is expected to increase dramatically as
the population continues to age; for example, it is estimated that the number of Americans over the age
of 65 will double between 2000 and 2040 [34]. In 1997, the United States Census Bureau estimated that
there were 7.7 million adults with “non-severe visual limitation,” which was defined as a self-reported
or proxy-reported “difficulty with seeing words and letters, even with eyeglasses.” The Census Bureau
similarly estimated that there were 1.8 million American adults with “severe visual limitation,” which
was defined as the “inability to see words and letters, even with eyeglasses’ [35]. For medical or legal
purposes, visua disability is generally categorized using more formal criteria: “legal blindness’ is
defined by having visual acuity of 20/200 or worse in the better eye, or avisual field extent of less than
20 degrees in diameter. Similarly, “visua impairment” is defined by having 20/40 or worse vision in the
better eye even with eyeglasses. Patients with even minimal visual impairment are likely to encounter
problems in everyday life. For example, people with vison worse than 20/40 cannot obtain an
unrestricted driver’s license in most states, and may require assistive devices such as magnifiers for
reading [52].

The overall goa of visual assistive technology is to provide alternative, equivalent mechanisms
for computer and Web accessibility. Screen readers translate text and graphical displays into auditory
output, and have become a predominant assistive technology for users with severe visual disability [36].
However, the current quality of speech-based Web navigation is very limited. In particular, the large
guantity of information on Web documents imposes an enormous cognitive load on visually disabled
users who must rely on auditory transmission alone, compared to sighted users who are able to identify
relevant information by visual scanning [37]. Content extraction from Web pages using Crunch provides
an opportunity to provide filtered documents as input to screen readers. This may allow visually disabled
users to understand the essential content of Web documents more quickly and effectively.

We performed a preliminary usability evaluation of Crunch 1.0 to supplement screen reading
software for Web navigation by visually disabled users. The study design was based on previously
established usability testing and cognitive analysis methodol ogies, in which subjects are asked to “think
aloud” while performing representative computer-based tasks [38-40]. This process was captured with
full video and audio recordings, providing a source of data rich in physical, temporal, and social context
[41-42]. In particular, this usability study was intended to compare the quantitative and qualitative
aspects of speech-based Web navigation by a completely blind user, both with and without Crunch.

5.2USABILITY STUDY METHODS

5.2.1 Subject and software

Full informed consent was obtained before inclusion of volunteers in this study. The subject for
this usability evaluation was a 50 year-old woman who had been completely blind since birth. She had
no light perception from either eye, and required a guide dog for mobility. She learned Braille as a child,
finished a graduate school degree program, and was employed as a full-time teacher. The subject
described herself as “comfortable” with computers and the Web, and used these regularly for work. She

20

Automating Content Extraction of HTML Documents

was very familiar with assistive technologies such as screen readers, and was able to type over 20 words
per minute using a standard QWERTY keyboard.

A popular screen reading Web browser (IBM Homepage Reader®; IBM, White Plains, NY) was
selected for this study because it was easy to install and integrate with Crunch. The study subject had
used this particular screen reader in the past, and was asked to perform Web navigation until she felt
comfortable using all basic commands.

5.2.2 Design of Web-based tasks

Two representative Web-based tasks were developed that satisfied three criteria: (1) Each task
involved a website that was among the 50 most popular sites, based on the well-known PageRank
algorithm [43-44]. This was to ensure that tasks were representative of common Web browsing
procedures. (2) Each task was extensively bench-tested by the authors to ensure that it met a sufficient
number of World Wide Web Consortium accessibility guidelines to be completed using speech-based
navigation with a screen reader alone [45]. Many popular websites failed to satisfy this criterion. (3)
Each task was extensively bench-tested to ensure that it functioned properly with Crunch 1.0, and that it
could be completed by speech-based navigation using Crunch 1.0 together with screen reading software.

Table 1 describes the two tasks. Each task was further bench-tested to determine the sequence
and number of steps required for completion with screen reading software, both with and without
Crunch. Additional testing was performed to determine the optima Crunch system configuration
settings that would allow all tasks to be completed.

Table 1. Web-based tasks to be completed by subjects using screen reading software, with or without content
extraction using CRUNCH proxy.

Task (website) Description
A (www.usatoday.com) Identify and read top story under “Sports’ section
B (www.cnn.com) Identify and read top headline story

5.2.3 Test protocol

Approval for the study protocol was obtained by the Institutional Review Board at Columbia
University Medical Center. The subject was asked to perform Task A using the screen reader alone, and
then to perform Task B using Crunch 1.0 and the screen reader. During this process, the subject was
instructed to “think aloud” and verbalize impressions while performing speech-based navigation. After
completing the two tasks, the subject was asked to provide specific qualitative feedback about the testing
procedure. A survey was used to rate various aspects of Web navigation on a five-point Likert scale,
both with and without Crunch: (a) Usefulness of technology for performing the task. (b) Ease of
deciding next step in navigation using technology. (c) Ease of understanding Web document layout with
technology. (d) Ease of locating desired information of Web document using technology. (e) Overall
satisfaction with technol ogy.

21

Automating Content Extraction of HTML Documents

While performing tasks, the study subject was videotaped and audiotaped using a portable
usability engineering system [29, 41]. A video converter (Communication Specialties, Haupaugue, NY)
converted the monitor display to a video signa (S-video) for capture on videotape using a digital video
camera (Toshiba; New York, NY). A microphone provided audio input to the video camera, in order to
record statements and questions, as well as the screen reader sounds. A cassette recorder was used to
capture additional sounds. Finaly, a standard 8 mm video camera was used to record keystrokes while
the user interacted with the system.

5.2.4 Data analysis

Contents of videotapes and cassette tapes were transcribed verbatim, and annotated with time-
stamps. Tapes were then coded using a standard method adapted from previous studies, in order to note
particular aspects of system usability [41]. User actions were described as an overall task, which was
divided into goals and subgoals. Each subject action was coded either as a correct response, an error, or
a correct response to an error. Errors were categorized into one of three groups. (1) Errors in
understanding of the interface. This included selection of unintended links, incorrect interpretation or
hearing of speech, and confusion with manipulation of GUI widgets or browser commands. (2) Errorsin
understanding of document layout or navigation. This included any confusion caused by incorrect
mental representation of documents, such as misunderstanding of navigation bars, or becoming “lost”
while navigating within or between pages. (3) Errors in understanding caused by Web design or browser
malfunctions. This included failure to comply with standard Web accessibility guidelines [45].

The total time required to complete each task was measured. This was used to calculate the time
required to complete each step of the task, based on results from bench-testing. The causes of Web
browsing errors were determined from detailed analysis of audiotapes and videotapes. Numerical ratings
of Web browsing surveys were tabul ated.

5.3RESULTS
5.3.1 Bench-testing of tasks

Each task was carefully reviewed to determine the sequence and number of steps required for
completion, both without and with Crunch 1.0. Figure 30 demonstrates the results of this analysis for
Task B, which required more steps without Crunch (65 steps) than with it (38 steps). Similarly, Task A
required more steps without Crunch (73 steps) than with it (23 steps). This reduction of steps required
for each task was because the content extraction process simplified direct access to the Web document
contents by removing all navigation bar links.

22

Automating Content Extraction of HTML Documents

Task B: Go to www.cnn.com. Identify and begin reading top headline story.
Using screen reader without CRUNCH 1.0:

(A) Open text box and go to website > CNN homepage opens.
(B) Pass 2 lines. Select “Skip to main content” link.

(C) Pass 9 lines. Select “Full Story” link = Full Story page opens.
(D) Pass 2 lines. Select “ Skip to main content” link.

(E) Pass 52 lines. Begin reading story text.

Using screen reader with CRUNCH 1.0:

(A) Open text box and go to website > CNN homepage opens.
(B) Pass 2 lines. Select “Skip to main content” link.

(C) Pass 8 lines. Select “Full Story” link = Full Story page opens.
(D) Pass 2 lines. Select “ Skip to main content” link.

(E) Pass 26 lines. Begin reading story text.

Figure 30. Example of bench-testing to determine the sequence and number of steps required to complete tasks with screen
reading software, both without and with CRUNCH 1.0.

5.3.2 Features of navigation

Using a screen reader without Crunch, the subject did not complete Task A (“Go to
www.usatoday.com and read the top Sports story”) successfully. After 21 minutes and 15 seconds, she
began reading an incorrect story. Based on the fact that this task should have taken 73 steps to complete
successfully, the subject required an average of 17.5 seconds per step without Crunch. Transcription and
subsequent analysis of tapes revealed that the subject made a total of 31 cognitive errors during the
navigation process for Task A. Based on the taxonomy described above, these errors were classified into
three categories: (1) 11 errors in understanding or using the speech-based interface. For example, the
subject attempted to use a “search” function, but was unable to properly enter the desired term into the
text box. (2) 14 errors in document layout or navigation. For example, the web page layout caused the
screen reader to announce the full navigation bar on every page (Figure 31). Even when the subject had
already reached the correct “Sports’ page, she became disoriented by hearing the navigation link lists.
As aresult, she mistakenly re-selected the “ Sports” link nine additional times. When the subject finally
reached the top sports story, she failed to recognize it as a story, apparently because the document made
no announcement before beginning to read the story title. Therefore, she continued past the top story and
eventually selected an incorrect link as the story to read. (3) 6 errors caused by Web design or browser
malfunctions. For example, the subject mistakenly attempted to select alink to an advertisement banner,
believing that it contained relevant information.

23

Automating Content Extraction of HTML Documents

Hometown Padres
lure Wells away

from Hew York
Yankees

| Search IO 12431/2003 - Updated 10:29 PM ET
o | Callahan joins the crowd
Quick Links .
g One yvear after Super Bowl, Raiders are seventh team to lose coach.
cores

Full gtory | The MFL candidate pool | AFC, NFC years in review

Sports briefs
Game matchups

Latest headlines

Figure 31. Navigation of Task A using screen reader without CRUNCH. Document layout forced announcement of

navigation bar, even when subject was already on correct “ Sports’ page. This caused subject to become disoriented and select
“Sports’ navigation link nine additional times.

Using the screen reader with Crunch, the subject completed Task B (“ Go to www.cnn.com and
read the top headline story”) successfully. After 2 minutes, she began reading the correct story. Based on
the fact that this task should have taken 38 steps to complete successfully, the subject required an
average of 3.2 seconds per step with Crunch. Transcription and subsequent analysis of tapes revealed
that the subject did not make any cognitive errors during the navigation process. This was apparently
because the main headline story was placed very near the beginning of the filtered document, without
extraneous navigation bar or other link lists (Figure 32).

[bnage | Click here to skip to main content.]

() The Web (O CNN.com | \[Search|
Updated: 1032 p.m. E3T (0332 GMT) December 31, 2003

®0 2004 comes in under

P unprecedented security

Search [Image | 26044 comes in under unprecodeniod
FECHr

The ringing in of 2004 15 seeing the most expansive
atiti-terrorism efforts i 1.5, history: aitspace
closures; elite teams trained to spot potential
attackers from rooftops and helicopters, and

Figure 32. Navigation of Task B using screen reader with CRUNCH. Subject made no cognitive errors in navigation,
apparently because headline story was placed near beginning of the filtered document.

5.3.3 Qualitative user evaluation

24

Automating Content Extraction of HTML Documents

After completing Tasks A and B, the subject was surveyed regarding attitudes toward various
aspects of speech-based Web navigation without and with Crunch 1.0. Results are summarized in Table
2.

Table 2. Survey evaluation of subject’s attitudes toward speech navigation, without and with CRUNCH 1.0.
Scores are based on Likert scale (1=Strongly agree, 2=Agree, 3=Neutral, 4=Disagree, 5=Strongly Disagree).

_— Score
Aspect of navigation - -
Without CRUNCH With CRUNCH

Useful to read Web pages 4 2
Easy to decide next step 3 2
Easy to understand Web layout 2 2
Easy to locate information 4 3
Overall satisfied with navigation 5 3

5.4 DISCUSSION OF USABILITY STUDY

This pilot evaluation employed a usability engineering approach to analyze the application of
Crunch for speech-based Web navigation by a completely blind subject. It was designed as a paired
study, in which the subject was asked to perform tasks without and with Crunch. Bench-testing
confirmed that Tasks A and B required a similar number of steps for completion, suggesting that they
were of comparable complexity. By transcribing, time-stamping, and coding the video and audio
recordings of user interactions with the system, it was possible to measure the speed and error rate of
Web navigation. In addition, it was possible to categorize the cause of each navigation error.

Overdl, the results of this preliminary user study suggest that Crunch has potential to provide
advantages over conventional speech-based browsing in terms of speed, error rate, and qualitative
satisfaction. This is primarily by removing extraneous content, and thereby simplifying the process of
finding the important information on the page. Bench-testing also demonstrated that Tasks A and B both
required fewer steps for completion with Crunch than without it. However, supplementation with
content extraction is not clearly superior to conventional speech-based browsing. For example, by
removing features such as link lists, Crunch has potential to cause new errors in understanding page
layout and navigation. Similarly, Crunch inserts removed link lists at the end of the Web document,
where they may be extremely difficult for users to navigate because of the lack of surrounding context.
Finally, Crunch does not perform useful content extraction on all websites (e.g., see Figures 11 and 12),
and it was difficult to develop a corpus of representative tasks for evaluation purposes.

This preliminary usability evaluation has two important limitations: (1) It involved only one
subject, and therefore could not include meaningful analysis for statistical significance or reproducibility
among various users. (2) Because it involved only two standardized tasks, conclusions may not be
generalizable to other Web-based tasks. These limitations are being addressed by ongoing usability
studies that involve recruitment and testing of additional visually disabled subjects. Results of evaluation

25

Automating Content Extraction of HTML Documents

studies will provide additional data for iterative design improvements to content extraction systems such
as Crunch, and provide insight into the cognitive models used by visually disabled users for speech-
based Web navigation.

6. Future Directions

Crunch uses athird-party HTML parser to create DOM trees from web pages. We have switched
to NekoHTML to resolve the problems with OpenXML. However, we still intend to support commercial
parsers, such as Microsoft's HTML parser (which is used in Internet Explorer), in the next revision.
Integration will be accomplished by porting the existing Crunch proxy to C#/.NET, which will allow for
easy integration with COM components (of which the MSHTML parser is one).

We are continuing work towards improving the proxy’s performance; in particular, we aim to
improve both latency and scalability, especially with the advent of browsers such as Avantbrowser [53]
and Mozilla[54] that support tabbed browsing, i.e., treating multiple open web pages as part of the same
session.

We are also investigating supporting more sophisticated statistical, information retrieval and
natural language processing approaches as additional heuristics to improve the utility and accuracy of
our current system.

Currently we do not do any form of learning of a user’s browsing habits. It may be possible to
implement artificially intelligent heuristic algorithms, such as Bayesian learning or Markov Model
creation, as a browser plug-in that reads metadata from the client about how to change the settings. Such
a browser plug-in might provide an interface for the user to rate pages, that is, Crunch’s rendition of
pages, and could update Crunch’s configuration via extra HTTP metadata. The improved Crunch 2.0
plug-in interface is instrumenta in allowing these kinds of heuristics because it allows programmatic
changes to settings. With the addition of trainable filtering, Crunch could adapt to a particular user's or
group’s preferences. Even basic control from the browser, without any Al, would enhance Crunch’'s
usability because the user wouldn't have to switch applications to change a setting or to enable or disable
filtering.

The user study with blind usersisin its earliest stages, and will be reported more formally when
compl eted.

Finally, one of our main goals was to expose a simple API for programmers to extend, so that
current and future natural language processing and information retrieval algorithms can easily be added
to Crunch. This would allow users to truly be able to customize the content they would like to view on
visited web pages. Full evaluation of the API and plug-in framework will not be possible until sufficient
outside devel opers have worked with Crunch.

7. Conclusion

Many web pages contain excessive clutter around the bodies of one or more articles, the actual
content of the page. Although much research has been done on content extraction, and there are many
special-case solutions to remove advertising (particularly pop-ups) or reformat for small screens, it is
still a relatively new field where few genera purpose tools are available so most researchers must
construct their content extractors from scratch. Our approach, working with the Document Object Model

26

Automating Content Extraction of HTML Documents

tree as opposed to raw HTML markup, enables us to apply in tandem an extensible collection of Content
Extraction filters, and potentialy other kinds of filters such as format translators and NLP summarizers.
The heuristic filters that we have developed to date, though simple, are quite effective.

Crunch has been implemented as a freely-available web proxy that anyone can use to extract
content from HTML documents for their own purposes. The second version of Crunch is fast and
efficient, and allows for easy integration of third party filters as plug-ins. It also offers a simple, easy to
use user interface for both administrators and end users. And perhaps most importantly, we have
designed this system with accessibility in mind for the visually impaired, so as to facilitate the best
possible web experience in conjunction with devices such as screen magnifiers and screen readers.

27

Automating Content Extraction of HTML Documents

Appendix A — Example Screenshots

We show some examples of typical websites with different Crunch 2.0 options turned on. The point
isto give the reader an idea of the degree of control a user can have over what he/she wants to see on a
webpage. The websites we chose are:

1) A typical article from www.spacedaily.com

2) The front page of Voice of America- www.voanews.com

3) The front page of atypical gaming news site - www.planetunreal .com
4) An article from alink and script heavy site - www.msnbc.com

5) An article from CNN —www.cnn.com

6) The front page of the geek news site — www.dlashdot.org

7) The WWW?2004 website frontpage — www2004.org

Each following page has a set of images. The images start from a screenshot of the original site, followed
by a gradual increase in the number of filters used, continuing to the screenshot that was taken of the site
in text-only mode. We have created this anthology of images to help the user get an idea of how Crunch
and itsfilters work on a given webpage.

28

Automating Content Extraction of HTML Documents

SPACEDAILY

® FORTAL TO SPacE

t perenst
HNerthrop Grumman Wins Billion
Dallar Missile Defenss Program

Intsrzepies (KN

CoTAct, 5h0
provida e LIS wiithe
ataity fn destroy hostla
e af their most viineratie stage, the
i

4% tha Tl i crants

[Fronakd D Sugar, Nofh
I (e offc i tasicy 4

m
i 4 gt for s 5

skl delensa. Ve fove axsembied o team of tha A
ratioets sading missla defense compean

o tdm

SPACEDAILY

" FORTAL TO SPACE

t perenst
HNerthrop Grumman Wins Billion
Dallar Missile Defense Program

L Ao Do 4, 2073

Intsrzepies (KN

CoTAct, [
provida e LIS wiithe
ataity fn destroy hostla
e af their most viineratie stage, the
Boostiatoent phass of fight

% tha Tt e craes

n, e inchusiry LEam vl

delinze cystam

Wi arm proud o Beied 1 dremitc
o6 i Al

Fenakd D Sugar. Hot
asocive ohicer and president
s ConUact win, which Ay 1atAshas Northrop
GRS 5 1S SIS eliyrelr oy Y e 3
risiik dalenia. ¥4 v assemiled 8 tearm of ha e
et iading Misslo dafense companies e on

SPACEDAILY

® FORTAL TO SPacE

- Toys.com|

[samus|

CHANNELS

wssie perensy
HNerthrop Grumman Wins Billion
Dallar Missile Defense Program
L Arpees - e 4,20
Thes Whasils Disten
Agancy INDIA] tockay
awarded a Northron Srumman and Faytheon fam the FETRER UL S baton
" Kineac Enargy inercoptors (KE1) convact wich 29 Faleee
Erimad the LIS, wih the sbifity b cestron hostile i riags,

il o it MOSCalnersble Stags, i
Boosiiaz0et phase of Bgh

4 1% Thaaght” 1hal caueds

Laxd by Northvop Grumma
e m: Do0st phess smeet of

s ghobal layered mssie defense pystam
Thes KE COMPActs valied & mare fan $4 bilon oves
i ymars

Fonakd D Sugar, Norfrop G
eI ve IR BN president S2ad,
this contact win, which Sy estabiches Norttrap
1 pOSHION 45 3 tog-tiar &

a1 dramidie
e in Al
soaice Sen e
that s e

ay's crveral ol and wil akn
rvé: 8 4 vsible, Gephyable detement 1o thss who

SPACEDAILY

" FORTAL TO SPACE

st perenst
HNerthrop Grumman Wins Billion
Dallar Missile Defense Program
Lo A - 4,003

The Misiks Dafont

Intsrzepies (KN

coTAcE Whikch 5t

Frovida e LIS, with i
s

% tha Tt e craes
ataity fn destroy hostla

e inchistry Leam vl
wrical oozt phaso slement of
s Agency's giobial lmyere messile defense systam
The wakied & mote than $4 bilicn cver

MArs chaifm

Fonakd [Sugar, Norltvop an
ad, "We apmon it sy
v

awecirve ohicor and presidert
Ti5 COnITact win_which Sk sstabichas Hohrop
6 8 Iop-lier Syl elegrator for ™
skl deleso Vo nav essembied 8 toam o tha
ralioes kading misat defnse compen,

e

. Making Space|

& Wha are your ancestors?

Tl ma— | * For Everyone |
SPACEDAILY
® FPoORTALTO SPAaCE
L "'ﬂ‘-“u“' —
CIWEL.? HNerthrop Grumman Wins Billion

Dallar Missile Defense Program
[
The Migsils Diafen

b F Kinebe Energy
Intsrzepies (KN
coTAcE Whikch 5t
Frovda s LIS v 4% tha Tl i crants
ataity fn destroy hostla

* Who are

e sty Leam vdl

U i i phos sl

v Lost Hame

MAr's chaima
caid, "Wie are prowd of

St anstisnas Frehd [Suger. Hoivog
wna S5ecUve oficar and preswdent
s Conbact win, which Sy es1atachas Nothron
8 A Leplier SySlen Plegrator ke
skl dalersa o v essembled 8 toam o tha
Pl AN Missla detense compan

abminn

Znc Seurge
[

BB Ehe

T

SPACEDAILY

" FORTAL TO SPACE

I u-n‘un

s | sz perenst
HNerthrop Grumman Wins Billion
Dallar Missile Defense Program
Lo A - 4,003

The Mgsiks Defe

coTAcE Whikch 5t
provida tha Ll 5 wmll»?
hostl

% tha Tt e craes

e inchusiry Leam vl
tical boast phase slement
red mesHla defense systam

Ronakd [Sugar, Nofitrop
awecirve oficor and presidert
mis contract win mr|-1w,o<na

45 Horthon
s LTt for
stk deleso Vo nave essembled 8 toam o tha

- MER ot leading misale dslense companiss who

-

1 « -3 W

p—
Horthrop Grumman Wins Billion Dollar Missile Defense Program
| o e e .23

e Pissike Difnze Agency (MDA| tody awarded 8 Horbrop Gramman and
aytheon e e Kintic Ensrgr Intercapiors [KED conract, which |5 1o

| promcla the L 5. wih e abiley to dastroy hostie missiks at thar mos

| wuineratike stago. the boostinecent phaso o fighe

ed by o sy jem d e thes cribical
| e phaee sramare of i Agency's plotal layered missla Denss Bystam
s vl B o than $4 lion over eightysen

7% the Thouse” that couen
BTTen, st Exacutvs cficer and

All advanced filterson

i

e e B4, 00
Tha Wsiks Defenss Ageey (MDA} oy asvarded @ Morhiop Gramman and

yihecn seam s Kinetic Enrgy Intsrcapiors [KEN conract, which 15 io provida the
W 1 abiity to destroy hastile memios ot ther most wnareble sage, fe boostiaecent phas

18 e Mheaghe” that caurin

|Lediy the ndiustry e and tea

11
gancy's ghotal lnernd missik dalsa sysem The KES COMFRcts vakied 3 mors Tan 54 iBon ave sgnt
e

| Fonaid © Sugar, Manhrop Grumman's ¢ e cnet n-nu.n.a officar end prasidant sad. "o are aroud of
firmiy saabizhes Norop O 10 85 @ FOD-TEF SySHRMS |ESgranor fod
i have axsamtied mgmol l'rnnu!_ inading missile celeme companies who are

Bt hich g G

mmna-mr‘nmng a yterm on fims, on b ﬂgsl;\rnm
il [y o COnTYYS chers] delangs and il Bk Seve 58 & visibe, o
| detarment to frose who voukd thresen us

| The aweand folowes 8 310 g
octiced concepts for a KE] beost ph
| Iorvard w5 design and begin menaging e deesiopma:
A s e I Lesend slamentin T 2010.2012 imetans. KE il complenen he other
i bermminal defenze intsrcepir eogral

WoATF ConCEEE 96 o ST NG which Do Competing teans

Harfrop GrummeFayEech beam vall now mave
and et phasss, leadng 1o plarned deplyment
BOOSL MidCourss

| *Raagieon 15 eatramsty hanord to ba Dan of £ faam that
rogram Cuf KE design itvchesd the innovetive e of proven &
iestn Defarsa Agency Wik @ minimum el of nsk and cof i Louisa L. Francesconi, @ FayFecn #ea
esident and pressdent of he compam's Missile Systems bu 411 Tuckon, ANz W 00k loruerd 0

stomes ca the developmant and fest phase and deploying this capetiity 2z qucky

-

1T, 0n buckgat and WPy MisEon succass Fseared KB 5 citical
ve i & vible, dephysile dssment 1o (hose who would

9 Which Do compssting 1ams
vall nca mave
A 1x|Jn.|n|h¢'lnmn\)|l.]1 & deviopmaTt and (et phase, Iadig 1 piarned depiament
‘i e s b elemern T 20103012 nmekame. GE wl corriplerrent e cther Bt midcouss
:mn:mwumamyn:zmsmmwwmm

| "The Foitheon G anrw—r‘-::mslms)\ £ ¢ 0 eadEing, mats techaclogies o
i ‘dephoy thes porbon of sife Dl e, * sid Clonald . Wintey, Morhiop.
o pemRCar, and kad cascung for missie delanse

i AN L2 QA Chby aed eanly ckspted 10 568 basssd

M—-u.u.a-nmr,u. e 10 b v of s 18T MAF's bien sefcted 10r s cradanging and imponant
Cur WE] diemign itvolved the inficvative use of proven syslems, providing 3 new capabiity fo the
alirsa Agency vl & mNETL leval of ik and cost.* s Loutss L. Francescon), 2 RayPecn ca

esident and presndent of he compay's M siks Systems busingsa in Tucson, ANz Yo ook fomerd

L A D 1400
Tha thzsii Detens Agaeay (MDA iy awvarded @ Moerrop Grumman and

Fidyiheon ssam i Kinetic Energy Intercapiors [KEN contract, hich is o provida the
| L5, w1 abinty bo castroy hostike memios atther mest winarable eage. o boomiascant phas

18 e Mheaghe” that caurin

the ndiustry e and tea

1
1k dalansa System The KED CONFRCE (5 vakiad 3 mons Tan 34

Lediy
| Agancy's global layerad i Abon o seght
wears

|Fenaid © Sugar, Morhrop Grumman's charman, chist axecut cficer end presidant sad Vo ar proud of
S DB A5 3 10014 SySHETS Mmegrancs for

 naic lnacing il celars Comparies who e

an BUckget and wifh M on succass @ssured KB crincal

e i & vible, depkoyitle denemen 1o Mose who mould

9 Which Do compssting 1ams
vall nca mave

| Fware i 1x|Jn.|n|h¢'lnmn\)|l.]1 & .Ia--rrmn'l and fast phass, lsadng 1o plarnad deployment
20102012 et ams. KE| wil complemen e cther bt midcoutss
a-:mn:mwumamyn:zmsmmwwam

i concept doson oot o
The

1 rey i gl eing, matrs technalog

| *The Moitivan Grumm anrw»—r‘a:-vfswuis)\ am
i dephoy th

| "Ranyson 15 cotremety honorsd 1o be par of £ 188 ha's basn seiected 1or M chadering and imporsn
| prograrn. Cut] deaign invobved the innowelive e of proven syalens, prinding a new capabiiy fof he
Varisn AgenCy wAT! @ MINETUM sl of N5k and cost” sakd Lobiss L Francescon), 2 RayPecn uca
presiant an presedent of I coerpany's MsEils Systems Lusingss in Tcson, ANz W ok foverd 10

stomers pmert and fest phase capebilly 25 quckly stomars pmert and test phase capebilly 25 quckly
| | 6 prosmibla
A0 TIPS 14 BA0NG T 15 B0 S8MN0 &5 SySiems Megrat bt 0 S8 &5 Syen crafc Creseal (e POt 0 8S InChae
L L o T L B S temE ennARn e inartn e e m—,....m Pl pb b -
& i 2 TR Des Bl & i 2 TR Des Bl

Ignore Scripts

Reduce link-to-text ratio

29

Ignore everything, text only

Automating Content Extraction of HTML Documents

“silian Transs f1us al irs
= + cammarts foless

* eneva Arsund’ Brans Swed Acachons (e
Lisatlia, Batestinans o

tu Watdran l

Insnrd te

R i
Tl

© Lnanl_Aaks Pasall ot ta St
Gineen Past duthers
+ Prumel Heing Hoth S Trie
* Lancy dnast Pra-anysmnmst
Activists Thenatan b arch
Amaiest riis
ey il et Py chaiogical

i e s
sy
prer— e
» 10 27 teare far Srelieanes
fasamires ¢

i [b e s

i, B E

- S

Lipeiey gif]

8 *9lnary Brnies Rrpurts af Tae Seldam Doavtn's
Lastars

18 S e ten Comuan i in Sail Cansal sy

¥ Bantors) Mrprsed ot Pechaoagon

wmts Sig Bractizns frem

Eakiatan nfters
0 Steed Larttfs no Lamiee tesdeil sa badwsier

Basesis
sl farh Samenced 6 27 fears far Srebravics

Fiaseacrey
xuraie's Fresstmtiel Candistates Sesisicr far
[—
e
Ersaram

shuanian Paclismern Besins Impeachmen iz

Original

Beparts of Tau

Beitvnf

sl Brams e e
.

© Eakishan Offury in Wandran Trosns fram Eashisi 4

© 118 e Tty ton annnr tepdded, vy Ddustre
Asalrats 4

* Bnandan Sark Sanienced o 27 Tears tar Srshrenca
Sassmiren 4

© iemrate's Freskistial Cndidates Brmsber e

i

© ULk Anmuances s Farsim Trersbar idanis
Frearam 4

© Uit Farii g g aachmrst ALt

Remove non-link-list images

Y [,

Dl &-%-3 0 L8 e 3
* st e [Teae Gur Larressassisn 8 * e
B e VO A RTATE P o —, [T ———
S —— — e — : S —— |
4 Sgw Torrer Wamieq lesued fer Sgm Yorrer Wamiea ssged fer
Sl Caatlal Sl Caatlal
+ bacasl fisks Posell Ssat (9 et 8 200 i T e e + bacasl fisks Posell Ssat (9 et
fignees Past Suthers fignees Past Suthers
+ Pumell Besing Haeth Mrsa Trig [ath Mra Trie
i Cnast Pra-suysmmast - i Cnast Pra-suysmmast
Activiats Thenatan ta “arch Activiats Thenatan ta “arch
n f—
 Badar: epica e eychilid Casauss Badar: epica e eychilid

© i1k Waras Wuatem Compausds m Sawli Caital Hax
b= Ternr Taresty

» 8 bt mamrns

i Brams M

Lszaplis, Paestinans o
© Eakishan Offury in Wandran Trosns fram Eashisi 4

© 118 e Tty ton annnr tepdded, vy Ddustre
Asalrats 4

* Bnandan Sark Sanienced o 27 Tears tar Srshrenca
Sassmiren 4

Bamater far

© iemrata's Presiiess
i

© ULk Anmuances s Farsim Trersbar idanis
Frearam 4

© Lttt Faril e, e catheest ALt

[T e——
&=

3

Ignore scripts

n -

[@ wrdercemi

© ith iy Berees feparts ol an Sadiam Desis's
Lastars

Saml Camitad Hay

enews Arcond’ Geans e Huaction [
alin, Endentinians. +

abiatan Dffers i Wasivas Trens dram Ksshesir 4

© i1t e Lol nesided, sas iduster

Bxsrsar fark Sentemued in 27 fears far Srelranes
Sasvmems 4

© fienraia's Peesideatial Caniidates keminer
Ectians *

Remove Advertisements

[T e——

i - a2 n

Al - -3 B Fo
| Mt il | e o)
e | Ibmag= | Uinsgs | dsky Hlnsge
Alton] Eareed

Amevicar] (=
1yl

e ——

spsthern lran
* e Lo Waming lisusd foe
Sl Camital

* Eamall eains tpeth birca Tris
srce Crast P . Culling e
oy 3 Imeps fucerad s
Aaisat Hehels Busal 7 Spansh
Lmg]

Rmteras rpaard et Pl

[TTerr——

Leparer aif]

Remove empty non-link-list tables

e

| Mg Blap | i com)

i L e,

i - E]

Uoste| lbesage | Souch b Comrmilliese | ||},
Misdezs| Agal i) s MALHE i dins s [TR

sobiclgahic] omhe| LR

ugim

[T
aghedad

[mpacer gil]

e r

Ignoretext links

Reduce link-to-text ratio

30

Ignore everything, text only

Automating Content Extraction of HTML Documents

lanet £
wUDreE

Forca Updates - ¢

lanet £ L s lanet £ &S lanet £
wUDreE e e wUDreE meene o AUHresk

lanet £ i b, #3 lanet £
AUDPEIE B AUDPEIE

All advanced filterson Ignorescripts Ignore everything, text only

31

Automating Content Extraction of HTML Documents

I S M

3-8 -3 8 2B

Possible terror
Hhreats simad ot
hotsls, heusing

simatemea

BIANAMA. Babwsm. Dee 2 — LS. Embassies on
Tuesdny warned of posaible termor attacks
agaust two hotels i Kenva and a honsing
componnd for Westerners i Sandi Arabia. Two
banks were evacuated m the Kenyan capatal

& e rmm

T T LT m—

BIANAMA. Balwsin. Dec £ — U5 Embasses on
Tuezdmy v ed of pozaible termor attacks
agaiiet two hotels iy Kenya and o howsdng
compotnd for Westerners m Sandi Arabaa. Two
banks were evacnated m the Kenvan captal
Becamaz of 2 bomb flreat

& L e

T

T T LT m—

B ok e e

Tmage My i)

s e Lk

g:ﬁ_'f“{hll 118, warns of Kenya. Saudi attacks

m] Powble tarror theaats aimed at hatels, hotising campounds
e o] et v e
eompeunds

MANAMA. Bobenms. Dec 2 — U5 Embasses on Toesday warned of
pozzible tertor attacks agaunst two hotels m Kenya and a howsug
compound for Westerners i Sandi Avabia. Two banks were
evaciated i the Kenyan capital becanse of a bomb threat

| Mlosge | Emoi? Thi] [lsmags | Frins Thisf{limags | Compioss Sioer]

T

Original

All advanced filterson

I S M

e 3 n > B
e o L
{image Diop | Limk] '
[hmage M | L)

Timage | fome |

enineget| U5 warns of Kenya. Saudi attacks
aeipvion]

| Possible teror threats aimed ot hotels, housing compounds

ALANAMA. Babemss Dec 2 — U5 Embassies on Toesday wamed of
possible terror attacks agawst two hotels m Kenya and a honsing
cotnponnd for Westermers m Sandi Avabaa Two banks were
evacnated m the Kenyan capital because of o bomb threat

TH HIYADH. Saodi Arwbea, borronses had the Seder Vidags ¢
| okarwsman n St Araba, Carel Foakn, told The Acvaca
| coropleacs may alac be

s s the excbasiy bl barred s A el Dirpeaibrta § o vt | &1 m Bipash
| betaeen the Doty o6 o B s "emoept ot ofbeiad banesis ™

“Tue Laksary cort b concemed abo fis cument securdy atahcn i Savd A, paricolay fhe Looveg
| oerpoun i the Fanwd areme; 4

T the Eorpan capal, the U8 Ersbaray ead v

At

v under “active rurvednce,” e Bnbanry
d Frors by ghonm from the Swads copetal Ske rad odee housrg

s i Hazabi that, “The T 5 gevermene receséy seersnd
= i

| amcerne e g of the
{#mat is sethas the et wewerad dags ©
e L ok OO i e s o el

Ignore everything, text only

32

Ignore scripts

Automating Content Extraction of HTML Documents

i VO W O T L

3= i e B

CN.com:

=] [N o e s s emsns sl

W 2 .
e W com T

- g

lrteznatinal bt

o T e ————

_siel
= -\

- g

lrteznatirnal £t

i .m-com-h |

SEARCH

it

P T

P T

unlikely

(SHI) — O the wve o Tary
Schiava's 408 Bethiay.

e
ourt-ordered repart that the it
In 3 perEistem vegetate txate
with o ikethand of
Inprovemant.

sy Toale
B e BEiaes e

T L e T e —

Ao

et Bon are
Betundinr wm g bn e ot
i

& & sam

LAW CENTER il

LAW ENTEH

unlikely

G} = Cn e

-

Pl o

Skary Taals
[Ty - T
[T ———

Tepart ihat she
mina
= | parsistant
¥egatativa state
no

RELATES

i
Aheshood of

Cr_daywicksen, T

T

p
unlikely
TEHN) = On the eve of Tarry
Sehavo's 40mh erthday. o
independen guardian agpainted
ran ot the
=
< F
e ——
Saary Toals

G5 e G T
s s @ any s Bt e
6 1t o T30 A

T

Ignoretable widths

I s S Bt Sy

Remove forms

VO W N T L

4-¢ .3 8 * BF ;
u - e]
y—————————— P HnliKEly
1EMH) - On the eve of Temy Schtavo's 40th Barthday. the independent
LT L Torm Schie
n s n A parsistent
1 Il of T
SEARCH © towek | trmssnn | LTy e Google BEARCH * ek o | LTy e Google NV, [voun s-an aLents |
s g s e
I I - R ——
- et
L & 00 W Tl 4 B W 8 TV RN TS 0 ol Fabel R TN 4 Pehaon 488 RNl
| unlikely unlikely Fe e -
1GHN) < On the eve of Terry VGHIN) - On the s b oliry wherdie b Wt 100G v, bf AT WS Schiive Shode b Bpreed BNt gl
Sefaave's 40Th Berthday, the Scfaave's 40m e pan e e repon
S .
i e i N ——
conter af a rigl af & right-Le-dis M Schvmnr's faln 12 20y Bputad
S it ot i
in 3 persistent vegetative o In 3 persistent vegetative aate. o Eatepy St oy sl m ettt
ith no Hkefihood of
i
e
CUR E: ALENTS
o
e " Lawinti ot
log Lol 1 th i i .
& O L R W e e & L am . e & O 2rmm e

All advanced filterson

Reduce text-to-link ratioto 0.125

33

Ignore everything, text only

Automating Content Extraction of HTML Documents

L R T T

4 - 32 0 > B
- v Pt

T R LT

L. @ 3 n > B
- o o e

—- I 3n >

= [rreer) v | Sam
S| Greghics) M
Fasted by st Ty Dteinhes 83, 09 10PM [Lmage | FockmategeiT]
[
Fiws v wrie 40 e s b . colled wech .5 eobin 1
uﬁr‘lndml robotic arwr
satelhi CPLR internestid o tha s TFL iy s
) of cormmieats ||
- ning SCO Evidance Al Groklas
@0 S6PAL at | Cabdern
@ e | Gabdernd]
il S o1 ning SCO Evidence AL
"""’“"""“’"“““' e s ccetulied A rarder weies "Therel a ap af Grodine gt ace, 77 neparts ox Pastwd ey lmoil: st Tiesday Decersher 82, G507 S6PM Pl
bt CHUs tntaronstnt 1 the watn CFU [o e ke =0 g, i S Jorder st ey N i peaa e
S and I and dh 2 10 the el 1 W ey, Grablas s An sz reader wries *Thare's 8 wery syeresing sory e
o oo, o in e g0 d exampie o Ju qade bene tharogh faom e — o v evidemce sy s | Eoekbem B ms iag
: - Fiivag, . 500 o e Cemtemedy e
¢ af commens)) P ad b 1 eith the Rl of ki g ” Grtlew i
a5 v B—_ o [,
ol i thorvugh, and thes i o exian i 2 et f
Rl Real Security? nam “"7:“: e e e il of ikl ok 208 Friay 698
o, Pastwd by oo Tunaidsy Disarsbes 02, (305 S9N [USFEEVIT I -
o e b an § Bl Bl |96 of 142 ¢ o | et scmmterg i mad? Sussdets
A ey teber wtes *A recent article s the comeron gt w0
sbout, Tog s e bown atching aecarity pecple for e o by e
i P i
e v i e e e v dncressug ey e a2 hat e
piirre s it U7 Deld e A crlbwiing s prasacsndi 7
e -y
(ol coeznieats | | pep—
§ Mt Dl |96 of 149 ¢ o | e Py — ! ! fissh i
ot - Braaking the Glgapixsl Barrie et it
:mmln ors: Real Security? b Fosied by n Tiesday [eersher 62, G005 D6FLE lisze | Grmphiegl (reeshashe pos houkd - that the
stwd by vl ae] am Tawndy Docoanbes 02 e P _— iy Jaingriss . i u = i
e S9PAL ﬁ G Loin Tithis, A Mt i s "t e e st e bt ot rested o j i b i o T
i the boc b ey Ay Takist o) = - o gasananis tube ® Frwien Taknawts z PO B et =
G smm ar * e S s@m -

Original Ignore scripts All advanced filtersturned on

L R T T

L. @ 3 n > B
. o o e

| EEAAR Hhoors fa1 e 10 vt et - Ul

L. @ 3 0 2~ B

b [+ o

| R Sashikat hens d4) e vt vt Ul

i-%-3

lashiot Poj

(L heat v et called, which i wortung (i3 AR REIE R e
deciged fy apaneoe decign o . P Waich fpaneon) e s bskivee

Bt ety e

Sclence: Robotlcs + A ety

[T Posted by timothy on Tuesday " mpand g
cribe! December 02, @09: 10PN rrader — ik Fiprmvicioii uns
from the street-drug dept. v il

Vb M| o s

[—————

e bt TP, e TP e i hr Mg o Bt mipereice. ssing aken Faand

Mews for nerds wites “J4L Imr thoesugh, sl s b st oo esiengibe of st e e Hhesagh ek ol s
mews alvenst

bmem A e v v e 3 54 e
- 7t Yl e b o i ki i, k8
e P o b

O, winicl s auorhrrg.f 5 scale
wJur e provonpe, destgned by Jepemiese design firm

i PO Wattch apeanese) Tes
- L o Bﬁ'\:‘[‘l" 5. des Swieels are independent

2
e e robotic arms contradled by thetr own sarellite CPUS
rea— e

JHﬁ'r(ormected to the men CPU e on i

wtes *4 recemt arsicle i rmemd the covmon arges:
e eatc kiog security peogle fur yware 22 they'va sl iy
pEmsamd i menrcr f vy ing s s e Aoy Kemiecm ah aey ohot e
Are e ncreasiieg deciriy o0 ek, 20 dhat the eyt w el
b alizvetug sl prsnennds’™

more

[Ee——

{laf comments |1

waking the Gij |
33 of 52 conuments | Fuasted by en Turnilsy Drcomlee 02, (05 06FRL

—— iy
g) ik pkn o ek i b e e e i

o
i o, 1 T 23 Tuter
[T ———

Al e I Aoyl it e rhot dios Baat o 5 1
-] et o Bl

Font size-2 from original Font size +2 from original Ignore everything, text only

Automating Content Extraction of HTML Documents

'eWWW2004

Call for Participation

P The Thirtesnth
Intemnational World
Wide Web
Conference
New York Sheraton T L T
T e et PSR
ez
Dy weopars g

Vipmy Ky e T iy BEAR
Dty Lot Bpmisd Famm i Mk Mol s P start.

ey, A e Wy R
L

asmegars Bar Frpres Bamaes W32 By, Dyl Famary mpmminey. s aemmin
- ey
Brrwapey’ fuy

Wit Pynimame - B iy ooy i

EATE P

Ignore everything, text only

35

Automating Content Extraction of HTML Documents

Appendix B —Crunch 1.0 vs. Crunch 2.0 plug-in API's

ProxyFilter.java

package psl.memento.pervasive.crunch;

import java.io.*;

public interface ProxyFilter {
public File process(File in) throws IOException;
public ProxyFilterSettings getSettingsGUI();
public String getContentType();

package psl.memento.pervasive.crunch2.plugins;
import org.w3c.dom.Document;
public abstract class ProxyFilter {

private boolean enabled = true;

public void getSettingsGUI() {
II'no settings GUI is required

}

public boolean hasSettingsGUI() {
return false;

}

public abstract String getName();
public abstract String getDescription();

public void setEnabled(boolean b) {
enabled = b;

}

public boolean isEnabled() {
return enabled;
1

public abstract Document process(
Document originalDocument,
Document previousDocument,
Document currentDocument);

ProxyFilterSettings.java

package psl.memento.pervasive.crunch;
import javax.swing.JPanel;

public abstract class ProxyFilterSettings extends JPanel {
public abstract void commitSettings();
public abstract void revertSettings();
public abstract String getTabName();

package psl.memento.pervasive.crunch2.plugins;

public interface ProxyFilterSettings {

public void set(String key, String value);
public String get(String key);

public void commitSettings();

public void revertSettings();

Automating Content Extraction of HTML Documents

Appendix C — Code differences between Crunch 1.0 and 2.0

Typical Code Differences

The origina Crunch plug-in was required to implement the ProxyFilter interface. This interface
consists of 3 methods. The first and most important method is the process method. It takes a file and
returns a file. It does all the processing on html content that passes through the proxy. The second
method is getSettingsGUI. It returns the settings GUI so that the settings for the plug-in can be changed.
The third method is getContentType. It returns the content type of the output of the plug-in.

The newer ProxyFilter was created as an abstract class. The new version is similar to the old one,
but forces the plug-ins to works on the DOM documents rather than just plain files. It includes seven
methods. One method is for filtering and the other methods are for GUI integration. To have the plug-in
do processing on content, there is the process method. The process method takes 3 DOM documents for
input. One is the document that should be processed and the other two are for reference.
CurrentDocument is the document that should be processed. PreviousDocument is the output of the
previous filter and is initialy just a copy of currentDocument. PreviousDocument is used for rolling
back changes or other analysis after changes to currentDocument have already been made.
Original Document represents the document as Crunch 2 has received it from the server. This alows for
more advanced heuristics, quality checking, and even rollback of the processing. The methods
hasSettingsGUI and getSettingsGUI are for determining if the plug-in has a settings dialog, and if it
does, displaying it. Currently there is a button that can be clicked if the plug-in has a settings GUI that
will display it. The methods isEnabled and setEnabled are for changing and checking the state of the
plug-in. If the plug-in is disabled, it is skipped during processing of content and is shown grayed in the
plug-ins tab of the main Crunch 2 window. The next two methods, getDescription and getName are used
for displaying information about the plug-in and just return strings. Code details of ProxyFilter.java can
be found in Appendix B.

The original ProxyFilterSettings extends JPanel, which isinserted into the GUI. Each proxy filter
had its own tab; unfortunately this forced the implementer to use Swing, which is not available in many
versions of java, such as gcc-java, also known as g¢j [57]. It dso doesn’t unify the API for easy settings
modification in the software, which is important for Al agorithms. It contains three methods:
commitSettings, revertSettings, and getTabName. CommitSettings and revertSettings are for committing
and reverting respectively, the settings that were made in the GUI. GetTabName is for naming the tab to
put the panel in. Thisis usually the name of the plug-in.

The new ProxyFilterSettings is not tied to a GUI at al. Its sole purpose is to programmatically
allow for the editing settings. It has four functions - Get takes a string hame of the setting and passes
back the value as a string. Set takes a setting name and a value and sets the setting. CommitSettings and
revertSettings save the settings to a file and load the settings from a file respectively. Code details of
ProxyFilterSettings.java can be found in Appendix B.

Notice the differences between the Crunch 1.0 and 2.0 implementations. The Crunch 2.0 plug-in
implementation is now more flexible than the original. It is no longer Swing dependent. In fact, it no
longer forces the user to have any sort of settings GUI. In Crunch 2.0, while no settings implementation
isforced, one is provided so that al the plug-ins can have a common method of changing settings. This

37

Automating Content Extraction of HTML Documents

will simplify the implementation of any filtering heuristics using Al algorithms that could produce better
results, which may need to adaptively change the user settings based on the site and the user’s reaction
to agiven page.

Methods that run filters over content

ProxyThread.filter(HttpStream http) in Crunch 1.0 - In the original Crunch, the filter method inside
ProxyThread is what passes content through the plug-ins. It works by downloading the http content to a
file, and then it runs each filter on the file and updates the content type each time. After that, it replaces
the content file in the http stream with the filtered file.

public void filter(HtpStream http)
throws | OException {
File workingFile = null;
wor ki ngFi | e = http. downl oadToFi | e();
while (filters.hasNext()) {
try {
ProxyFilter filter =
(ProxyFilter) (filters.next());
Systemout.println("Started filtering...");
wor ki ngFi | e. del et eOnExi t () ;
wor ki ngFile = filter. process(workingFile);
wor ki ngFi | e. del et eOnExi t () ;
http.set Attri bute(
"content-type",
filter.get Content Type());
Systemout.println("Done filtering.");
} catch (Exception e) {
e.printStackTrace();
}

}
http. repl aceCont ent Wt hFi | e(wor ki ngFi | e) ;
System out . println("content replaced");

}

PluginFilterRunner.process(File f) in Crunch 2.0 - In Crunch 2.0, the process method inside the
PluginFilterRunner class is what runs all the plug-ins on the content. It takes a file as input. First it
parses that file into xml, and then it gets a copy of that file and sets it as currentDocument. Next, it
enters a loop that checks each plug-in for being enabled and, if so, rotates currentDocument and
previousDocument, and then runs the plug-ins process method. After the loop, it writes the most current
non-null document to afile.

public File process(final File f) {
/'l generate xm docurment fromfile
Document ori gi nal Docunent = get XM_(f);
Docunent previ ousDocunent = nul | ;
Docunent current Docunent = nul | ;

current Docunment = copyDocurnent (ori gi nal Docunent) ;

for (int i =0; i < plugins.length; i++) {
ProxyFilter plugin = plugins[i];
if (!plugin.isEnabled())
conti nue;

if (currentDocunment != null)
pr evi ousDocunent = current Docunent ;

if (previousDocunent != null)

current Document =
copyDocunent (pr evi ousDocunent) ;

38

Automating Content Extraction of HTML Documents

current Document =
pl ugi n. process(
ori gi nal Docunent ,
previ ousDocunent ,
current Docunent) ;

}

if (currentDocunment == null)
current Document = previ ousDocunent ;
if (currentDocument == null)

current Docunment = ori gi nal Docunent ;

return xM.toFil e(current Docunent);

}

Content Extractor Plug-in

The Content Extractor Plug-in is the main filtering plug-in for Crunch 2.0. Its implementation is
very similar to how it wasin the original Crunch. Thisis possible even though quite afew things like the
parser, etc were changed since it is al compliant with the W3C standards. The main changes were
optimization, bug fixing, and working it into the new interface.

When process(Document, Document, Document) is called on the content extractor plug-in, it
creates a child ContentExtractor, and has that process the currentDocument. This allows the content
extractor processing to be thread safe, which is important because the proxy is multithreaded. The
processing begins with the filterNode(Node iNode) method being run on the document, which is the root
node of the DOM tree.

Content Extraction Plug-in filterNode method

Thisisatypica set of recursive methods when working with DOM. Passing through every node
is very simple. FilterNode(Node iNode) passes iNode through a set of filters. Then it determines
whether to filter iNode's children based on the mCheckChildren variable, which the method
passThroughFilters sets. The filterChildren(Node iNode) method takes a node and runs filterNode on
each of its children. Running filterNode on the root of a DOM tree will result in al the nodes being
filtered recursively. This process was smoothed out in Crunch 2.0.

private void filterNode(final Node i Node) {
mCheckChi |l dren = true;

passThroughFi | ters(i Node);

i f (nCheckChi | dren)
filterChildren(i Node);

}

private void filterChildren(final Node i Node) {
i f (i Node.hasChildNodes()) {
Node next = i Node. get FirstChild();
while (next !'= null) {
Node current = next;
next = current. get Next Sibling();
filterNode(current);

39

Automating Content Extraction of HTML Documents

Content Extraction Plug-in: Main Filtering Method - passThroughFilters method

PassThroughFilters(Node iNode) takes a node and determines what filters in the content
extractor plug-in to run on it. MCheckChildren is changed to tell the recursive method not to check a
given node's children. The first thing passThroughFilters(Node iNode) does is gather information about
the node. Currently it gets the node' s type, parent, and attributes. Then it runs filters based on the node
type. Currently the only node type that it runs filters on are element nodes. Element nodes represent tags
such as
 and . Element nodes are filtered in several stages. The first stage is more
information gathering. The node is checked for being a link and then if it is an image. This information
is recorded, and then the node is passed through a second set of filters. The second set of filters only
modifies element attributes. Currently the attributes that are modified are the width attributes of tables
and table cells, and the style attributes of div elements. After the attributes are modified, the element is
passed through filters that can delete element nodes. An example of a node to delete is an ad link. This
code sequence worked well in the previous version so we stayed with it.

private void passThroughFilters(final Node i Node) {
/I Check to see if the node is a Text node or an el enent node and
|/ act accordingly
int type = i Node. get NodeType();
Node parent = i Node. get Par ent Node() ;

//CGet the attributes of the node
NamedNodeMap attr = i Node.getAttributes();

/| El enent node
if (type == Node. ELEMENT_NODE) {

String name = i Node. get NodeNane() ;
/1
/1 Set of conditions that just check the nodes wi thout editing or
/'l deleting them
/1
/1 Any type of link is encountered
i f (isLink(iNode))

recordLi nk(i Node) ;
if (islmage(i Node))

recordl mage(i Node) ;

/1
/1l Set of conditions that edit the nodes but don't delete them
/1

/| <TD| TABLE wi dt h=*> renpves wi dt hs
i f ((name. equal sl gnoreCase("TD') || nane. equal sl gnoreCase(" TABLE"))
&& settings.ignoreCel |l Wdth) {
if (hasAttribute(i Node, "w dth"))
renmoveAttri bute(i Node, "wi dth");
Yy It

/1 <DI'V styl e=*> renoves style
else if (
nane. equal sl gnoreCase("Dl V') && settings.ignoreDi vStyles) {
if (hasAttribute(i Node, "style"))
removeAttri bute(i Node, "style");
Y It

/1
/] Set of conditionals determ ning what to ignore and not to ignore
/1 (Conditions that DELETE nodes fromthe DOMtree)
/1
if (isAdLink(iNode) && settings.ignoreAds) {
parent . renoveChi | d(i Node) ;
nCheckChi | dren = fal se;

40

Automating Content Extraction of HTML Documents

/1 <TD> wi th Link/Text Ratio higher than threshold
el se if (name.equal sl gnoreCase("TD') && settings.ignoreLinkCells) {
t est RenoveCel | (i Node) ;

/I <A HREF> wi th no | mages
el se if (isTextLink(iNode) && settings.ignoreTextLinks) {
parent . renoveChi | d(i Node) ;
if (settings.addLi nksToBottom
enqueueli nk(i Node) ;
mCheckChi | dren = fal se;

}
/ | <BCDY>
el se if (nane. equal sl gnoreCase("BODY"))
mBodyNode = i Node;
} //if (type == Node. ELEMENT NODE)

Example Check Methods

» isLink(Node iNode): isLink checksto see if aNodeis alink. Firgt, it gets the node type and the
node attributes. Then it checksto seeif the node is an element and it contains an HREF attribute.
If that is true, then it returns true indicating that the node is alink. Otherwise it returns false.

private bool ean isLink(final Node i Node) {
int type = i Node. get NodeType();

NanedNodeMap attr = i Node.get Attri butes();

if (type == Node. ELEMENT_NODE) {
String nane = i Node. get NodeNane();
i f (nane. equal sl gnoreCase("A")) {
for (int i =0; i < attr.getLength(); i++) {
if(attr.iten(i).
get NodeNare() .
equal sl gnoreCase("HREF")) {
return true;
Yy It
} //for
} /lelse if
Yy It

return fal se;

}

» islmage(Node iNode): isimage checks to see if the node is an image.

private bool ean islnage(final Node i Node) {
bool ean i mage = fal se;

/'l Check to see if the node is an inage
int type = i Node. get NodeType();
if (type == Node. ELEMENT_NODE) {
i f (i Node.get NodeNane() . equal sl gnoreCase("IM3"))
i mage = true;
Y It

return image;

}

» islmageLink(Node iNode): This method checks to seeif anodeis alink with an image as the link
or if the node is an image, it checks if it isalink. First, it checks to see if the node is alink, and

41

Automating Content Extraction of HTML Documents

then it checks to seeif any of its children are images. If that is true, then the method returns true,
indicating the node is an image link. Second, it checksif the node is an image, and if its parent is
alink. If thisis the case, it will indicate that the node is an image link. Maps are also check for

and treated asimage links. Otherwise, it returns false.

private bool ean i sl mageLi nk(fi nal
bool ean i magelLi nk = fal se;

Node i Node) ({

/1 Check to see if the node is a |link
if (isLink(iNode)) {

//Check to see if the children have an inage in it

i f (i Node. hasChil dNodes()) {
Node next =

while (next !'= null

Node current = next;

i Node. get First Chil d();

&& !'i magelLi nk) {

next = current. get NextSibling();

if (islmage(current))

/1i mageLi nk = true;

return true;

} /1while
Y It
Y It
//1f the node is an inage,
else if (islmage(iNode)) {
i f (isLink(iNode.getParentNode()))
/1i mageLi nk = true;
return true;
el se {
/'l check for inage naps

i f (nodeContainsAttribute(i Node,

/'li mageLi nk = true;
return true;
}
} /lelse if

return i magelLi nk;
} //islnageLi nk

42

check if its parent is a link

"usemap"))

Automating Content Extraction of HTML Documents

Acknowledgements

Prof. Kaiser's Programming Systems Laboratory is funded in part by Defense Advanced Research
Project Agency under DARPA Order K503 monitored by Air Force Research Laboratory F30602-00-2-
0611, by National Science Foundation grants CCR-02-03876, EIA-00-71954, CCR-99-70790, and by
Microsoft Research and IBM. Dr. Chiang is supported by grant LM07079 from the National Library of
Medicine, and grant EY 013972 from the National Eye Institute.

We would like to extend a special thanks to David L. Neistadt for support in developing Crunch 1.0, to
David Kaufman, Vimla Patel, and Roy Cole for helpful discussions regarding the usability study, and to
the subjects who generously volunteered their time to participate in the study.

43

(4

(2]

(3]

[4]

(5]

6]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[29]

Automating Content Extraction of HTML Documents

References

Aidan Finn, Nicholas Kushmerick and Barry Smyth. “Fact or fiction: Content classification for digital libraries’. In
Joint DEL OS-NSF Workshop on Personalisation and Recommender Systems in Digital Libraries (Dublin), 2001.

A. F. R. Rahman, H. Alam and R. Hartono. “Content Extraction from HTML Documents’. In 1st Int. Workshop on
Web Document Analysis (WDA2001), 2001.

O. Buyukkokten, H. Garcia-Molina and A. Pagpcke. “Accordion Summarization for End-Game Browsing on PDAS
and Cédllular Phones’. In Proc. of Conf. on Human Factorsin Computing Systems (CHI'01), 2001.

O. Buyukkokten, H, GarciaMolina and A. Paepcke. “Seeing the Whole in Parts; Text Summarization for Web
Browsing on Handheld Devices'. In Proc. of 10th Int. World-Wide Web Conf., 2001.

E. Kaasinen, M. Adtonen, J. Kolari, S. Melakoski and T. Laakko. “Two Approaches to Bringing Internet Services to
WAP Devices'. In Proc. of Sth Int. World-Wide Web Conf., 2000.

Stuart Hanzlik “Gorilla Design Studios Presents: The Hosts File’. Gorilla Design Studios. August 31, 2002.
http://accs-net.com/hosts/.

Marc H. Brown and Robert A. Shillner. “A New Paradigm for Browsing the Web”. In Human Factors in Computing
Systems (CHI'95 Conference Companion), 1995.

K.R. McKeown, R. Barzilay, D. Evans, V. Hatzivassiloglou, M.Y. Kan, B. Schiffman and S. Teufel. “ Columbia Multi-
document Summarization: Approach and Evaluation” , In Document Understanding Conf., 2001.

N. Wacholder, D. Evans and J. Klavans. “Automatic Identification and Organization of Index Terms for Interactive
Browsing”. In Joint Conf. on Digital Libraries’01, 2001.

O. Buyukkokten, H. Garcia-Molina and A. Pagpcke. “Text Summarization for Web Browsing on Handheld Devices’,
In Proc. of 10th Int. World-Wide Web Conf., 2001.

Manuela Kunze and Dietmar Rosner. “An XML-based Approach for the Presentation and Exploitation of Extracted
Information”. In 19th International Conference on Computational Linguistics, (Coling) 2002.

A. F. R. Rahman, H. Alam and R. Hartono. “Understanding the Flow of Content in Summarizing HTML Documents’.
In Int. Workshop on Document Layout I nterpretation and its Applications, DLIAO1, Sep., 2001.

Wolfgang Reichl, Bob Carpenter, Jennifer Chu-Carroll and Wu Chou. “Language Modeling for Content Extraction in
Human-Computer Dialogues’. In International Conference on Spoken Language Processing (ICSLP), 1998

lon Muslea, Steve Minton and Craig Knoblock. “A Hierarchal Approach to Wrapper Induction”. In Proc. of 3rd Int.
Conf. on Autonomous Agents (Agents'99), 1999.

Min-Yen Kan, Judith L. Klavans and Kathleen R. McKeown. “Linear Segmentation and Segment Relevance”. In Proc.
of 6th Int. Workshop of Very Large Corpora (WVLC-6), 1998.

http://www.opera.com

http://www.bitstream.com/wireless

http://sourceforge.net/proj ects/wpar

http://www.webwiper.com

http://www.junkbusters.com

http://www.openxml.org

Private communication, Min-Y en Kan, Columbia NLP group, 2002.
http://www.apache.org/~andyc/neko/doc/html/
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html

http://www.eclipse.org/articles/Article-Accessibility/accessi bility.html

[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]
[47]
[48]

[49]
[50]
[51]

Automating Content Extraction of HTML Documents

http://www.microsoft.com/enabl e/

http://www.bitstream.com/wirel ess/server/workflow.html

http://www.greenlightwirel ess.net/services/default.asp

J. Nielsen. “Usability engineering.” New Y ork: Academic Press, 1993.

B. Schneiderman. “Designing the user interface: Strategies for effective human-computer interaction” (3 edition).
Reading, MA: Addison-Wesley, 1997.

R. L. Kline and E. P. Glinert. “Improving GUI accessibility for people with low vision.” In Human Factors in
Computing Systems (CHI’ 95 Conference Companion), 1995.

W. K. Edwards, E. D. Mynatt, and K. Stockton. “Access to graphical interfaces for blind users.” Interactions 1995; 2:
54-67.

I. U. Scott, W. J. Feurer, and J. A. Jacko. “Impact of graphical user interface screen features on computer task
accuracy and speed in a cohort of patients with age-related macular degeneration.” Am J Ophthalmol 2002; 134: 857-
862.

D. P. Rice. “Chronic care in America: A 21% century challenge.” Institute for Health and Aging, University of
California, San Francisco. Princeton, NJ: Robert Wood Johnson Foundation, 1996.

American Foundation for the Blind. “ Statistics and sources for professionals.” New York: American Foundation for
the Blind, 2000.

C. Brown. “Assistive technology computers and persona with disabilities.” Communications of the ACM 35: 36-45,
1992.

I. J. Pitt, and A. D. N. Edwards. “Improving the usability of speech-based interfaces for blind users.” In Proceedings of
the Second Annual ACM Conference on Assistive Technologies (ASSETS), 1996.

C. Lewis. “Using the ‘thinking-aloud’ method in cognitive interface design.” IBM Research Report RC 9265.
Y orktown Heights, NY: IBM Thomas J. Watson Research Center, 1982.

K. A. Ericsson, H. A. Simon. “Protocol analysis: Verbal reports as data.” Cambridge, MA: MIT Press, 1993.

A. W. Kushniruk, M. Y. Kan, K. McKeown, et al. “Usability evaluation of an experimental text summarization system
and three search engines: Implications for the reengineering of health care interfaces.” Proc AMIA Symp 2002; : 420-
424,

A. W. Kushniruk, V. L. Patel, and J. J. Cimino. “Usability testing in medical informatics: Cognitive approaches to
evaluation of information systems and user interfaces.” Proc AMIA Symp 1997; : 218-222.

A. W. Kushniruk, D. R. Kaufman, V. L. Patel, et al. “ Assessment of a computerized patient record system: A cognitive
approach to evaluating medical technology.” MD Comput 1996; 13: 406-415.

S.Brin S, and L. Page. “The anatomy of alarge-scale hypertextual web search engine.” Computer Networks and ISDN
Systems 1998; 30: 107-117.

http://www.promotiondata.com/article.php?sid=190
W. Chisolm, G. Vanderheiden, and I. Jacobs. “Web content accessibility guidelines 1.0.” Interactions 2001; 8: 35-54.
http://www.dol phi nuk.co.uk/products’hal .htm

http://www.microsoft.com/technet/treeview/default.asp?url =/technet/prodtechnol/winxppro/reader overview.asp

Chiang, Michael, “World Wide Web Accessibility by Visually Disabled Patients: Problems and Solutions’ Final
Report for CS6125 WHIM at Columbia University’ s Computer Science Department.

http://www.weba m.org/si mul ations/screenreader

http://www-3.ibm.com/able/solution_offerings/hpr.html

http://www.apache.org/

45

[52]

(53]
[54]
[55]

[56]

[57]

Automating Content Extraction of HTML Documents

Shoemaker JA: Vision problems in the US: prevalence of adult vision impairment and age-related eye diseases in
America. Bethesda, MD: National Eye Institute, 2002

http://www.avantbrowser.com

http://www.mozilla.org

Welsh, M. “The Staged Event-Driven Architecture for Highly-Concurrent Server Applications’ Ph.D. Qualifying
Examination Proposal, UC Berkeley, December 2000. http://www.cs.berkel ey.edu/"mdw/papers/qual s-seda.pdf.

Chen, Y., Ma, W.Y., and Zhang, H.J. “Detecting Web Page Structure for Adaptive Viewing on Small Form Factor
Devices’. Proc. WWW'’ 03 Budapest, Hungary, May 2003

http://www.gnu.org/software/gec/javal

46

