
On the Learnability of Monotone Functions

Homin K. Lee

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2009



c©2009

Homin K. Lee

All Rights Reserved



ABSTRACT

On the Learnability of Monotone Functions

Homin K. Lee

A longstanding lacuna in the field of computational learning theory is the learnability of

succinctly representable monotone Boolean functions, i.e., functions that preserve the given

order of the input. This thesis makes significant progress towards understanding both the

possibilities and the limitations of learning various classes of monotone functions by carefully

considering the complexity measures used to evaluate them.

We show that Boolean functions computed by polynomial-size monotone circuits are

hard to learn assuming the existence of one-way functions. Having shown the hardness

of learning general polynomial-size monotone circuits, we show that the class of Boolean

functions computed by polynomial-size depth-3 monotone circuits are hard to learn using

statistical queries. As a counterpoint, we give a statistical query learning algorithm that can

learn random polynomial-size depth-2 monotone circuits (i.e., monotone DNF formulas).

As a preliminary step towards a fully polynomial-time, proper learning algorithm for

learning polynomial-size monotone decision trees, we also show the relationship between

the average depth of a monotone decision tree, its average sensitivity, and its variance.

Finally, we return to monotone DNF formulas, and we show that they are teachable (a

different model of learning) in the average case. We also show that non-monotone DNF

formulas, juntas, and sparse GF2 formulas are teachable in the average case.



Table of Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 8

2.1 Concepts and Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 PAC Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Tail Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Learning Monotone Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 The Cryptographic Hardness of Learning Monotone Functions 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Our Results and Techniques: Cryptography Trumps Monotonicity. . 20

3.1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Lower Bounds via Hardness Amplification of Monotone Functions . . . . . . 25

3.2.1 Hardness Amplification for Learning . . . . . . . . . . . . . . . . . . 26

3.2.2 A Simple Monotone Combining Function . . . . . . . . . . . . . . . 29

3.2.3 Hardness of Learning Polynomial-size Monotone Circuits . . . . . . 30

3.3 Hardness of Learning Simple Circuits . . . . . . . . . . . . . . . . . . . . . . 32

3.4 A Computational Analogue of the BBL Lower Bound . . . . . . . . . . . . 34

3.4.1 Information-Theoretic Lower Bound . . . . . . . . . . . . . . . . . . 36

3.4.2 Computational Lower Bound . . . . . . . . . . . . . . . . . . . . . . 41

i



4 The Statistical Hardness of Learning Monotone Functions 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 The Statistical Query Model . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 The Strong SQ Dimension . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 The Strong SQ Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 The Circuit Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Learning Random Monotone DNF 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Fourier Coefficients and the Term Structure of Monotone DNF . . . . . . . 55

5.2.1 Rewriting f̂(S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.2 Bounding the Contribution to f̂(S) from Various Inputs. . . . . . . 57

5.2.3 Bounding f̂(S) Based on Whether S Co-occurs in Some Term of f . . 60

5.3 Hypothesis Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Random Monotone DNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.1 Probabilistic analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 The Structure of Monotone Decision Trees 76

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 A Poincaré-type Inequality for Decision Trees . . . . . . . . . . . . . . . . . 81

6.4 The Average Sensitivity of Monotone Decision Trees . . . . . . . . . . . . . 84

7 Teaching DNF in the Average Case 87

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Monotone DNF formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ii



7.4 DNF Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4.2 Teaching S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4.3 Average-Case Teaching Dimension of DNFs . . . . . . . . . . . . . . 99

7.5 Teaching Dimension of k-Juntas . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.6 Sparse GF2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Conclusions and Future Directions 111

iii



List of Figures

2.1 A decision tree of size 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 A DNF formula of size 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Summary of known hardness results for learning monotone Boolean functions. 22

5.1 The Algorithm A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 The Algorithm A′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 The Algorithm A′′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 A decision tree with ∆(T ) = 9/4. . . . . . . . . . . . . . . . . . . . . . . . . 78

iv



Acknowledgments

I would like to express my gratitude [Hyl04] to everybody who has had a hand in helping

this dissertation come to fruition. I am deeply indebted to my advisors Rocco Servedio and

Tal Malkin. Their tutelage, patience, and encouragement were invaluable to me in this

research. In particular, I would like to thank them for the insightful, “Wake up Mr. Sleepy!

Your unconscious mind is dead!” I would also like to thank Moti Yung for his guidance and

support, especially during the early years of my graduate career.

I wish to single out Andrew Wan, who collaborated with me in much of my research, for

special acknowledgement. He has been a constant source of inspiration for me. I would like

to thank the Columbia University Faculty House for many fine lunches, as well as Emily

Ford, Carey Kasten, Jonathan Rick, Erica Siegel, and Paul Vernon for eating these lunches

with me.

I would also like to thank my colleagues and friends — including Spyridon Anton-

akopoulos, Seung Geol Choi, Justin Cranshaw, Dana Dachman-Soled, Ilias Diakonikolas,

Ariel Elbaz, Ragesh Jaiswal, Troy Lee, Kevin Matulef, Li-Yang Tan, Emanuele Viola, and

Hoeteck Wee — for many inspiring conversations, rousing procrastinations, and the contin-

ued success of Dixon’s Book Club.

I would like to thank my co-authors — Dana Dachman-Soled, Vitaly Feldman, Jeffrey

Jackson, Tal Malkin, Rocco Servedio, Andrew Wan, and Hoeteck Wee — for their con-

tributions to this thesis. Thanks to Adam Klivans, Tal Malkin, Rocco Servedio, Mihalis

Yannakakis, and Moti Yung for serving on my thesis committee.

Finally, I would like to thank Christelle Palpacuer for her love. C’est fin c’est très fin

ça se mange sans faim.

v



This thesis is dedicated to all the sad boys and party girls.

vi



1

Chapter 1

Introduction

...the problem of distinguishing between projectible and non-projectible hy-

potheses, is as important as it is exasperating

– Nelson Goodman, Fact, Fiction, and Forecast

The commonplace phenomenon of humans learning new concepts has been extensively

studied by learning theorists in fields as disparate as psychology, philosophy, statistics,

education, and computer science. Concepts are considered to be the constituents of thoughts

and are essential to most accounts of human cognition, yet we know very little about the

types of concepts humans can learn. It is intuitively clear that classes of simple concepts

(e.g., the rules of board games) are easier to learn than more complex ones (e.g., the

ideas of hermeneutical phenomenology), but to formalize this intuition we need a notion of

complexity and a clear model of learning. These are precisely the tools that computational

learning theory provides.

One of the difficulties in creating a coherent theory of learnability is that the same

concept can be expressed in many different ways. For instance, the concept of [city] can

be expressed by the words ‘city’, ‘metropolis’, ‘urbs’, or ‘an inhabited place of greater size,

population, or importance than a town or village’. If we measured the complexity of the

concept [city] by the number of letters it took to express it, the last expression would imply

that [city] is a complex concept, whereas the first expression would imply that it is a simple



2

one. This phenomenon should be familiar to readers of academic writing where it is often

unclear if an idea being discussed is inherently complex or simply poorly expressed.

For a learner to have any hope of learning a class of concepts, the concepts should

be expressible reasonably succinctly under some representation scheme. The major goal in

computational learning theory is to identify classes of concepts with succinct representations

that can be learned efficiently. In particular, a lot of effort has been made to identify

efficiently learnable classes of binary classification concepts, which we model as Boolean

functions. (E.g., [animal?] is the concept that classifies all the objects in the world as being

an animal or not an animal.)

The most influential and widely used model of learning comes from Valiant’s seminal

paper “A Theory of the Learnable” [Val84] where he suggested the concrete and robust

Probably Approximately Correct, or PAC, model of concept learning. In the PAC model, a

learning algorithm for a class of concepts C is given examples drawn from a fixed distribution

labeled according to a fixed but unknown target concept c ∈ C. The goal of the algorithm

is to efficiently generate a hypothesis under any representation scheme, which, with high

probability, accurately approximates the target concept relative to the distribution over the

domain. Ideally, the learning algorithm will work for all concepts c ∈ C and all distributions

over the examples.

The information-theoretic learnability of classes under the PAC model is well-understood

[BEHW89, EHKV89]. However, the complexity measures (e.g., the Vapnik-Chervonenkis

dimension) used to characterize the information-theoretic learnability of concept classes are

too coarse to differentiate between classes that are easy to learn efficiently and those that are

provably impossible to do so. For many basic concept classes polynomially-many samples

are enough to learn the concept information-theoretically, but the information-theoretic

bounds give us little, if any, insight into the computational hardness of the problem.

Moreover, despite intensive research, no algorithm is currently known that learns ar-

bitrary Boolean functions efficiently with respect to any reasonable representation scheme

even though there is no information-theoretic impediment to learning from a polynomial

number of examples. Due to this lack of success, researchers have tried to learn various

restricted classes of Boolean functions. The most natural and closely studdied class is the



3

class of all monotone functions. Monotone functions are functions that preserve the given

order of the input. For f : {0, 1}n → {0, 1} these are functions that satisfy f(x) ≥ f(y)

whenever x ≥ y in the partial order on {0, 1}n. Most “natural” classification concepts

that humans use (such as [animal?]) are in some sense monotone, and monotone functions

correspond to many natural representation schemes (e.g., circuits including no negations).

Showing that classes of monotone functions with succinct representations are easy or

hard to learn efficiently would have significant practical implications as well as theoretical

interest. Efficient algorithms would have immediate machine learning applications, whereas

impossibility results would show the limits of what we can expect from learning systems

in the real world. Studying the learnability of these concept classes will also gives us

insight into computational complexity in general. These learning problems, like the famous

problems of graph isomorphism and factoring, have resisted being classified as being in P

(i.e., solvable efficiently) or being NP-hard (i.e., as hard as the hardest problems that can

be efficiently verified).

1.1 Overview

This doctoral thesis seeks to enhance our understanding of efficiently learnable concept

classes by carefully considering the complexity measures used to evaluate them. The main

contribution of this thesis is the significant progress made on understanding both the pos-

sibilities and the limitations of learning various classes of monotone functions.

• Chapter 2 – Background

In this chapter we define the PAC learning model, present some mathematical back-

ground material, and give a brief history of important results in learning monotone

functions.

• Chapter 3 – The Cryptographic Hardness of Learning Monotone Functions

Over the years a range of positive algorithmic results have been obtained for learn-

ing various classes of monotone Boolean functions from uniformly distributed random

examples. To date, the only negative result for learning monotone functions in this



4

model is a non-explicit lower bound showing that certain superpolynomial-size mono-

tone circuits cannot be learned to accuracy 1/2 + ω(log n)/
√
n [BBL98]. This is in

contrast with the situation for non-monotone functions, where a wide range of cryp-

tographic hardness results are known establishing that various “simple” classes of

polynomial-size circuits are not learnable by polynomial-time algorithms.

In this chapter we establish cryptographic hardness results for learning various classes

of “simple” monotone circuits, giving a computational analogue of the information-

theoretic hardness results mentioned above. Lower bounds of the type we establish

have previously only been known for non-monotone functions. Some of our results

show the cryptographic hardness of learning polynomial-size monotone circuits to an

accuracy bound that is close to optimal by known positive results. Our main tool

is a complexity-theoretic approach to hardness amplification via noise sensitivity of

monotone functions that was pioneered by O’Donnell [O’D04].

This chapter is based on the paper “Optimal Cryptographic Hardness of Learning

Monotone Functions”, which is joint work with Dana Dachman-Soled, Tal Malkin,

Rocco Servedio, Andrew Wan, and Hoeteck Wee, and appeared in the Proceedings

of the 35th International Colloquium on Automata, Languages and Programming

[DSLM+08].

• Chapter 4 – The Statistical Hardness of Learning Monotone Functions

Having shown the hardness of learning general polynomial-size monotone circuits, we

focus on low-depth polynomial-size monotone circuits. This chapter complements the

previous one by proving lower bounds that are unconditional, but which are only true

for a restriction of the PAC learning model. In particular, we will be using the statis-

tical query model of Kearns [Kea98] where instead of being given random examples,

the learner is allowed queries of the form: “What is the approximate expected value

of the function g on a random example labeled by the concept?”

Unlike the conditional hardness results in PAC learning, there are unconditional

information-theoretic barriers to statistical query learning. We show that the class of

Boolean functions computed by polynomial-size depth-3 monotone circuits are hard



5

to learn using statistical queries. The statistical query model encompasses almost all

known learning algorithms, and our result implies that we will need new algorithmic

techniques to be able to learn concept classes that are computable by polynomial-size

depth-3 monotone circuits.

This chapter is based on a manuscript, which is joint work with Vitaly Feldman and

Rocco Servedio.

• Chapter 5 – Learning Random Monotone DNF

We move to even simpler circuits, polynomial-size depth-2 monotone circuits, other-

wise known as monotone DNF formulas. The learnability of polynomial-size monotone

DNF formulas is still unresolved, and the best algorithm to date only works for mono-

tone DNF of sublinear size.

We give an algorithm that with high probability properly learns random monotone

t(n)-term DNF under the uniform distribution on the Boolean cube {0, 1}n. For any

polynomially bounded function t(n) ≤ poly(n) the algorithm runs in time poly(n, 1/ǫ)

and with high probability outputs an ǫ-accurate monotone DNF hypothesis. This is

the first algorithm that can learn monotone DNF of arbitrary polynomial size in a

reasonable average-case model of learning from random examples only.

This chapter is based on the paper “Learning random monotone DNF”, which is joint

work with Jeffrey Jackson, Rocco Servedio, and Andrew Wan, and appeared in the

Proceedings of the 11th International Workshop on Approximation Algorithms for

Combinatorial Optimization Problems and 12th International Workshop on Random-

ization and Computation [JLSW08].

• Chapter 6 – The Structure of Monotone Decision Trees

Decision trees are one of the most important concept classes in the field of compu-

tational learning theory. They are perhaps the smallest concept class (the class of

polynomial-size decision trees is a subset of the class of polynomial-size DNF formu-

las) for which no completely efficient algorithms exist, yet they are also widely used in

experimental and applied machine learning. The heuristics used in machine learning



6

(e.g., the C4.5 and CART software packages [BFSO84, Qui93]) “grow” a tree from

the root to its leaves by repeatedly replacing an existing leaf with a node labeled with

a variable that minimizes the empirical error with respect to the given data sample.

Unfortunately, these heuristics have been difficult to analyze in the PAC model of

learning. The best algorithm for PAC-learning decision trees is still the one by Ehren-

feucht and Haussler from 1989 [EH89], which learns size-s decision trees in time

O(nlog s). Even when the inputs are assumed to be distributed uniformly, finding

an efficient algorithm for polynomial-size decision trees remains an open problem.

When considering polynomial-size decision trees that compute monotone functions

(also called “monotone decision trees”), there is an efficient algorithm that can learn

them to constant accuracy under the uniform distribution [OS07]. The resulting

hypothesis, however, is a real-valued polynomial threshold function. Ideally, one would

hope for an algorithm that learns polynomial-size monotone decision trees to arbitrary

accuracy, under any distribution, and outputs a polynomial-size monotone decision

tree as a hypothesis. As a first step to such a result, we show the relationship between

the average depth of a monotone decision tree, its average sensitivity and its variance.

• Chapter 7 – Teaching DNF in the Average Case

Finally, we return to monotone DNF formulas, and we show that they are teachable in

the average case. I.e., we study the average number of well-chosen labeled examples

that are required for a helpful teacher to uniquely specify a target function within

the concept class. This “average teaching dimension” has been studied in learning

theory and combinatorics and is an attractive alternative to the “worst-case” teaching

dimension of Goldman and Kearns [GK92] which is exponential for many interesting

concept classes. Balbach [Bal05] showed that the classes of 1-decision lists and 2-term

DNF each have linear average teaching dimension.

As our main result, we extend Balbach’s teaching result for 2-term DNF by showing

that for any 1 ≤ s ≤ 2Θ(n), the well-studied concept classes of at-most-s-term DNF

and at-most-s-term monotone DNF each have average teaching dimension O(ns). The

proofs use detailed analyses of the combinatorial structure of “most” DNF formulas



7

and monotone DNF formulas. We also establish asymptotic separations between

the worst-case and average teaching dimension for various other interesting Boolean

concept classes such as juntas and sparse GF2 polynomials.

This chapter is based on the paper “DNF are Teachable in the Average Case”, which is

joint work with Rocco Servedio, and Andrew Wan, and appeared in Machine Learning

[LSW07]; a preliminary version of the paper appeared in the Proceedings of the 19th

Annual Conference on Computational Learning Theory.

• Chapter 8 – Conclusions and Future Directions

We close by proposing directions for future research.



8

Chapter 2

Background

In this chapter we go over the necessary background for the subsequent chapters. We

introduce the main concept classes that we discuss in this thesis in Section 2.1. In Section 2.2

we recall Valiant’s PAC model of learning. We provide some mathematical background in

Section 2.3, and we conclude by highlighting some results on learning monotone Boolean

functions in Section 2.4.

Throughout this proposal, we will write 1p for the indicator function that outputs 1

when the statement p is true, and 0 otherwise. As is standard in the literature, we write

[n] for the set {1, . . . ,n}, log to denote log2 and ln to denote the natural logarithm.

2.1 Concepts and Representations

Let X represent the domain under consideration. A binary-classification concept is any

Boolean function c : X → {0, 1} over this domain. A concept class is a set C of concepts.

As an example, X could be the set of all organisms, and C could be all the Linnaean

taxonomic classes. (E.g., [mammalia?] and [zygomycota?] are concepts in this class).

Typically, however, X will be {0, 1}n for the concept classes we consider. A simple concept

class over this domain is the class of k-juntas, which are the class of functions that depend

on an unknown k out of the n variables.

We will also be restricting our attention to concept classes consisting of succinctly repre-

sentable functions. As is usual in the theory of computation, succinctly will mean that the



9

function has a representation of polynomial size (in n), and we will use the notation poly()

to mean a fixed polynomial in the input variables. Thus, we will usually specify concept

classes by their representations. Two that have received a lot of attention in the learning

community are decision trees and disjunctive normal form formulas.

Let the input variables for the Boolean functions be x1, . . . ,xn, and let x̄i denote the

negation of xi. We will call variables or their negations literals. We will often refer to a

logical assignment of the variables as a string and vice-versa; thus, a string x ∈ {0, 1}n

corresponds to a truth-value assignment to the variables x1, . . . ,xn.

Decision trees are rooted binary trees where each internal node is labeled with a variable

and each leaf is labeled with a bit in {0, 1}. A decision tree computes a Boolean function

in the obvious way: on input x ∈ {0, 1}n, if the variable at the root xi is 0, the left child

is evaluated, otherwise the right child is. This process is repeated until a leaf is reached,

and the leaf’s value is the function output (see Figure 2.1). A disjunctive normal form

(DNF) formula is a disjunction of conjunctions of Boolean literals. One can view a DNF

formula as a depth-2 unbounded-fan-in circuit that computes an OR of ANDS. We refer

to the conjunctions as terms (see Figure 2.2). A DNF formula is said to be a read-k DNF

formula if each literal occurs in at most k terms.

x2

x1

x3

1 0

0

x4

0 x1

0 1

Figure 2.1: A decision tree of size 6.

Both representation schemes can represent any Boolean function. They also have natural

complexity measures associated with them: the number of leaves for decision trees; and the

number of terms for DNF formulas. Part of their attraction is that they seem to capture

how humans naturally represent classifications (e.g., [mammalia?] can be represented as

[live birth?] and [sweat glands?] or [echidna?] or [platypus?]).



10

∨

∧

x1 x2 x3

∧

x̄1 x̄2 x̄3

Figure 2.2: A DNF formula of size 2.

Now we can consider representation classes which are just concept classes specified by

a representation scheme. A natural representation class is the class of functions repre-

sentable by polynomial-sized decision trees. Another is the class of functions representable

by polynomial-sized DNF formulas. It is important to be careful about distinguishing be-

tween the syntactic representations of these functions and the functions themselves. For

instance, a function representable by a polynomial-sized decision tree has several equivalent

polynomial-size decision tree representations. Thus, the number of polynomial-sized deci-

sion trees is much greater than the number of functions representable by polynomial-sized

decision trees. When we refer to the decision tree size (or the DNF formula size) of a

function we will always be referring to the size of the minimum size decision tree (or DNF

formula) that computes the function.

One particular DNF formula we will encounter is the “tribes” function on c ·d variables.

Definition 1. The tribes function, Tribescd : {0, 1}cd → {0, 1}, is a size-c, read-once, DNF

formula with terms of size d:

Tribesc
d(x1, . . . , xcd)

def
= (x1 ∧ · · · ∧ xd) ∨ (xd+1 ∧ · · · ∧ x2d) ∨ · · · ∨ (x(c−1)d+1 ∧ · · · ∧ xcd).

When c = 2d, we simply write Tribesd.

Circuits are another general representation class. A G-Boolean circuit with n inputs is

a directed acyclic graph, where the inputs to the circuit are the source vertices, and the

other vertices are gates. The gates are labeled by functions g ∈ G, and one of the gates

is the output gate. The size of the circuit is the number of gates, not counting the input

nodes, and the depth of the circuit is the length of the longest path from an input node to

the output gate.



11

The class AC
0 consists of functions computable by polynomial-size constant-depth cir-

cuits comprised of and, or, and not gates of arbitrary fan-in. We can view DNF formulas

as being depth-2 AC
0 circuits. Sometimes we will further refine AC

0 by specifying the

depth of the circuits, and we write AC
0

d to denote the class of functions computable by

polynomial-size, depth-d and/or/not-circuits. AC
1 is the class of functions computable

by polynomial-size log-depth and/or/not-circuits, and in general AC
i is the class of func-

tions computable by polynomial-size logi-depth and/or/not-circuits. We also define the

general class AC := ∪iAC
i.

The class NC refers to circuits with fan-in 2, and all the AC classes have corresponding

NC versions. The class TC
0 consists of functions computable by polynomial-size, constant-

depth circuits comprised of and, or, and not gates of arbitrary fan-in as well as threshold

gates. A threshold gate returns 1 if at least half of its inputs are 1, and 0 otherwise. The

following inclusions are known:

NC
0 ⊆ AC

0 ⊆ TC
0 ⊆ NC

1 ⊆ AC
1.

Finally, we end with the concept class of parity functions over the domain {0, 1}n.

There are 2n different parity functions χS , for S ⊆ [n]. If the range is {0, 1}, then χS(x) =
∑

i∈S xi mod 2. If the range is {+1,−1}, then χS(x) =
∏

i∈S xi.

2.2 PAC Learning

We begin this section by defining Valiant’s PAC model of learning and we will follow with

some of the variants that we will be considering in this thesis. For a more comprehensive

introduction to computational learning theory, we refer the reader to the textbook by Kearns

and Vazirani [KV94].

In Valiant’s Probably Approximately Correct learning model [Val84] a learning algo-

rithm for a concept class C tries to approximate an unknown target concept c ∈ C given ex-

amples of input/output pairs. The examples are generated by an example oracle EX(c,D).

When the oracle is invoked, it draws x from an unknown distribution D, and gives the

learner (x, c(x)). The value c(x) is called a label and the pair (x, c(x)) is called a labeled



12

example. The goal of the learner is to generate a hypothesis h under any representation

scheme, and we say the error rate of h is Prx∈D[h(x) 6= c(x)].

The learner is allowed to fail with probability δ and output a hypothesis with error rate

up to ǫ. We allow the learner to fail since the algorithm could receive highly unrepresentative

examples from the oracle, and we call δ the confidence parameter. On the other hand, even

with a representative sample, the target concept might be impossible to learn exactly, and

thus the hypothesis is allowed to be approximately correct.

We have the following formal definition of the PAC model in its full generality:

Definition 2. Let C be a concept class over X. An algorithm A is said to be a PAC learning

algorithm for C if for all 0 < ǫ, δ < 1, for all c ∈ C, and all distributions D over X, A on

input ǫ, δ and access to the example oracle EX(c,D) with probability at least 1 − δ outputs

a hypothesis h such that Prx∈D[h(x) 6= c(x)] ≤ ǫ.

If A runs in time poly(n, size(c), ǫ−1, δ−1), we say that A is a polynomial-time PAC

learning algorithm. A concept class is said to be efficiently PAC learnable if there exists a

polynomial-time PAC learning algorithm for the class.

We note two relaxations of the PAC model now, and we will encounter others later on.

The first is a relaxation known as weak learning. Definition 2 is referred to as strong learning

since the learner is required to output a hypothesis of accuracy ǫ for any ǫ that it receives as

an input. A weak-learning algorithm only has to output a hypothesis that does noticeably

better than random, i.e., Prx∈D[h(x) 6= c(x)] ≤ 1/2− γ, for γ = 1/poly(n, size(c)). We call

γ the advantage or the correlation.

The second relaxation is the uniform-distribution PAC-learning model. Our original def-

inition, Definition 2, is sometimes referred to as the distribution-free PAC-learning model

since the learner is required to output a valid hypothesis for any unknown distribution.

In the uniform-distribution PAC-learning model, however, the learning algorithm is given

independent random examples (x, c(x)) where each x is drawn uniformly from the n-

dimensional Boolean cube. Algorithms and hardness results in this framework have inter-

esting connections with topics such as discrete Fourier analysis [Man94], circuit complexity

[LMN93], noise sensitivity and the influence of variables in Boolean functions [KKL88,

BKS99, KOS04, OS07], coding theory [FGKP07], privacy [BLR08, KLN+08], and cryptog-



13

raphy [BFKL93, Kha95]. For these reasons, and because the model is natural and elegant

in its own right, the uniform distribution learning model has been intensively studied for

almost two decades.

2.3 Mathematical Background

We will mostly be dealing with the behavior of Boolean functions of the form f : {0, 1}n →
{0, 1}, but sometimes it will be more convenient to use the range {+1,−1}, in which case

−1 signifies true and +1 signifies false. We can also do an explicit conversion by setting

g : {0, 1}n → {+1,−1} to be g(x) = 1 − 2f(x).

Let D be a distribution on the input space. The functions on the domain {0, 1}n form

a 2n-dimensional vector space with the following inner product:

〈f1, f2〉D :=
∑

x∈{0,1}n
D(x)f1(x)f2(x) = E

D
[f1(x)f2(x)]

The norm of a function is then ||f || :=
√

〈f, f〉D. This is also called the L2-norm, and more

generally, for p > 0, ||f ||p = ED[|f(x)|p]1/p. The L∞-norm is ||f ||∞ = maxx |f(x)|.
Note that ||f ||p is always 1 when the range is {+1,−1}. Also note that

E
D
[f1(x)f2(x)] = Pr

D
[f1(x) = f2(x)] − Pr

D
[f1(x) 6= f2(x)].

Let ǫ = PrD[f1(x) 6= f2(x)], then 〈f1, f2〉D = 1 − 2ǫ measures the correlation between f1

and f2.

For x ∈ {0, 1}n, xi will denote the i-th bit of x. The Hamming weight of x ∈ {0, 1}n,

i.e., the number of 1’s, will be denoted |x|. Let ei denote the vector of Hamming weight

1 that is all 0’s except at xi. The inner product between two vectors a, b ∈ {0, 1}n is

defined as 〈a, b〉 :=
∑n

i=1 aibi mod 2 ∈ {0, 1}, and the inner product of a vector with itself

is ||a|| := 〈a, a〉. The bit-wise exclusive-or between them is denoted a⊕b ∈ {0, 1}n. We

will also often identify subsets of [n] with vectors in {0, 1}n and vice-versa (a ∈ {0, 1}n ↔
a = {i ∈ [n] : ai = 1}). Thus we will denote the symmetric difference between two subsets

a, b ⊆ [n] as a⊕b.
The distance between two vectors a, b ∈ {0, 1}n is the number of bits that need to be

flipped to go from one vector to the other, ∆(a, b) := |a⊕b|. We say that two vectors are



14

neighbors if their distance is 1. We view {0, 1}n as endowed with the natural partial order.

For x, y ∈ {0, 1}n, we write x ≤ y if and only if xi ≤ yi for all i = 1, . . . , n, and x < y

if x ≤ y and x 6= y. We will often consider the case where the distribution on inputs is

uniform, in which case we will often leave D out of the notation.

2.3.1 The Fourier Transform

For a set s ⊆ [n], we define χs : {0, 1}n → {0, 1} to be χs(x) =
∑

i∈s xi mod 2 (or χs(x) =

〈s, x〉). If the range is {+1,−1}, then χs(x) =
∏

i∈s(−1)xi (or χs(x) = (−1)〈s,x〉). These 2n

functions are the parity functions.

Note that E[χ∅] = 1, E[χa] = 0 for a 6= ∅, and χaχb = χa⊕b. It follows that the

parity functions form an orthonormal basis for the space of functions f : {0, 1}n → R. The

parity functions are thus also the characters of {0, 1}n, and they form a group P. Since

χaχb = χa⊕b, there is a natural isomorphism between {0, 1}n and P, and thus χa(b) = χb(a).

If f : {0, 1}n → {+1,−1} is any function, we define its Fourier transform f̂ : P → R by

f̂(χa) := 〈f, χa〉 = E
x
[f(x)χa(x)],

and due to the isomorphism with {0, 1}n we can also view it as a function that maps {0, 1}n

to [−1,+1] and define f̂(a) := f̂(χa). When working on P, we will use the counting measure

which assigns weight 1 to each a ∈ P. Thus expectations and norms are taken with respect

to the appropriate measure:

〈f̂ , ĝ〉 = E
a∈{0,1}n

[f̂(a)ĝ(a)] :=
∑

a∈{0,1}n
f̂(a)ĝ(a),

‖f̂‖p :=




∑

a∈{0,1}n
|f̂(a)|p




1/p

.

However, we will favor the sum notation when taking the expectation over P to prevent any

confusion due to the isomorphism with {0, 1}n. We will also use lower case, script letters

for the norms to emphasize the difference (ℓp instead of Lp).

The Fourier inversion theorem says that every real function f over {0, 1}n can also be

expressed as a linear combination of characters:

f(x) =
∑

a∈{0,1}n
f̂(a)χa(x)



15

where f̂(a), the coefficient of χa, is called a Fourier coefficient. Note that f̂(∅) = E[f ].

Theorem 3 (Plancherel’s Theorem). For any f, g : {0, 1}n → {+1,−1}, 〈f, g〉 = 〈f̂ , ĝ〉. In

particular, if g = f , then 〈f, f〉 = 〈f̂ , f̂〉. (This is Parseval’s equality.)

Proof.

〈f, g〉 =

〈
∑

a∈{0,1}n
f̂(a)χa,

∑

b∈{0,1}n
ĝ(b)χb

〉
=

∑

a,b∈{0,1}n
f̂(a)ĝ(b)〈χa, χb〉

=
∑

a∈{0,1}n
f̂(a)ĝ(a) = 〈f̂ , ĝ〉.

We can also write this as Ex[f(x)g(x)] =
∑

a f̂(a)ĝ(a). �

Parseval’s equality has a nice consequence for Boolean functions: Ea∈{0,1}n f̂(a)2 =

〈f̂ , f̂〉 = 〈f, f〉 = 1. It should be noted that the Fourier transform of Boolean functions is

sometimes called the Walsh-Hadamard transform.

2.3.2 Tail Bounds

We will often need to bound the probability that a random variable will deviate from its

expectation.

Fact 4 (Markov’s Inequality). Let X be a non-negative random variable. Then,

Pr[X > λ] <
E[x]

λ
,

for any λ > 0.

When bounding the probability that a sum of random variables will deviate from its

expected value, we have the following two bounds due to Chernoff and Hoeffding.

Fact 5 ([Che52]). Let X1, . . . ,Xt be binary 0/1 independent random variables with 0 <

E[Xi] < 1 for all i. Let X = 1
t

∑t
i=1Xi be the empirical average. Then for any 0 < ǫ < 1,

Pr[X ≥ (1 + ǫ) E[X]] < e−
E[X]ǫ2

3 ,

and

Pr[X ≤ (1 − ǫ) E[X]] < e−
E[X]ǫ2

2 .



16

Fact 6 ([Hoe63]). Let X1, . . . ,Xt be independent random variables such that a ≤ Xi ≤ b

for all i. Let X = 1
t

∑t
i=1Xi be the empirical average. Then for any ǫ > 0,

Pr[X ≥ E[X] + ǫ] ≤ e
− 2tǫ2

(b−a)2 ,

and

Pr[X ≤ E[X] − ǫ] ≤ e
− 2tǫ2

(b−a)2 .

2.4 Learning Monotone Functions

Valiant introduced the Probably Approximately Correct (PAC) model of learning Boolean

functions from random examples more than two decades ago [Val84]. Since that time a great

deal of research effort has been expended on trying to understand the inherent abilities and

limitations of computationally efficient learning algorithms. For many classes of functions,

uniform distribution learning algorithms have been devised which substantially improve on a

naive exponential-time approach to learning via brute-force search. However, despite intense

efforts, researchers have not yet been able to obtain polynomial-time learning algorithms

in this model for various simple classes of functions. Interestingly, in many of these cases

restricting the class of functions to the corresponding class of monotone functions has led

to more efficient – sometimes polynomial-time – algorithms.

Monotone functions are non-decreasing functions. A Boolean function f is monotone

if x ≤ y implies f(x) ≤ f(y). Monotone functions seem to be much easier to learn than

general functions. If the concept class is the class of all Boolean functions, a polynomial-

time learner cannot do any better than random guessing, but if the concept class is the class

of all monotone Boolean functions, then a fairly simple learner can output a hypothesis that

weakly learns the target concept [BBL98, OW09].

If we view the domain of {0, 1}n as a hypercube, monotone functions are intuitively

easier since they split the hypercube into two connected halves, and the learner only needs

to figure out where the separation is. The slice functions are an extreme example of this.



17

For g : {0, 1}n→{0, 1}, we write sliceg to denote the “middle slice” function:

sliceg(x) =






1 if |x| > ⌊k/2⌋

g(x) if |x| = ⌊k/2⌋

0 if |x| < ⌊k/2⌋.

It is immediate that sliceg is a monotone Boolean function for any function g.

There have been several cases where restricting our attention to monotone functions has

lead to more efficient algorithms. Some examples include:

1. To date, the best algorithms for learning arbitrary k-juntas, runs in time n.704k

[MOS03]. However, a simple algorithm learns monotone O(log n)-juntas to perfect

accuracy in poly(n) time, and a more complex algorithm [BT06] learns monotone

Õ(log2(n))-juntas to any constant accuracy in poly(n) time.

2. The fastest known algorithm for learning poly(n)-size general decision trees to con-

stant accuracy takes nO(log n) time (this follows from [EH89, Ver90]), but poly(n)-size

decision trees that compute monotone functions (called “monotone decision trees”)

can be learned to accuracy ǫ in O(n1/ǫ2) time [OS07] (which is polynomial-time for

constant ǫ).

3. The fastest known uniform distribution learning algorithm for the general class of

s-term DNF formulas, due to Verbeurgt [Ver90], runs in time nO(log s) to learn to

any constant accuracy. In contrast, for s-term monotone DNF formulas, Servedio

[Ser04] gives an algorithm that runs in sO(log s) time. Thus the class of 2O(
√

log n)-term

monotone DNF formulas can be learned to any constant accuracy in poly(n) time,

but no such result is known for 2O(
√

log n)-term general DNF formulas.

4. No polynomial-time algorithm can learn the general class of all Boolean functions on

{0, 1}n to accuracy better than 1
2 + poly(n)

2n , but a simple polynomial-time algorithm

can learn the class of all monotone Boolean functions to accuracy 1
2 + Ω(log n)√

n
[OW09].

We note also that the result of [BT06] mentioned above follows from a 2Õ(
√

n)-time

algorithm for learning arbitrary monotone functions on n variables to constant accu-



18

racy (it is easy to see that no comparable algorithm can exist for learning arbitrary

Boolean functions to constant accuracy).

Even given these results, our knowledge of the learnability of succinctly represented

monotone Boolean functions remains woefully incomplete. The most outstanding question

is considered to be the learnability of polynomial-size monotone DNF formulas [BT06,

HM91, KMSP94, Ver98]. This thesis presents the best algorithm for learning polynomial-

size monotone DNF formulas in the average-case to date, and it helps complete the picture

by showing that several classes of succinctly representable monotone functions are hard to

learn.



19

Chapter 3

The Cryptographic Hardness of

Learning Monotone Functions

In this chapter we addresses the discrepancy between known positive and negative results

for uniform distribution learning by establishing strong computational hardness results for

learning various classes of monotone functions.

3.1 Introduction

Essentially all known representation-independent hardness of learning results (i.e., results

that apply to learning algorithms that do not have any restrictions on the syntactic form of

the hypotheses they output) rely on some cryptographic assumption, or an assumption that

easily implies a cryptographic primitive. For example, under the assumption that certain

subset sum problems are hard on average, Kharitonov [Kha95] showed that the class AC
1 is

hard to learn under the uniform distribution. Subsequently Kharitonov [Kha93] showed that

if factoring Blum integers is 2nǫ
-hard for some fixed ǫ > 0, then even the class AC

0 similarly

cannot be learned in polynomial time under the uniform distribution. In later work, Naor

and Reingold [NR04] gave constructions of pseudorandom functions with very low circuit

complexity; their results imply that if factoring Blum integers is super-polynomially hard,

then even depth-5 TC
0 circuits cannot be learned in polynomial time under the uniform

distribution. We note that all of these hardness results apply even to algorithms which



20

may make black-box “membership queries” to obtain the value f(x) for inputs x of their

choosing.

Monotonicity versus cryptography. Given that cryptography precludes efficient learn-

ing while monotonicity seems to make efficient learning easier, it is natural to investigate

how these phenomena interact. One could argue that prior to the current work there

was something of a mismatch between known positive and negative results for uniform-

distribution learning: as described in Section 2.4 a fairly broad range of polynomial-time

learning results had been obtained for various classes of monotone functions, but there were

no corresponding computational hardness results for monotone functions. Can all mono-

tone Boolean functions computed by polynomial-size circuits be learned to 99% accuracy

in polynomial time from uniform random examples? Prior to our work answers were not

known even to such seemingly basic questions about learning monotone functions as this

one. This gap in understanding motivated the research presented in this chapter (which, as

we describe below, lets us answer “no” to the above question in a strong sense).

3.1.1 Our Results and Techniques: Cryptography Trumps Monotonicity.

We present several different constructions of “simple” (polynomial-time computable) mono-

tone Boolean functions and prove that these functions are hard to learn under the uniform

distribution, even if membership queries are allowed. We now describe our main results,

followed by a high-level description of how we obtain them.

Blum, Burch, and Langford (henceforth referred to as BBL) [BBL98] showed that ar-

bitrary monotone functions cannot be learned to accuracy better than 1
2 + O(log n)√

n
by any

algorithm which makes poly(n) many membership queries. This is a non-explicit bound

which is proved using randomly generated monotone DNF formulas of size (roughly) nlog n.

A natural goal is to obtain explicit lower bounds for learning polynomial-time-computable

monotone functions which match, or nearly match, this level of hardness (which is opti-

mal by the (1
2 + log n√

n
)-accuracy algorithm of O’Donnell and Wimmer [OW09] as stated

in Section 2.4). We prove near-optimal hardness for learning polynomial-size monotone

circuits:



21

Theorem 7 (informal). If one-way functions exist, then there is a class of poly(n)-size

monotone circuits that cannot be learned to accuracy 1
2 + 1

n1/2−ǫ for any fixed ǫ > 0.

Our approach yields even stronger lower bounds if we make stronger assumptions:

• Assuming the existence of sub-exponential one-way functions, we improve the bound

on the accuracy to 1/2 + polylog(n)/n1/2.

• Assuming the hardness of factoring Blum integers, our hard-to-learn functions may

be computed in monotone NC
1.

• Assuming that Blum integers are 2nǫ
-hard to factor on average (the same hardness

assumption used in Kharitonov’s work [Kha93]), we obtain a lower bound for learning

constant-depth circuits of sub-polynomial size that almost matches the positive result

by Servedio [Ser04]. More precisely, we show that for any (sufficiently large) constant

d, the class of monotone functions computed by depth-d AND/OR/NOT circuits of

size 2(log n)O(1)/(d+1)
cannot be learned to accuracy 51% under the uniform distribution

in poly(n) time. In contrast, the positive result by Servedio shows that monotone

functions computed by depth-d AND/OR/NOT circuits of size 2O((log n)1/(d+1)) can be

learned to any constant accuracy in poly(n) time.

These results are summarized in Figure 3.1.1.

Proof techniques. A natural first approach is to try to “pseudorandomize” BBL’s con-

struction of random nlog n-term monotone DNF formulas. We were not able to do this di-

rectly; indeed, as we discuss in Chapter 8, pseudorandomizing the BBL construction seems

closely related to an open problem of Goldreich et al. [GGN03]. However, it turns out that

a closely related approach does yield some results along the desired lines; in Section 3.4

we present and analyze a simple variant of the BBL information-theoretic construction and

then show how to “pseudorandomize” the variant. Since our variant gives a weaker quan-

titative bound on the information-theoretic hardness of learning than BBL, this gives a

construction of polynomial-time-computable monotone functions which, assuming the exis-

tence of one-way functions, cannot be learned to accuracy 1
2 + 1

polylog(n) under the uniform

distribution. While this answers the question posed above (even with “51%” in place of



22

Hardness assumption Complexity of f Accuracy bound Ref.

none random nlog n-term

monotone DNF

1
2 + ω(log n)

n1/2 [BBL98]

OWF (poly) poly(n)-size monotone

circuits

1
2 + 1

n1/2−ǫ Thm. 7

OWF
(
2nα)

poly(n)-size monotone

circuits

1
2 + poly(log n)

n1/2 Thm. 17

factoring BI (poly) monotone NC
1-circuits 1

2 + 1
n1/2−ǫ Thm. 19

factoring BI
(
2nα)

depth-d,

2(log n)O(1)/(d+1)
-size

and/or/not circuits

1
2 + o(1) Thm. 22

Figure 3.1: Summary of known hardness results for learning monotone Boolean functions.

The meaning of each row is as follows: under the stated hardness assumption, there is a class

of monotone functions computed by circuits of the stated complexity which no poly(n)-time

membership query algorithm can learn to the stated accuracy. In the first column, OWF

and BI denote one-way functions and Blum Integers respectively, and “poly” and “2nα
”

means that the problems are intractable for poly(n)- and 2nα
-time algorithms respectively

(for some fixed α > 0). Recall that the poly(n)-time algorithm of O’Donnell and Wimmer

[OW09] for learning monotone functions implies that the best possible accuracy bound for

monotone functions is 1
2 + Ω(log n)

n1/2 .

“99%”), the 1
polylog(n) factor is rather far from the O(log n)√

n
factor that one might hope for as

described above.

In Section 3.2 we use a different construction to obtain much stronger quantitative

results; another advantage of this second construction is that it enables us to show hard-

ness of learning monotone circuits rather than just circuits computing monotone functions.

We start with the simple observation that using standard tools it is easy to construct

polynomial-size monotone circuits computing slice functions that are pseudorandom on the

middle layer of the Boolean cube {0, 1}n. Such functions are easily seen to be mildly hard to

learn, i.e., hard to learn to accuracy 1− Ω(1)√
n
. We then use the elegant machinery of hardness

amplification of monotone functions which was pioneered by O’Donnell [O’D04] to amplify



23

the hardness of this construction to near-optimal levels (rows 2–4 of Figure 3.1.1). We

obtain our result for constant depth, sub-polynomial-size circuits (row 5 of Figure 3.1.1) by

augmenting this approach with an argument which at a high level is similar to one used

by Allender et al. [AHM+06], by “scaling down” and modifying our hard-to-learn functions

using a variant of Nepomnjaščĭı’s theorem [Nep70].

3.1.2 Preliminaries

As described earlier, all of our hardness results apply even to learning algorithms which may

make membership queries, i.e., black-box queries to an oracle which gives the label f(x) of

any example x ∈ {0, 1}n on which it is queried. It is clear that for learning with respect

to the uniform distribution, having membership query access to the target function f is

at least as powerful as being given uniform random examples labeled according to x since

the learner can simply generate uniform random strings for herself and query the oracle to

simulate a random example oracle.

The goal of the learning algorithm is to construct a hypothesis h so that Prx[h(x) 6= f(x)]

is small, where the probability is taken over the uniform distribution. We shall only consider

learning algorithms that are allowed to run in poly(n) time, so the learning algorithm L

may be viewed as an oracle probabilistic polynomial-time (p.p.t.) machine which is given

black-box access to the function f and attempts to output a hypothesis h with small error

relative to f .

We establish that a class C of functions is hard to learn by showing that for a uniform

random f ∈ C, the expected error of any poly(n)-time learning algorithm L is close to 1/2

when run with f as the target function. Thus we bound the quantity

Pr
f∈C,x∈{0,1}n

[Lf (1n)→h;h(x) = f(x)] (3.1)

where the probability is also taken over any internal randomization of the learning algorithm

L. We say that class C is hard to learn to accuracy 1
2 + ǫ(n) if for every poly(n)-time

membership query learning algorithm L (i.e., p.p.t. oracle algorithm), we have (3.1) <

1
2 + ǫ(n) for all sufficiently large n. As noted by BBL, it is straightforward to transform a

lower bound of this sort into a lower bound for the usual ǫ, δ formulation of PAC learning.



24

Circuit complexity. A circuit is said to be monotone if it is composed entirely of AND/OR

gates with no negations. Every monotone circuit computes a monotone Boolean function,

but of course non-monotone circuits may compute monotone functions as well. The famous

result of Razborov [Raz85] shows that there are natural monotone Boolean functions (such

as the perfect matching function) which can be computed by polynomial-size circuits but

cannot be computed by polynomial-size monotone circuits. Thus, in general, it is a stronger

result to show that a function can be computed by a small monotone circuit than to show

that it is monotone and can be computed by a small circuit.

Pseudorandom functions. Pseudorandom functions [GGM86] are the main crypto-

graphic primitive that underlie our constructions. For a fixed k(n) ≤ n, let G be a family of

functions {g : {0, 1}k(n)→{0, 1}} each of which is computable by a circuit of size poly(k(n)).

We say that G is a t(n)-secure pseudorandom function family if the following condition holds:

for any probabilistic t(n)-time oracle algorithm A, we have

∣∣∣∣Pr
g∈G

[Ag(1n) outputs 1] − Pr
g′∈G′

[Ag′(1n) outputs 1]

∣∣∣∣ ≤ 1/t(n)

where G′ is the class of all 22k(n)
functions from {0, 1}k(n) to {0, 1} (so the second probability

above is taken over the choice of a truly random function g′). Note that the purported

distinguisher A has oracle access to a function on k(n) bits but is allowed to run in time

t(n).

It is well known that a pseudorandom function family that is t(n)-secure for all poly-

nomials t(n) can be constructed from any one-way function [GGM86, HILL99]. We shall

use the following folklore quantitative variant which relates the hardness of the one-way

function to the security of the resulting pseudorandom function:

Proposition 8. Fix t(n) ≥ poly(n) and suppose there exist one-way functions that are hard

to invert on average for t(n)-time adversaries. Then there exists a constant, 0 < c < 1, such

that for any k(n) ≤ n, there is a pseudorandom family G of functions {g : {0, 1}k(n)→{0, 1}}
that is (t(k(n)))c-secure.



25

3.2 Lower Bounds via Hardness Amplification of Monotone

Functions

In this section we prove our main hardness results, summarized in Figure 3.1.1, for learning

various classes of monotone functions under the uniform distribution with membership

queries.

Let us start with a high-level explanation of the overall idea. Inspired by the work on

hardness amplification within NP initiated by O’Donnell [O’D04, Tre03, HVV04], we study

constructions of the form

f(x1, . . . , xm) = C(f ′(x1), . . . , f
′(xm))

where C is a Boolean “combining function” with low noise stability (we give precise def-

initions later) which is both efficiently computable and monotone. Recall that O’Donnell

showed that if f ′ is weakly hard to compute and the combining function C has low noise

stability, then f is very hard to compute. This result holds for general (not necessarily

monotone) functions C, and thus generalizes Yao’s XOR lemma, which addresses the case

where C is the XOR of m bits (and hence has the lowest noise stability of all Boolean

functions, see [O’D04]).

Roughly speaking, we establish an analogue of O’Donnell’s result for learning. Our

analogue, essentially states that for certain well-structured1 functions f ′ that are hard to

learn to high accuracy, if C has low noise stability then f is hard to learn to accuracy even

slightly better than 1/2. Since our ultimate goal is to establish that “simple” classes of

monotone functions are hard to learn, we shall use this result with combining functions C

that are computed by “simple” monotone Boolean circuits. In order for the overall function

f to be monotone and efficiently computable, we need the initial f ′ to be well-structured,

monotone, efficiently computable, and hard to learn to high accuracy. Such functions are

easily obtained by a slight extension of an observation of Kearns et al. [KLV94]. They

noted that the middle slice f ′ of a random Boolean function on {0, 1}k is hard to learn

to accuracy greater than 1 − Θ(1/
√
k) [BBL98, KLV94]; by taking the middle slice of a

1As will be clear from the proof, we require that f ′ be balanced and have a “hard-core set.”



26

pseudorandom function instead, we obtain an f ′ with the desired properties. In fact, by a

result of Berkowitz [Ber82] this slice function is computable by a polynomial-size monotone

circuit, so the overall hard-to-learn functions we construct are computed by polynomial-size

monotone circuits.

Organization. First we adapt the analysis in [O’D04, Tre03, HVV04] to reduce the prob-

lem of constructing hard-to-learn monotone Boolean functions to constructing monotone

combining functions C with low noise stability. Then we show how constructions and anal-

yses from [O’D04, MO03] can be used to obtain a “simple” monotone combining function

with low noise stability. We establish Theorems 16 and 17 (lines 2 and 3 of Figure 3.1.1)

by making different assumptions about the hardness of the initial pseudorandom functions.

Finally, in Section 3.3 we establish Theorems 19 and 22 by making specific number theo-

retic assumptions (namely, the hardness of factoring Blum integers) to obtain hard-to-learn

monotone Boolean functions that can be computed by very simple circuits.

3.2.1 Hardness Amplification for Learning

Let C : {0, 1}m→{0, 1} and f ′ : {0, 1}k→{0, 1} be Boolean functions. We write C ◦ f ′⊗m to

denote the Boolean function over ({0, 1}k)m given by:

C ◦ f ′⊗m(x) = C(f ′(x1), . . . , f
′(xm)), where x = (x1, . . . , xm).

Following the analysis in [O’D04, Tre03, HVV04], we shall study the bias and noise

stability of various Boolean functions. Specifically, we adopt the following notations and

definitions from [HVV04]. The bias of a Boolean random variable X is defined to be

Bias[X] := |Pr[X = true] − Pr[X = false]|.

We can view the output of a probabilistic Boolean function h over {0, 1}n as a probability

distribution over Boolean functions on {0, 1}n. The expected bias of a probabilistic Boolean

function h is:

ExpBias[h] := E
x
[Bias[h(x)]].



27

Let C be a Boolean function and 0 ≤ δ ≤ 1
2 . The noise stability of f at noise rate δ,

denoted NoiseStabδ[f ], is defined to be

NoiseStabδ[C]
def
= Ex,η[C(x) ⊕ C(x⊕ η)] = 2 · Pr

x,η
[C(x) = C(x⊕ η)] − 1

where x ∈ {0, 1}n is uniform random, η ∈ {0, 1}n is a vector whose bits are each indepen-

dently 1 with probability δ.

Throughout this subsection we write m for m(n) and k for k(n). We shall establish the

following:

Lemma 9. Let C : {0, 1}m→{0, 1} be a polynomial-time computable function. Let G′ be

the family of all 22k
functions from {0, 1}k to {0, 1}, where n = mk and k = ω(log n). Then

the class C = {f = C ◦ slice⊗m
g | g ∈ G′} of Boolean functions over {0, 1}n is hard to learn

to accuracy
1

2
+

1

2

√
NoiseStabΘ(1/

√
k)[C] +

1

nω(1)
.

This easily yields Corollary 11, which is an analogue of Lemma 9 with pseudorandom

rather than truly random functions, and which we use to obtain our main hardness of

learning results.

Proof of Lemma 9: Let k,m be such that mk = n, and let C : {0, 1}m→{0, 1} be a

Boolean combining function. We prove the lemma by upper bounding

Pr
g∈G′,x∈{0,1}n

[
Lf (1n) → h; h(x) = f(x)

]
(3.2)

where L is an arbitrary p.p.t. oracle machine (running in time poly(n) on input 1n) that is

given oracle access to f
def
= C ◦ slice⊗m

g and outputs some hypothesis h : {0, 1}n→{0, 1}.
We first observe that since C is computed by a uniform family of circuits of size

poly(m) ≤ poly(n), it is easy for a poly(n)-time machine to simulate oracle access to f

if it is given oracle access to g. So (3.2) is at most

Pr
g∈G′, x∈{0,1}n

[
Lg(1n) → h; h(x) = (C ◦ slice⊗m

g )(x)
]
. (3.3)

To analyze the above probability, suppose that in the course of its execution L never queries

g on any of the inputs x1, . . . , xm ∈ {0, 1}k, where x = (x1, . . . , xm). Then the a posteriori



28

distribution of g(x1), . . . , g(xm) (for uniform random g ∈ G′) given the responses to L’s

queries that it received from g is identical to the distribution of g′(x1), . . . , g
′(xm), where

g′ is an independent uniform draw from G′: both distributions are uniform random over

{0, 1}m. (Intuitively, this just means that if L never queries the random function g on any

of x1, . . . , xm, then giving L oracle access to g does not help it predict the value of f on

x = (x1, . . . , xm).) Since L runs in poly(n) time, for any fixed x1, . . . , xm the probability

that L queried g on any of x1, . . . , xm is at most m·poly(n)
2k . Hence (3.3) is bounded by

Pr
g,g′∈G′, x∈{0,1}n

[
Lg(1n) → h; h(x) = (C ◦ slice⊗m

g′ )(x)
]

+
m · poly(n)

2k
. (3.4)

The first summand in (3.4) is the probability that L correctly predicts the value C ◦
slice⊗m

g′ (x), given oracle access to g, where g and g′ are independently random functions

and x is uniform over {0, 1}n. It is clear that the best possible strategy for L is to use a

maximum likelihood algorithm, i.e., predict according to the function h which, for any fixed

input x, outputs 1 if and only if the random variable (C ◦ slice⊗m
g′ )(x) (we emphasize that

the randomness here is over the choice of g′) is biased towards 1. The expected accuracy of

this h is precisely

1

2
+

1

2
ExpBias[C ◦ slice⊗m

g′ ]. (3.5)

Now fix δ
def
=
( k
⌊k/2⌋

)
/2k = Θ(1/

√
k) to be the fraction of inputs in the “middle slice”

of {0, 1}k. We observe that the probabilistic function sliceg′ (where g′ is truly random) is

“δ-random” in the sense of ([HVV04], Definition 3.1), meaning that it is balanced, truly

random on inputs in the middle slice, and deterministic on all other inputs. This means that

we may apply the following technical lemma (Lemma 3.7 from [HVV04], see also [O’D04]):

Lemma 10. Let h : {0, 1}n→{0, 1} be a function that is δ-random. Then

ExpBias[C ◦ h⊗m] ≤
√

NoiseStabδ[C].

Applying this lemma to the function sliceg′ we obtain:

ExpBias[C ◦ slice⊗m
g′ ] ≤

√
NoiseStabδ[C]. (3.6)

Combining (3.4), (3.5) and (3.6) and recalling that k = ω(log n), we obtain Lemma 9.



29

Corollary 11. Let C : {0, 1}m→{0, 1} be a polynomial-time computable function. Let G be a

pseudorandom family of functions from {0, 1}k to {0, 1} that are secure against poly(n)-time

adversaries, where n = mk and k = ω(log n). Then the class C = {f = C ◦ slice⊗m
g | g ∈ G}

of Boolean functions over {0, 1}n is hard to learn to accuracy

1

2
+

1

2

√
NoiseStabΘ(1/

√
k)[C] +

1

nω(1)
.

Proof. The corollary follows from the fact that (3.3) must differ from its pseudorandom

counterpart,

Pr
g∈G, x∈{0,1}n

[
Lg(1n) → h; h(x) = (C ◦ slice⊗m

g )(x)
]
, (3.7)

by less than any fixed 1/poly(n). Otherwise, we would easily obtain a poly(n)-time distin-

guisher that, given oracle access to g, runs L to obtain a hypothesis h and checks whether

h(x) = (C ◦ slice⊗m
g )(x) for a random x to determine whether g is drawn from G or G′. �

By instantiating Corollary 11 with a “simple” monotone function C having low noise

stability, we obtain strong hardness results for learning simple monotone functions. We

exhibit such a function C in the next section.

3.2.2 A Simple Monotone Combining Function

In this section we combine known results of [O’D04, MO03] to obtain:

Proposition 12. Given a value k, let m = 3ℓd2d for ℓ, d satisfying 3ℓ ≤ k6 < 3ℓ+1 and

d ≤ O(k.35). Then there exists a monotone function C : {0, 1}m → {0, 1} computed by a

uniform family of poly(m)-size, log(m)-depth monotone circuits such that

NoiseStabΘ(1/
√

k)[C] = O
(k6 logm

m

)
. (3.8)

Note that in this proposition we may havem as large as 2Θ(k.35) but not larger. O’Donnell

[O’D04] gave a lower bound of Ω( log2 m
m ) on NoiseStabΘ(1/

√
k)[C] for every monotone m-

variable function C, so the above upper bound is fairly close to the best possible (within a

polylog(m) factor if m = 2kΘ(1)
).



30

Following [O’D04, HVV04], we use the “recursive majority of 3” function and the tribes

function (see Definition 1) in our construction. We require the following results on noise

stability:

Lemma 13 ([O’D04]). Let Rec-Maj-3ℓ : {0, 1}3ℓ→{0, 1} be defined as follows: for x =

(x1, x2, x3) where each xi ∈ {0, 1}3ℓ−1

,

Rec-Maj-3ℓ(x)
def
= Maj(Rec-Maj-3ℓ−1(x

1),Rec-Maj-3ℓ−1(x
2),Rec-Maj-3ℓ−1(x

3)).

Then for ℓ ≥ log1.1(1/δ), we have NoiseStabδ[Rec-Maj-3ℓ] ≤ δ−1.1(3ℓ)−.15.

Lemma 14 ([MO03]). If η = O(1/d), we have NoiseStab 1−η
2

[Tribesd] = O
(

ηd2

d2d

)
= O

(
1
2d

)
.

Lemma 15 ([O’D04]). If h is a balanced Boolean function and ψ : {0, 1}r → {0, 1} is

arbitrary, then for any δ we have NoiseStabδ[ψ ◦ h⊗r] = NoiseStab 1
2
−NoiseStabδ [h]

2

[ψ].

Proof of Proposition 12: We take C to be Tribesd ◦Rec-Maj-3⊗d2d

ℓ . Since Rec-Maj-3ℓ is

balanced, by Lemma 15 we have

NoiseStabδ[C] = NoiseStab 1
2
−NoiseStabδ [Rec-Maj-3ℓ]

2

[Tribesd].

Setting δ = Θ(1/
√
k) and recalling that 3ℓ ≤ k6, we have ℓ ≥ log1.1(1/δ) so we may apply

Lemma 13 to obtain

NoiseStabΘ(1/
√

k)[Rec-Maj-3ℓ] ≤ Θ((
√
k)1.1)(k6)−.15 = O(k−.35).

Since O(k−.35) ≤ O(1/d), we may apply Lemma 14 with the previous inequalities to obtain

NoiseStabΘ(1/
√

k)[C] ≤ O
( 1

2d

)
.

The bound (3.8) follows from some easy rearrangement of the bounds on k,m, d and ℓ. It

is easy to see that C can be computed by monotone circuits of depth O(ℓ) = O(logm) and

size poly(m), and the proposition is proved. �

3.2.3 Hardness of Learning Polynomial-size Monotone Circuits

Given a value of k, let m = 3ℓd2d for ℓ, d as in Proposition 12. Let G be a pseudorandom

family of functions {g : {0, 1}k→{0, 1}} secure against poly(n)-time adversaries, where



31

n = mk. Since we have k = ω(log n), we may apply Corollary 11 with the combining

function from Proposition 12 and conclude that the class C = {C ◦ slice⊗m
g | g ∈ G} is hard

to learn to accuracy

1

2
+O

(k3
√

logm√
m

)
+ o(1/n) ≤ 1

2
+O

(k3.5
√

log n√
n

)
. (3.9)

We claim that in fact the functions in C can be computed by poly(n)-size monotone circuits.

This follows from a result of Berkowitz [Ber82] which states that if a k-variable slice function

is computed by a AND/OR/NOT circuit of size s and depth d, then it is also computed by a

monotone AND/OR/MAJ circuit of size O(s+k) and depth d+1. Combining these monotone

circuits for sliceg with the monotone circuit for C, we obtain a poly(n)-size monotone circuit

for each function in C.
By making various different assumptions on the hardness of one-way functions, Propo-

sition 8 lets us obtain different quantitative relationships between k (the input length for

the pseudorandom functions) and n (the running time of the adversaries against which they

are secure), and thus different quantitative hardness results from (3.9) above:

Theorem 16. Suppose that standard one-way functions exist. Then for any constant ǫ >

0 there is a class C of poly(n)-size monotone circuits that is hard to learn to accuracy

1
2 + 1

n1/2−ǫ .

Proof. If poly(n)-hard one-way functions exist then we may take k = nc in Proposition 8

for arbitrarily small constant c; this corresponds to taking d = γ log k for γ a large constant

in Proposition 12. The claimed bound on (3.9) easily follows. (We note that while not

every n is of the required form mk = 3ℓd2dk, it is not difficult to see that this and our

subsequent theorems hold for all (sufficiently large) input lengths n by padding the hard-

to-learn functions.) �

Theorem 17. Suppose that subexponentially hard (2nα
for some fixed α > 0) one-way

functions exist. Then there is a class C of poly(n)-size monotone circuits that is hard to

learn to accuracy 1
2 + polylog(n)

n1/2 .

Proof. As above, but now we take k = logγ n for some sufficiently large constant γ (i.e.,

d = c log k for a small constant c). �



32

3.3 Hardness of Learning Simple Circuits

In this section we obtain hardness results for learning very simple classes of circuits comput-

ing monotone functions under a concrete hardness assumption for a specific computational

problem, namely factoring Blum integers. Naor and Reingold [NR04] showed that if fac-

toring Blum integers is computationally hard then there is a pseudorandom function family

which we denote G⋆ that is computable in TC
0. From this it easily follows that the functions

{sliceg | g ∈ G⋆} are also computable in TC
0.

We now observe that the result of Berkowitz mentioned earlier [Ber82] for converting

slice circuits into monotone circuits applies not only to AND/OR/NOT circuits, but also to

TC
0 circuits (composed of MAJ and NOT gates).

This means that the functions in {sliceg | g ∈ G⋆} are in fact computable in monotone

TC
0, i.e., by polynomial-size, constant-depth circuits composed only of AND/OR/MAJ

gates. Since the majority function can be computed by polynomial-size, O(log n)-depth

AND/OR circuits, (see e.g. [AKS83]), the functions in {sliceg | g ∈ G⋆} are computable by

O(log n)-depth AND/OR circuits. Finally, using the parameters in Theorem 16 we have

a combining function C that is a O(log n)-depth polynomial-size AND/OR circuit which

implies the following lemma.

Lemma 18. Let C be the monotone combining function from Proposition 12 and G⋆ be a

family of pseudorandom functions computable in TC
0. Then every function in {C ◦slice⊗m

g |
g ∈ G⋆} is computable in monotone NC

1.

This directly yields a hardness result for learning monotone NC
1 circuits (the fourth line

of Figure 3.1.1):

Theorem 19. If factoring Blum integers is hard on average for any poly(n)-time algorithm,

then for any constant ǫ > 0 there is a class C of poly(n)-size monotone NC
1 circuits that is

hard to learn to accuracy 1
2 + 1

n1/2−ǫ .

Now we show that under a stronger but still plausible assumption on the hardness of

factoring Blum integers, we get a hardness result for learning a class of constant-depth

monotone circuits which is very close to a class known to be learnable to any constant



33

accuracy in poly(n) time. Suppose that n-bit Blum integers are 2nα
-hard to factor on

average for some fixed α > 0 (this hardness assumption was earlier used by Kharitonov

[Kha93]). This means there exists 2nα/2
-secure pseudorandom functions that are computable

in TC
0. Using such a family of functions in place of G⋆ in the construction for the preceding

theorem and fixing ǫ = 1/3, we obtain:

Lemma 20. Assume that Blum integers are 2nα
-hard to factor on average. Then there is

a class C of poly(n)-size monotone NC
1 circuits that is hard for any 2nα/20

-time algorithm

to learn to accuracy 1
2 + 1

n1/6 .

Now we “scale down” this class C as follows. Let n′ be such that n′ = (log n)κ for

a suitable constant κ > 20/α, and let us use “n′” as the “n” in the construction of the

previous lemma; we call the resulting class of functions C′. In terms of n, the functions in C′

(which are functions over {0, 1}n which only depend on the first n′ variables) are computed

by (log n)O(κ)-size, O(log log n)-depth monotone circuits whose inputs are the first (log n)κ

variables in x1, . . . , xn. We moreover have that C′ is hard for any 2(n′)α/20
= 2(log n)κα/20

=

ω(poly(n))-time algorithm to learn to some accuracy 1
2 + 1

(n′)1/6 = 1
2 + o(1).

We now recall the following variant of Nepomnjaščĭı’s theorem that is implicit in the

work of Allender et al. [AHM+06].

Lemma 21. For every language L ∈ NL, for all sufficiently large constant d there are AC
0

d

circuits of size 2nO(1)/(d+1)
that recognize L.

Since every function in C′ can be computed in NC
1 which is contained in NL, combining

Lemma 21 with the paragraph that proceeds it, we obtain the following theorem (the final

line of Figure 3.1.1):

Theorem 22. Suppose that Blum integers are subexponentially hard to factor on average.

Then there is a class C of monotone functions that is hard for any poly(n)-time algorithm

to learn to accuracy 1
2 + o(1) and which, for all sufficiently large constant d, are computed

by AC
0

d circuits of size 2(log n)O(1)/(d+1)
.

This final hardness result is of interest because it is known that constant-depth circuits

of only slightly smaller size can be learned to any constant accuracy in poly(n) time under

the uniform distribution (without needing membership queries).



34

Theorem 23 ([Ser04] Corollary 2). For all d ≥ 2, the class of AC
0

d circuits of size

2O((log n)1/(d+1)) that compute monotone functions can be learned to any constant accuracy

1 − ǫ in poly(n)-time.

Theorem 22 is thus nearly optimal in terms of the size of the constant-depth circuits for

which it establishes hardness of learning.

3.4 A Computational Analogue of the BBL Lower Bound

In this section we first present a simple variant of the Blum et al. [BBL98] lower-bound con-

struction, obtaining an information-theoretic lower bound on the learnability of the general

class of all monotone Boolean functions. The quantitative bound our variant achieves is

weaker than that of BBL, but has the advantage that it can be easily “pseudorandomized”.

Indeed our construction uses a certain probability distribution over monotone DNF for-

mulas, such that a typical random input x satisfies only poly(n) many “candidate terms”

(terms which may be present in a random DNF formula drawn from our distribution).

By selecting terms for inclusion in the DNF formula in a pseudorandom rather than truly

random way, we obtain a class of poly(n)-size monotone circuits that is hard to learn to

accuracy 1
2 + 1

polylog(n) (assuming one-way functions exist).

Below we start with an overview of why it is difficult to obtain a computational analogue

of the exact construction of BBL using the “pseudorandomization” approach sketched above,

and the idea behind our variant, which overcomes this difficulty. We then provide our

information theoretic construction and analysis, followed by its computational analogue.

Idea Recall BBL’s information-theoretic lower bound. It works by defining a distribution

Ps over monotone functions {0, 1}n→{0, 1} which is as follows. (Here s is a numerical

parameter which should be thought of as the number of membership queries that a learning

algorithm is allowed to make.) Take t = log(3sn). A draw from Ps is obtained by randomly

including each length-t monotone term in the DNF formula independently with probability

p′, where p′ is chosen so that the function is expected to be balanced on “typical inputs”

(more precisely, on inputs with exactly n/2 1’s). The naive idea for pseudorandomizing this



35

construction is to simply use a pseudorandom function with bias p′ to determine whether

each possible term of size t should be included or excluded in the DNF formula. However,

there is a problem with this approach: we do not know an efficient way to determine whether

a typical example x (with, say, n/2 ones) has any of its
(n/2

t

)
candidate terms (each of which

is pseudorandomly present/not present in f) actually present in f , so we do not know how

to evaluate f on a typical input x in less than
(
n/2
t

)
time.

We get around this difficulty by instead considering a new distribution of random mono-

tone DNF formulas. In our construction we will again use a random function with bias p to

determine whether each possible term of length t is present in the DNF formula. However,

in our construction, a typical example x will have only a polynomial number of candidate

terms that could be satisfied, and thus it is possible to check all of them and evaluate the

function in poly(n) time.

The main difficulty of this approach is to ensure that although a typical example has only

a polynomial number of candidate terms, the function is still hard to learn in polynomial

time. We achieve this by partitioning the variables into blocks of size k and viewing each

block as a “super-variable” (corresponding to the AND of all k variables in the block). We

then construct the DNF formula by randomly choosing length-t terms over these super-

variables. It is not difficult to see that with this approach, we can equivalently view our

problem as learning a t-DNF formula f with terms chosen as above, where each of the

n/k variables is drawn from a product distribution with bias 1/2k. By fine-tuning the

parameters that determine t (the size of each term of the DNF formula) and k (the size of

the partitions), we are able to achieve an information-theoretic lower bound showing that

this distribution over monotone functions is hard to learn to accuracy 1/2 + o(1).

Construction Let us partition the variables x1, . . . , xn into m = n/k blocks B1, . . . , Bm

of k variables each. Let Xi denote the conjunction of all k variables in Bi (X1, . . . ,Xm are

the super-variables). The following is a description of our distribution P over monotone

functions. A function f is drawn from P as follows (we will fix the values of k and t later):

• Construct a monotone DNF formula f1 as follows: each possible conjunction of t super-

variables chosen from {X1, . . . ,Xm} is placed in the target function f1 independently



36

with probability p, where p is defined as the solution to:

(1 − p)(
m/2k

t ) = 1/2. (3.10)

Note that for a uniform x ∈ {0, 1}n, we expect the corresponding “super-assignment”

X = (X1, . . . ,Xm) to have m/2k 1’s in it, and any super-assignment with this many

1’s will be satisfied by
(
m/2k

t

)
many terms. Thus p is chosen such that a “typical”

example X, with m/2k ones, has probability 1/2 of being labeled positive under f1.

• Let

f(x) =





f1(x) if the # of super-vars satisfied in x is ≤ m/2k + (m/2k)2/3;

1 otherwise.

Note that because of the final step of the construction, the function f is not actually a

DNF formula (though it is a monotone function). Intuitively, the final step is there because

if too many super-variables were satisfied in x, there could be too many (more than poly(n))

candidate terms to check, and we would not be able to evaluate f1 efficiently. We will show

later that the probability that the number of super-variables satisfied in x is greater than

m/2k + (m/2k)2/3 is at most 2e−(m/2k)1/3/3 = 1/nω(1), and thus the function f is 1/nω(1)-

close to f1; so hardness of learning results established for the random DNF formulas f1

carry over to the actual functions f. For most of our discussion we shall refer to P as a

distribution over DNF formulas, meaning the functions f1.

3.4.1 Information-Theoretic Lower Bound

As discussed previously, we view the distribution P defined above as a distribution over

DNF formulas of terms of size t over the super-variables. Each possible combination of t

super-variables appears in f1 independently with probability p and the super-variables are

drawn from a product distribution that is 1 with probability 1/2k and 0 with probability

1− 1/2k. We first observe that learning f over the super-variables drawn from the product

distribution is equivalent to learning the original function over the original variables. This

is because if we are given the original membership query oracle for n-bit examples we can

simulate answers to membership queries on m-bit “super-variable” examples and vice versa.

Thus we henceforth analyze the product distribution.



37

We follow the proof technique of BBL. To simplify our analysis, we consider an “aug-

mented” oracle, as done by BBL. Given a query X, with 1’s in positions indexed by the

set SX , the oracle will return the first conjunct in lexicographic order that appears in the

target function and is satisfied by X. Additionally, the oracle returns 1 if X is positive and

0 if X is negative. (So instead of just giving a single bit as its response, if the example is a

positive one the oracle tells the learner the lexicographically first term in the target DNF

formula that is satisfied.) Clearly, lower bounds for this augmented oracle imply the same

bounds for the standard oracle.

We are interested in analyzing Ps, the conditional distribution over functions drawn

from the initial distribution P that are consistent with the information learned by A in the

first s queries. We can think of Ps as a vector Vs of
(
m
t

)
elements, one for each possible

conjunct of size t. Initially, each element of the vector contains p, the probability that the

conjunct is in the target function. When a query is made, the oracle examines one by one

the entries that satisfy X. For each entry having value p, we can think of the oracle as

flipping a coin and replacing the entry by 0 with probability 1−p and by 1 with probability

p. After s queries, Vs will contain some entries set to 0, some set to 1 and the rest set to

p. Because Vs describes the conditional distribution Ps given the queries made so far, the

Bayes-optimal prediction for an example X is simply to answer 1 if Vs(X) ≥ 1/2 and 0

otherwise.

We now analyze Vs(X), the conditional probability over functions drawn from P that are

consistent with the first s queries that a random example, X, drawn from the distribution,

evaluates to 1, given the answers to the first s queries. We will show that for s = poly(n),

for X drawn from the product distribution on {0, 1}m, with probability at least 1− 1/nω(1)

the value Vs(X) lies in 1
2 ± 1

log n . This is easily seen to give a lower bound of the type we

require.

Following BBL, we first observe that after s queries there can be at most s entries set

to one in the vector Vs. We shall also use the following lemma by BBL:

Lemma 24 ([BBL98]). After s queries, with probability 1 − e−s/4, there are at most 2s/p

zeros in Vs.

We thus may henceforth assume that there are at most 2s/p zeros in Vs.



38

We now establish the following, which is an analogue tailored to our setting of Claim 3

of the paper by BBL [BBL98]:

Lemma 25. For any vector Vs of size
(
m
t

)
with at most s entries set to 1, at most 2s/p

entries set to 0, and the remaining entries set to p, for a random example X (drawn from

{0, 1}m according to the 1/2k-biased product distribution), we have that with probability at

least 1 − ǫ1, the quantity Vs(X) lies in the range

1 − (1 − p)
[(m/2k−(m/2k)1/3

t )− 2s
√

n

p2kt ] ≤ Vs(X) ≤ 1 − (1 − p)(
m/2k+(m/2k)1/3

t ). (3.11)

Here

ǫ1 = s · (2
√
n

p
+ 1)2−kt + 2e−(m/2k)1/3/3. (3.12)

Proof. Let X be a random example drawn from the 1/2k-biased product distribution over

{0, 1}m.

Consider the following 3 events:

• None of the 1-entries in Vs are satisfied by X.

There are at most s 1-entries in Vs and the probability that any one is satisfied by

X is 2−kt. Therefore the probability that some 1-entry is satisfied by X is at most

s2−kt and the probability that none of the 1-entries in Vs are satisfied by X is at least

1 − s2−kt.

• At most (2s
√
n/p)2−kt of the 0-entries in Vs are relevant to X.

Since there are at most 2s/p entries set to 0 in Vs, the expected number of 0-entries

in Vs satisfied by X is at most (2s/p)2−kt. By Markov’s inequality, the probability

that the actual number exceeds this by a
√
n factor is at most 1/

√
n.

• The number of 1’s in X lies in the range m/2k ± (m/2k)2/3.

Using the Chernoff bound, we have that this occurs with probability at least 1 −
2e−(m/2k)1/3/3. Note that for X’s in this range, f(X) = f1(X). So conditioning on

this event occurring, we can assume that f(X) = f1(X).

Therefore, the probability that all 3 of the above events occurs is at least 1 − ǫ1 where

ǫ1 = s · (2
√

n
p + 1)2−kt + 2e−(m/2k)1/3/3.



39

Given that these events all occur, we show that Vs(X) lies in the desired range. We

follow the approach of BBL. For the lower bound, Vs(X) is minimized when X has as few

1’s as possible and when as many of the 0-entries in Vs are relevant to X as possible. So

Vs(X) is at least

Vs(X) ≥ 1 − (1 − p)
[(m/2k−(m/2k)2/3

t )− 2s
√

n

p2kt ]
.

For the upper bound, Vs(X) is maximized when X has as many 1’s as possible and as few

0’s as possible. So Vs(X) is at most

Vs(X) ≤ 1 − (1 − p)(
m/2k+(m/2k)2/3

t ),

and thus Vs(X) lies in the desired range.. �

Now let us choose values for k and t. What are our goals in setting these parameters?

First off, we want
(m/2k

t

)
to be at most poly(n) (so that there are at most poly(n) candidate

terms to be checked for a “typical” input). Moreover, for any s = poly(n) we want (3.11)’s

two sides to both be close to 1/2 (so the accuracy of any s-query learning algorithm is indeed

close to 1/2 on typical inputs), and we want ǫ1 to be small (so almost all inputs are “typ-

ical”). With this motivation, we set k = Θ(log n) to be such that m/2k (recall, m = n/k)

equals log6 n, and we set t =
√

log n. This means
(
m/2k

t

)
=
( log6 n√

log n

)
≤ 26 log(log n)

√
log n ≪ n.

Now (3.10) gives p ≫ 1/n; together with k = Θ(log n), for any s = poly(n) we have

ǫ1 = 1/nω(1).

Now we analyze (3.11). First the lower bound:

Vs(X) ≥ 1 − (1 − p)
[(m/2k−(m/2k)2/3

t )− 2s
√

n

p2kt ]

≥ 1 − (1 − p)(
m/2k−(m/2k)2/3

t )
(
e

3s
√

n

p2kt

)

= 1 − (1 − p)(
m/2k−(m/2k)2/3

t )
(
1 + 1/nω(1)

)

= 1 −
[
2−(

m/2k−(m/2k)2/3

t )/(m/2k

t )
]
·
(
1 + 1/nω(1)

)
.

(In the last step here we are using the definition of p from (3.10).) Let us bound the



40

exponent:

(
m/2k−(m/2k)2/3

t

)
(
m/2k

t

) ≥
(
m/2k − (m/2k)2/3 − t

m/2k

)t

=

(
log6 n− log4 n−√

log n

log6 n

)√log n

≥
(

log6 n− 2 log4 n

log6 n

)√log n

=

(
1 − 2

log2 n

)√log n

≥ 1 − 2

log1.5 n
.

So

Vs(X) ≥ 1 −
[
2−(1−2/ log1.5 n)

]
· (1 + 1/nω(1)) ≥ 1

2
− 1

log n
.

Now for the upper bound:

Vs(x) ≤ 1 − (1 − p)(
m/2k+(m/2k)2/3

t )

= 1 − 2−(
m/2k+(m/2k)2/3

t )/(m/2k

t ).

Again bounding the exponent:

(m/2k+(m/2k)2/3

t

)
(m/2k

t

) =

(log6 n+log4 n√
log n

)

( log6 n√
log n

)

≤
(

log6 n+ log4 n

log6 n−√
log n

)√log n

≤
(

1 +
2 log4 n

log6 n−√
log n

)√log n

≤ 1 +
4

log1.5 n
.

So

Vs(X) ≤ 1 − 2
−

“

1+ 4
log1.5 n

”

≤ 1

2
+

1

log n
.

The above analysis has thus established the following.



41

Lemma 26. Let L be any poly(n)-time learning algorithm. If L is run with a target function

that is a random draw f from the distribution P described above, then for all but a 1/nω(1)

fraction of inputs x ∈ {0, 1}n, the probability that h(x) = f(x) (where h is the hypothesis

output by L) is at most 1
2 + 1

log n .

It is easy to see that by slightly modifying the values of t and k in the above construction,

it is actually possible to replace 1
log n with any 1

polylog n in the above.

3.4.2 Computational Lower Bound

To obtain a computational analogue of Lemma 26, we “pseudorandomize” the choice of

terms in a draw of f1 from P.

Recall that the construction P placed each possible term (conjunction of t super-

variables) in the target function with probability p, as defined in (3.10). We first consider a

distribution that uses uniform bits to approximate the probability p. This can be done by

approximating log(p−1) with poly(n) bits, associating each term with independent uniform

poly(n) bits chosen this way, and including that term in the target function if all bits are

set to 0. It is easy to see that the resulting construction yields a probability distribution

which is statistically close to P , and we denote it by P stat.

Now, using a pseudorandom function rather than a truly random (uniform) one for

the source of uniform bits will yield a distribution which we denote by PPSR. Similar

arguments to those we give elsewhere in this chapter show that a poly(n) time adversary

cannot distinguish the resulting construction from the original one (or else a distinguisher

could be constructed for the pseudorandom function).

To complete the argument, we observe that every function f in the support of PPSR can

be evaluated with a poly(n)-size circuit. It is obviously easy to count the number of super-

variables that are satisfied in an input x, so we need only argue that the function f1 can

be computed efficiently on a “typical” input x that has “few” super-variables satisfied. But

by construction, such an input will satisfy only poly(n) candidate terms of the monotone

DNF formula f1 and thus a poly(n)-size circuit can check each of these candidate terms

separately (by making a call to the pseudorandom function for each candidate term to

determine whether it is present or absent). Thus, as a corollary of Lemma 26, we can



42

establish the main result of this section:

Theorem 27. Suppose that standard one-way functions exist. Then there is a class C of

poly(n)-size monotone circuits that is hard to learn to accuracy 1
2 + 1

polylog(n) .



43

Chapter 4

The Statistical Hardness of

Learning Monotone Functions

Having shown the conditional cryptographic hardness of learning various classes of mono-

tone functions computed by simple circuits, in this chapter we show the unconditional

hardness of learning a class of monotone functions computed by even simpler circuits in the

statistical query model.

4.1 Introduction

The hardness results shown in Chapter 3 were all conditional, i.e., they depended on widely

believed, but unproven cryptographic assumptions. Some of these assumptions, such as the

existence of one-way functions are weak and considered to be reasonable [Gol05]. Assuming

the existence of a particular one-way function with a certain hardness, e.g., factoring Blum

integers is 2nǫ
-hard for some fixed ǫ > 0, is much stronger.

This chapter complements the previous one by proving lower bounds that are uncondi-

tional, but which are only true for a restriction of the PAC learning model. In particular,

we will be using the statistical query (SQ) model of Kearns [Kea98] where instead of being

given random examples, the learner is allowed queries of the form: “What is the approximate

expected value of the function g on a random example labeled by the concept c?”

The motivation behind Kearns’ elegant model is that any algorithm for learning in the



44

SQ model can automatically be converted to an algorithm for learning in the presence of

random classification noise in the standard PAC model (and more general forms of noise

as well [Dec93]). With the exception of the algorithms for learning parity functions [FS92,

HSW92, BKW03], every known PAC learning algorithm can be couched as an SQ learning

algorithm, and can hence be made noise-tolerant. In fact, virtually all known noise-tolerant

PAC learning algorithms have been obtained from SQ algorithms [Byl94, BFKV98, DV04].

Unlike the conditional hardness results in PAC learning, Kearns demonstrated that

there are information-theoretic barriers to SQ learning. In particular, he showed that the

class of parity functions over n variables require exponentially many SQ queries to even be

weakly-learned [Kea98]. Later, Blum et al. [BFJ+94] completely characterized the weak-

learnability of a concept class in the SQ model by introducing the statistical query dimension

of a concept class, which is defined to be the largest subset of the class such that all its

elements are pair-wise nearly orthogonal. The SQ-dimension was subsequently strengthened

and extended to other variants [BF02, Yan01, Yan05, Fel08].

The SQ-dimension was used to lower bound the weak-learnability of several concept

classes by Klivans and Sherstov [KS06], while Sherstov [She07] gave an upper-bound on the

SQ-dimension of halfspaces. On the other hand, under the uniform distribution, it has been

known for a long time that monotone functions are easily weak-learned in the SQ model

[KLV94, BT06, BBL98, OW09]. Perhaps surprisingly, the optimal algorithm of O’Donnell

and Wimmer is quite simple — the algorithm asks for the correlation of the target function

with the constant functions 0 and 1, the dictator functions x1, . . . ,xn, and the majority

function. These n + 3 statistical queries are enough to guarantee a 1
2 + Ω( log n√

n
) accurate

hypothesis for any monotone function.

In the distribution-free model, weak-learnability implies strong-learnability by boosting

[Sch90, Fre95, Sch01]. However, for a fixed distribution, say the uniform distribution, this

is not the case, and thus SQ-dimension upper bounds say very little about the strong-

learnability of a concept class. This is particularly true for monotone functions where

many concept classes have no known strong-learning algorithms. Simon [Sim07] recently

introduced the notion of the strong statistical query dimension of a concept class which

characterizes its strong-learnability. This characterization was later simplified by Feldman



45

[Fel09].

Our results. We give the first strong statistical query dimension lower bound for a

monotone concept class with succinct representation. We show that the class of functions

computed by polynomial-size depth-3 and/or-circuits has super-polynomial strong SQ-

dimension, and thus cannot be efficiently learned to arbitrary accuracy by any statistical

query learner.

This lower bound is tantalizingly close to a lower bound for polynomial-size monotone

DNF formulas (i.e., depth-2 and/or-circuits). The class of polynomial-size (non-monotone)

DNF formulas is known to have super-polynomial (weak) SQ-dimension under the uniform

distribution, and thus we know that none of our current algorithmic techniques can even

weakly-learn DNF formulas. The proof of the lower bound for this class easily follows from

the orthogonality of the parity functions under the uniform distribution. A polynomial-sized

DNF formula can compute a parity function over O(log n) variables, thus the SQ-dimension

of polynomial-sized DNF formulas is at least
(

n
log n

)
= nΩ(log n).

Most known statistical query lower bounds are based on the orthogonality of the parity

functions, and we use the same observation here. In Section 4.3, we embed parity functions

into the middle slice of the Boolean hypercube. These slice functions of course are not

completely orthogonal to each other so we pick a carefully constructed subset that are all

nearly orthogonal to each other.

We define the statistical query model and the various SQ-dimensions in Section 4.2. We

define our concept class and prove our strong SQ-dimension lower bound in Section 4.3.

Finally, in Section 4.4 we show that our concept class can be computed by polynomial-size

depth-3 and/or-circuits.

4.2 The Statistical Query Model

For the rest of this chapter we will consider the range of Boolean concept classes to be

{+1,−1} instead of {0, 1}.
Kearns [Kea98] introduced the statistical query (SQ) model where instead of having

access to an example oracle EX(f,D), the learner has access to a statistical query oracle,



46

SQf,D.

Definition 28. Let C be a concept class over X. An algorithm A is said to be a statistical

query (SQ) learning algorithm for C if for all 0 < ǫ, δ < 1, for all f ∈ C, if A on input

ǫ, δ and access to the statistical query oracle SQf,D with probability at least 1− δ outputs a

hypothesis h such that Prx∈D[h(x) 6= f(x)] ≤ ǫ.

SQf,D takes as input a function g : X × {+1,−1} → {+1,−1} and a real number

τ ∈ [0, 1] and outputs a value v such that:

∣∣∣∣v − E
D
[g(x, f(x))]

∣∣∣∣ ≤ τ.

A is only allowed to make queries in which g can be computed by a polynomial-size circuit,

and τ is at most a fixed poly−1(n, size(f), ǫ−1, δ−1).

Note that if τ is 0 then the learner can make membership queries. If A runs in time

poly(n, size(f), ǫ−1, δ−1) we say that A is a polynomial-time SQ learning algorithm. A

concept class is said to be efficiently SQ learnable if there exists polynomial-time SQ learning

algorithm for the class.

Learnability in the SQ-model has several interesting consequences and is thus well-

studied. If a concept class C is efficiently learnable from statistical queries, then it is

efficiently PAC-learnable with random classification noise (i.e., learning when the labels

are incorrect with some probability). The idea is that the learner can simply simulate the

oracle SQf,D and run the SQ learning algorithm. To answer a particular query (g, τ), the

learner can take a sample of random examples from the noisy oracle and output an estimate

of ED[g(x, f(x)].

One could conjecture that the other direction is true, i.e., every concept class learnable

with random classification noise is learnable with statistical queries. Unfortunately, this

conclusion is false. Kearns ([Kea98]) showed that the class of parities with no classification

noise is not learnable from statistical queries. Contrast this with the fact that efficient PAC

algorithms (Gaussian elimination) for this class exist [FS92, HSW92]. These algorithms

make explicit calculations on the given examples, and thus they cannot be turned into

statistical query algorithms. Later, a polynomial-time algorithm was given for learning



47

parities over the first O(log n log log n) bits of the input with random classification noise

[BKW03]. This algorithm of course was not a statistical query algorithm.

Blum et al. [BFJ+94] generalized Kearns’ negative result by introducing the notion of

the SQ-dimension, which completely characterized the weak-learnability of concept classes

in the SQ model. Bshouty and Feldman [BF02] and Yang [Yan05] later generalized and

improved the Blum et al. result. We will use Yang’s characterization here extended to sets

of arbitrary real-valued functions.

Definition 29. Given a set of real-valued functions C, the SQ-dimension of C with respect

to D (written SQdimD(C)) is the largest number d such that ∃{f1, . . . ,fd} ⊆ C with the

property that ∀i 6= j,
|〈fi, fj〉D|

‖fi‖D · ‖fj‖D
≤ 1

d
.

Intuitively, this says that C contains d “nearly-uncorrelated” functions. If a concept

class C has SQ-dimension d, then we can weakly learn C using d queries. Take the maximal

set and ask for the correlation between the target function and each function in the set.

Since the set is maximal, the target function must have correlation at least 1/d with at least

one of the functions.

Blum et al. showed that the other direction was true as well.

Theorem 30 ([BFJ+94] Theorem 12). Given a concept class C and a distribution D on

the input, let SQdim(C,D) = d. Then if the tolerance τ is always at least 1/d1/3, at least

1
2d

1/3 − 1 queries are required to learn C with advantage 1/d3.

In particular, the class of parity functions on n variables has SQdim(PAR) = 2n. Thus,

any SQ algorithm requires an exponential number of queries.

4.2.1 The Strong SQ Dimension

Given a fixed distribution, the statistical query dimension only characterizes the weak SQ-

learnability of a class and says nothing about its strong SQ-learnability. For example, any

class of monotone functions can be easily weak-learned with respect to the uniform distri-

bution [KLV94, BBL98, OW09], however for many simple classes of monotone functions,

e.g., polynomial-sized monotone DNF formulas, no strong-learning algorithms are known



48

(SQ or not). The first characterization of strong SQ learning was due to Simon [Sim07],

but we will follow a subsequent characterization due to Feldman [Fel09].

Let F∞1 denote the set of all functions from {0, 1}n → [−1, 1], i.e., all functions with

L∞ norm bounded by 1. We define B2
D(f, ǫ) to be {g : ‖g−f‖2

D ≤ ǫ}, i.e., the ǫ-ball around

f , and 0 to be the constant 0 function. Finally, for a set of real-valued functions C, let

C − g = {f − g : f ∈ C}.

Definition 31. Given a concept class C and ǫ > 0, the strong SQ-dimension of C with

respect to D is:

SSQdimD(C, ǫ) = max
g∈F∞

1

SQdimD((C − g) \B2
D(0, ǫ)).

Just as for the weak SQ-dimension, the strong SQ-dimension completely characterizes

the strong SQ-learnability of a concept class.

Theorem 32 ([Fel09]). Given a concept class C and distribution D, there exists a polynomial

p such that C is SQ-learnable from p(n, 1/ǫ) queries of tolerance p(n, 1/ǫ) if and only if for

every ǫ > 0, SSQdimD(C, ǫ) ≤ p′(n, 1/ǫ) for some polynomial p′.

Given this definition and theorem, we can show that a concept class cannot be effi-

ciently strong-learned in the SQ model by finding a suitably chosen g and showing that

SQdimD((C − g) \B2
D(0, ǫ)) = nω(1).

4.3 The Strong SQ Lower Bound

We will exhibit a family of monotone functions that cannot be strong SQ-learned with a

polynomial number of queries under the uniform distribution. For the rest of this chapter,

let us fix D to be the uniform distribution over {0, 1}n. The idea of what follows is that

we will embed a family of non-monotone functions with high SQ-dimension – a family of

parity functions – into the middle level of the k-dimensional Boolean cube, and thus obtain

a class of monotone functions with high strong SQ-dimension.

The classes of functions we consider will only be defined over the first k out of n variables.



49

Theorem 33. Let P be the class of
(k

j

)
parity functions χ : {0, 1}k → {+1,−1} over exactly

j out of the first k variables, and let M be the slice functions sliceχ for χ ∈ P. For

k = log1.5(n), j = log(n), and ǫ = o(1/
√
k), SSQdim(M, ǫ) = nω(1).

Proof. Let g = slice0. We will show that SQdim((M− g) \B2(0, ǫ)) = nω(1). By Stirling’s

approximation, the middle layer of the k-dimensional hypercube is a Θ(1/
√
k) fraction of

the 2k points. Thus for ǫ = o(1/
√
k), M− g ∩ B2(0, ǫ) = ∅, and we only have to concern

ourselves with SQdim(M− g) to lower bound the strong SQ-dimension of M.

The functions in M−g have a nice structure since they output 0 everywhere except the

middle layer. Thus, the correlation between any two functions in M−g will only depend on

the outputs of the middle slice. Given two parity functions χ1, χ2 ∈ P, let s be the number

of variables in the parity χ1 · χ2, i.e., the number of variables in the symmetric difference

between χ1 and χ2. The correlation between (sliceχ1 − g) and (sliceχ2 − g) can be written

as 〈χ1χ2,1|x|=k/2〉, which is just a degree-s Fourier coefficient of 1|x|=k/2. By symmetry all

the degree-s Fourier coefficients of 1|x|=k/2 are the same, and since the squares of all the

Fourier coefficients sum to one by Parseval’s Theorem, 〈χ1χ2,1|x|=k/2〉 ≤
(
k
s

)−1/2
.

Using the “designs” of Nisan and Wigderson [NW94] we can see that there are at least
( k
j/2

)
= nΘ(log log n) parities whose symmetric difference is at least j/2.

Lemma 34 ([NW94]). There exists a set system of size
(

k
j/2

)
such that each set is a subset

of [k] of size exactly j and every pair of sets has symmetric difference at least j/2.

Thus, we have nΘ(log log n) functions in M − g whose pair-wise correlation is at most

1/nΘ(log log n), and the SQ-dimension of M− g is at least nΘ(log log n). �

4.4 The Circuit Construction

We will now show that the concept class M can be computed by small monotone circuits.

Theorem 35. Let P be the class of
(k

j

)
parity functions χ : {0, 1}k → {+1,−1} over exactly

j out of the first k variables, and let M be the slice functions sliceχ for χ ∈ P. For

k = log1.5(n) and j = log(n), the functions sliceχ ∈ M can computed by poly(n)-size

depth-3 and/or-circuits.



50

Proof. Let Thk
j be the threshold function that outputs true if at least j of the k inputs are

set to 1, and false otherwise. The threshold function Thk
j for k = o(log2(n)/ log log(n)) is

computable by a monotone formula of poly(n) size and depth 3 [KPPY84].

Let χ be a parity function on j out of the first k variables. Let Thj
i take the j variables

of χ as input, and let Thk−j
k/2−i take the k − j variables outside of χ as input. Observe that

sliceχ is equivalent to ∨oddi<j[Thj
i ∧ Thk−j

k/2−i]. If an input x has fewer than k/2 ones, then

there can be no i such that Thj
i and Thk−j

k/2−i both hold, so this function outputs 0 as it

should. If x has more than k/2 ones, some ℓ of them are in χ, and at least k/2 − ℓ + 1 of

them are in the k − j variables outside χ. If ℓ is odd then i = ℓ makes the OR true, and

if ℓ is even then i = (ℓ− 1) makes the OR true. Finally, if x has exactly k/2 ones, and an

odd number of them are in χ, the formula is satisfied; if an even number of them are in χ,

the formula is not satisfied.

Each Thj
i and Thk−j

k/2−i can be computed by a depth-3 monotone poly(n)-size circuit

with an or gate on top. Using the distributive law we can convert Thj
i ∧ Thk−j

k/2−i to also

be a depth-3 poly(n)-size circuit with an or gate on top. This or gate can be collapsed

with the top j/2-wise or gate, and we have a polynomial-size monotone depth-3 circuit for

sliceχ. �

Note that even though we just proved a super-polynomial strong SQ dimension lower

bound on M, the concept class M is easily PAC-learnable. The learner can output 1 for

inputs with more than k/2 1’s in the first k positions, and output 0 for inputs with fewer

than k/2 1’s. For the inputs with exactly k/2 1’s in the first k positions, it can run the

parity learning algorithm over the first k variables [FS92, HSW92], and learn χ. Thus, even

if we can prove a super-polynomial strong SQ dimension lower bound for monotone DNF

formulas, it is unclear if the class is hard to learn in general.



51

Chapter 5

Learning Random Monotone DNF

We now turn our attention away from the hardness of learning and focus on learning mono-

tone functions with succinct representations. Having shown the hardness of learning depth-3

monotone circuits in the statistical query model, we show a statistical query algorithm for

learning random depth-2 monotone circuits.

5.1 Introduction

Learning polynomial-size DNF formulas from random examples is an outstanding open

question in computational learning theory, dating back more than 20 years to Valiant’s

introduction of the PAC learning model [Val84]. The most intensively studied variant of

the DNF formula learning problem is PAC learning DNF formulas under the uniform dis-

tribution. Despite much effort, no polynomial-time algorithms are known for this problem.

A tantalizing question that has been posed as a goal by many authors (see e.g., [Jac97,

JT97, BBL98, Blu03, Ser04]) is to learn monotone DNF formulas, which only contain un-

negated Boolean variables, under the uniform distribution. Besides being a natural restric-

tion of the uniform distribution DNF formula learning problem, this problem is interesting

because several impediments to learning general DNF formulas under uniform – known lower

bounds for statistical query based algorithms [BFJ+94], the apparent hardness of learning

the subclass of log(n)-juntas [Blu03] – do not apply in the monotone case. We solve a

natural average-case version of this problem using previously unknown Fourier properties



52

of monotone functions.

Previous work. Many partial results have been obtained on learning monotone DNF

formula under the uniform distribution. Verbeurgt [Ver90] gave an nO(log n)-time uniform

distribution algorithm for learning any poly(n)-term DNF formula, monotone or not. Sev-

eral authors [KMSP94, SM00, BT06] have given results on learning monotone t-term DNF

formulas for larger and larger values of t; most recently, Servedio [Ser04] gave a uniform dis-

tribution algorithm that learns any 2O(
√

log n)-term monotone DNF formula to any constant

accuracy ǫ = Θ(1) in poly(n) time. O’Donnell and Servedio [OS07] have recently shown

that poly(n)-leaf decision trees that compute monotone functions (a subclass of poly(n)-

term monotone DNF formulas) can be learned to any constant accuracy under uniform in

poly(n) time. Various other problems related to learning different types of monotone func-

tions under uniform have also been studied, see e.g., [KLV94, BBL98, Ver98, HM91, AM02].

Aizenstein and Pitt [AP95] first proposed a model of random DNF formulas and gave an

exact learning algorithm that learns random DNF formulas generated in this way. As noted

in [AP95] and [JS05b], this model admits a trivial learning algorithm in the uniform PAC

setting. Jackson and Servedio [JS05a] gave a uniform distribution algorithm that learns log-

depth decision trees on average in a natural random model. Previous work on average-case

uniform PAC DNF formula learning, also by Jackson and Servedio, is described below.

Our results. The main result of this section is a polynomial-time algorithm that can

learn random poly(n)-term monotone DNF formulas with high probability. (We give a

full description of the exact probability distribution defining our random DNF formulas in

Section 5.4; briefly, the reader should think of our random t-term monotone DNF formulas as

being obtained by independently drawing tmonotone conjunctions uniformly from the set of

all conjunctions of length log t over variables x1, . . . , xn. Although many other distributions

could be considered, this seems a natural starting point. Some justification for the choice

of term length is given in Sections 5.4 and 5.6.)

Theorem 36. [Informally] Let t(n) be any function such that t(n) ≤ poly(n), and let

c > 0 be any fixed constant. Then random monotone t(n)-term DNF formulas are PAC



53

learnable (with failure probability δ = n−c) to accuracy ǫ in poly(n, 1/ǫ) time under the

uniform distribution. The algorithm outputs a monotone DNF formula as its hypothesis.

In independent and concurrent work, Sellie [Sel08] has given an alternate proof of this

theorem using different techniques. Sellie’s result was recently generalized to non-monotone

DNF formulas as well [Sel09].

Our technique. Jackson and Servedio [JS05b] showed that for any γ > 0, a result similar

to Theorem 36 holds for random t-term monotone DNF formulas with t ≤ n2−γ . The main

open problem stated in their paper was to prove Theorem 36. Our work solves this problem

by using the previous algorithm to handle t ≤ n3/2, developing new Fourier lemmas for

monotone DNF formulas, and using these lemmas together with more general versions of

techniques from [JS05b] to handle t ≥ n3/2.

The crux of our strategy is to establish a connection between the term structure of certain

monotone DNF formulas and their low-order Fourier coefficients. There is an extensive body

of research on Fourier properties of monotone Boolean functions [BT06, MO03, BBL98],

polynomial-size DNF formulas [Jac97, Man94], and related classes such as constant-depth

circuits and decision trees [LMN93, KM93, JKS02, OS07]. These results typically establish

that every function in the class has a Fourier spectrum with certain properties; unfortu-

nately, the Fourier properties that have been obtainable to date for general statements of

this sort have not been sufficient to yield polynomial-time learning algorithms.

We take a different approach by carefully defining a set of conditions, and showing that

if a monotone DNF formula f satisfies these conditions then the structure of the terms of

f will be reflected in the low-order Fourier coefficients of f . In the paper by Jackson and

Servedio [JS05b], the degree two Fourier coefficients were shown to reveal the structure of

the terms for certain (including random) monotone DNF formulas having at most n2−γ

terms. In this work we develop new lemmas about the Fourier coefficients of more general

monotone DNF formulas, and use these new lemmas to establish a connection between

term structure and constant degree Fourier coefficients for monotone DNF formulas with

any polynomial number of terms. Roughly speaking, this connection holds for monotone

DNF formulas that satisfy the following conditions:



54

• each term has a reasonably large fraction of assignments which satisfy it and no other

term;

• for each small tuple of distinct terms, only a small fraction of assignments simultane-

ously satisfy all terms in the tuple; and

• for each small tuple of variables, only a small number of terms contains the entire

tuple.

The “small” tuples referred to above should be thought of as tuples of constant size. The

constant degree coefficients capture the structure of the terms in the following sense: tuples

of variables that all co-occur in some term will have a large magnitude Fourier coefficient,

and tuples of variables that do not all co-occur in some term will have a small magnitude

Fourier coefficient (even if subsets of the tuple do co-occur in some terms). We show this

in Section 5.2.

Next we show a reconstruction procedure for obtaining the monotone DNF formula from

tuple-wise co-occurrence information. Given a hypergraph with a vertex for each variable,

the procedure turns each co-occurrence into a hyperedge, and then searches for all hyper-

cliques of size corresponding to the term length. The hypercliques that are found correspond

to the terms of the monotone DNF formula hypothesis that the algorithm constructs. This

procedure is described in Section 5.3; we show that it succeeds in constructing a high-

accuracy hypothesis if the monotone DNF formula f satisfies a few additional conditions.

This is a significant generalization of a reconstruction procedure from the paper by Jackson

and Servedio [JS05b] that was based on finding cliques in a graph (in the n2−γ-term DNF

formula setting, the algorithm deals only with co-occurrences of pairs of variables so it is

sufficient to consider only ordinary graphs rather than hypergraphs).

The ingredients described so far thus give us an efficient algorithm to learn any monotone

DNF formula that satisfies all of the required conditions. Finally, we show that random

monotone DNF formulas satisfy all the required conditions with high probability. We do

this in Section 5.4 via a fairly delicate probabilistic argument. Section 5.5 combines the

above ingredients to prove Theorem 36. We close the chapter by showing that our technique

lets us easily recapture the result of Hancock and Mansour [HM91] that read-k monotone



55

DNF formulas are learnable in polynomial time under the uniform distribution.

5.1.1 Preliminaries

We use capital letters for subsets of [n]. We will use calligraphic letters such as C to denote

sets of sets and script letters such as X to denote sets of sets of sets. We write Un to denote

the uniform distribution over the Boolean cube {0, 1}n.

Recall that every monotone Boolean function has a unique representation as a reduced

monotone DNF formula. We say that a term T of such a monotone DNF formula is uniquely

satisfied by input x if x satisfies T and no other term of f.

Our learning model is an “average-case” variant of the well-studied uniform distribution

PAC learning model. Let DC be a probability distribution over some fixed class C of Boolean

functions over {0, 1}n, and let f (drawn from DC) be an unknown target function. A learning

algorithm A for DC takes as input an accuracy parameter 0 < ǫ < 1 and a confidence

parameter 0 < δ < 1. We say that A learns DC under Un if for every 0 < ǫ, δ < 1, with

probability at least 1− δ (over both the random examples used for learning and the random

draw of f from DC) algorithm A outputs a hypothesis h which has error at most ǫ.

5.2 Fourier Coefficients and the Term Structure of Monotone

DNF

Throughout Section 5.2 let f(x1, . . . , xn) be a monotone DNF formula and let S ⊆ {1, . . . , n}
be a fixed subset of variables. We write s to denote |S| throughout this section. The Fourier

coefficient, written f̂(S), measures the correlation between f and the parity of the variables

in S.

The main result of this section is Lemma 3, which shows that under suitable conditions

on f , the value |f̂(S)| is “large” if and only if f has a term containing all the variables of

S. To prove this, we observe that the inputs which uniquely satisfy such a term will make a

certain contribution to f̂(S). (In Section 5.2.1 we explain this in more detail and show how

to view f̂(S) as a sum of contributions from inputs to f .) It remains then to show that the

contribution from other inputs is small. The main technical novelty comes in Sections 5.2.2



56

and 5.2.3, where we show that all other inputs which make a contribution to f̂(S) must

satisfy the terms of f in a special way, and use this property to show that under suitable

conditions on f , the fraction of such inputs must be small.

5.2.1 Rewriting f̂(S).

We observe that f̂(S) can be expressed in terms of 2s conditional probabilities, each of which

is the probability that f is satisfied conditioned on a particular setting of the variables in

S. That is:

f̂(S)
def
= E

x∈Un

[
(−1)

P

i∈S xi · f(x)
]

=
1

2n

∑

x∈{0,1}n
(−1)

P

i∈S xi · f(x)

=
1

2n

∑

U⊆S

(−1)|U |
∑

x∈ZS(U)

f(x) =
1

2s

∑

U⊆S

(−1)|U | Pr
x

[f(x) = 1 | x ∈ ZS(U)],

where ZS(U) denotes the set of those x ∈ {0, 1}n such that xi = 1 for all i ∈ U and

xi = 0 for all i ∈ S \ U . If f has some term T containing all the variables in S, then

Prx[f(x) = 1 | x ∈ ZS(S)] is at least as large as Prx[T is uniquely satisfied in f |x ∈ ZS(S)].

On the other hand, if f has no such term, then Prx[f(x) = 1 | x ∈ ZS(S)] does not receive

this contribution. We will show that this contribution is the chief determinant of the

magnitude of f̂(S).

It is helpful to rewrite f̂(S) as a sum of contributions from each input x ∈ {0, 1}n. To

this end, we decompose f according to the variables of S. Given a subset U ⊆ S, we will

write gU to denote the disjunction of terms in f that contain every variable indexed by

U ⊆ S and no variable indexed by S \ U , but with the variables indexed by U removed

from each term. (So for example if f = x1x2x4x6 ∨ x1x2x5 ∨ x1x2x3 ∨ x3x5 ∨ x1x5x6 and

S = {1, 2, 3} and U = {1, 2}, then gU = x4x6 ∨x5.) Thus we can split f into disjoint sets of

terms: f =
∨

U⊆S(tU ∧ gU ), where tU is the term consisting of exactly the variables indexed

by U .

Suppose we are given U ⊆ S and an x that belongs to ZS(U). We have that f(x) = 1 if

and only if gU ′(x) is true for some U ′ ⊆ U . (Note that tU ′(x) is true for every U ′ ⊆ U since

x belongs to ZS(U).) Thus we can rewrite the Fourier coefficients f̂(S) as follows: (Below

we write 1(P ) to denote the indicator function that takes value 1 if predicate P is true and



57

value 0 if P is false.)

f̂(S) =
1

2n

∑

U⊆S

(−1)|U |
∑

x∈ZS(U)

f(x) =
∑

U⊆S

(−1)|U |
1

2n

∑

x∈ZS(U)

1




∨

U ′⊆U

gU ′(x)





=
∑

U⊆S

(−1)|U |
1

2s

1

2n

∑

x∈{0,1}n
1




∨

U ′⊆U

gU ′(x)





=
∑

x∈{0,1}n

1

2s

1

2n

∑

U⊆S

(−1)|U |1




∨

U ′⊆U

gU ′(x)



 .

We can rewrite this as:

f̂(S) =
∑

x∈{0,1}n
ConS(x), where ConS(x)

def
=

1

2s

1

2n

∑

U⊆S

(−1)|U |1




∨

U ′⊆U

gU ′(x)



 . (5.1)

The value ConS(x) may be viewed as the “contribution” that x makes to f̂(S). Recall that

when f has a term T which contains all the variables in S, those x ∈ ZS(S) which uniquely

satisfy T will contribute to f̂(S). We will show that under suitable conditions on f , the

other x’s make little or no contribution.

5.2.2 Bounding the Contribution to f̂(S) from Various Inputs.

The variable C will denote a subset of P(S), the power set of S; i.e., C denotes a collection

of subsets of S. We may view C as defining a set of gU ’s (those gU ’s for which U belongs to

C).

We may partition the set of inputs {0, 1}n into 2|P(S)| = 22s
parts according to what

subset of the 2s functions {gU}U⊆S each x ∈ {0, 1}n satisfies. For C a subset of P(S) we

denote the corresponding piece of the partition by PC ; so PC consists of precisely those

x ∈ {0, 1}n that satisfy
(∧

U∈C gU

)
∧
(∧

U 6∈C gU

)
. Note that for any given fixed C, each x

in PC has exactly the same contribution ConS(x) to the Fourier coefficient f̂(S) as every

other x′ in PC ; this is simply because x and x′ will satisfy exactly the same set of gU ′ ’s in

(5.1). More generally, we have the following:

Lemma 37. Let C be any subset of P(S). Suppose that there exist U1, U2 ∈ C such that

U1 ( U2. Then for any y, z where y ∈ PC and z ∈ PC\U2
, we have that: ConS(y) = ConS(z).



58

Proof. Consider Equation 5.1. Fix any subset U of S. We shall show that the indicator

variable 1
(∨

U ′⊆U gU ′(x)
)

takes the same value on y and on z.

Recall that y satisfies precisely those gr’s such that r ∈ C, and z satisfies precisely those

gr’s such that r ∈ (C \ U2). We have that:

1.
∨

U ′⊆U gU ′(y) is true if and only if there exists some U ′ ⊆ U , U ′ ∈ C; and

2.
∨

U ′⊆U gU ′(z) is true if and only if there exists some U ′′ ⊆ U , U ′′ ∈ (C \ U2).

Since U1 ( U2 and U1, U2 ∈ C, there exists a U ′ as described above if and only if there

exists a U ′′ as described above. �

Given a collection C of subsets of S, we write ConS(C) to denote
∑

x∈PC
ConS(x), and

we refer to this quantity as the contribution that C makes to the Fourier coefficient f̂(S).

It is clear that we have f̂(S) =
∑
C⊆P(S) ConS(C).

The following lemma establishes a broad class of C’s for which ConS(C) is zero:

Lemma 38. Let C be any collection of subsets of S. If
⋃

U∈C U 6= S then ConS(x) = 0 for

each x ∈ PC and hence ConS(C) = 0.

Before proving Lemma 38 we first introduce some notation and make a few easy obser-

vations. Let odd(U) ⊂ P(S) be the set of all the odd-sized subsets of S that are supersets

of U , and let even(U) be defined similarly. For any U ( S we have |odd(U)| = |even(U)|
since there are exactly 2|S|−|U | subsets of S containing U , half of which are even and half

of which are odd. Note that if U is the entire set S, then S is the only superset of U , and

of course |S| cannot be both even and odd. Finally, note that given subsets U1, . . . , Uk of

S, we have:

∩k
i=1 odd(Ui) = odd(∪k

i=1Ui). (5.2)

(This just says that the intersection of the odd(Ui)’s is equal to the set of all odd subsets of

S that contain the union of all the Ui’s.) A similar equality ∩k
i=1even(Ui) = even(∪k

i=1Ui)

also holds.

Now we can give the proof:



59

Proof of Lemma 38. We know that each x in PC makes the same contribution to f̂(S). So

fix any x ∈ PC ; it suffices to show that the quantity
∑

U⊆S(−1)|U |1
(∨

U ′⊆U gU ′(x)
)

is zero.

This quantity will be zero if x satisfies an equal number of
∨

U ′⊆U gU ′(x) for which |U | is

even, and for which |U | is odd. The U for which x satisfies
∨

U ′⊆U gU ′(x) are the U for which

there exist some U ′ ∈ C such that U ′ ⊆ U . Thus, we need to count the number of even and

odd-sized U ⊆ S containing some U ′ ∈ C, and show that |∪U ′∈Codd(U ′)| = |∪U ′∈Ceven(U ′)| .
Let C = {U1, . . . , Uk} ⊆ P(S). By inclusion-exclusion,

∣∣∪U ′∈Codd(U ′)
∣∣ =

k∑

i=1

|odd(Ui)| −
∑

i1,i2

|odd(Ui1) ∩ odd(Ui2)| . . .+ (−1)k−1
∣∣∣∩k

i=1odd(Ui)
∣∣∣ ,

(5.3)

and we have a similar expression for | ∪U ′∈C even(U ′)| (identical to the RHS of (5.3) except

with “even” everywhere in place of “odd”).

By (5.2) we can rewrite each intersections of some odd(Ui)’s as odd(∪Ui), and similarly

we can rewrite each intersection of some even(Ui)’s as even(∪Ui)’s. Thus the RHS of (5.3)

can be rewritten as a sum of |odd(∪Ui)|’s, and similarly | ∪U ′∈C even(U ′)| can be rewritten

as an identical sum of |even(∪Ui)|’s. Since by assumption each of these ∪Ui’s cannot be

the whole set S, for each ∪Ui we have |odd(∪Ui)| = |even(∪Ui)|. Therefore all the terms

of | ∪U ′∈C odd(U ′)| in (5.3) will match up with all the terms of | ∪U ′∈C even(U ′)|. It follows

that |∪U ′∈Codd(U ′)| is indeed equal to |∪U ′∈Ceven(U ′)|, and the lemma is proved. �

It remains to analyze those C’s for which
⋃

U∈C U = S; for such a C we say that C covers

S.

Recall from the previous discussion that ConS(C) = |PC |·ConS(x) where x is any element

of PC . Since |ConS(x)| ≤ 1
2n for all x ∈ {0, 1}n, for any collection C, we have that

|ConS(C)| ≤ Pr
x∈Un

[x ∈ PC ] = Pr
x∈Un

[(
∧

U∈C
gU ) ∧ (

∧

U 6∈C
gs)] ≤ Pr

x∈Un

[(
∧

U∈C
gU )].

We are interested in bounding this probability for C 6= {S} (we will deal with the special

case C = {S} separately later). Recall that each gU is a disjunction of terms; the expression
∧

U∈C gU is satisfied by precisely those x that satisfy at least one term from each gU as U

ranges over all elements of C. For j ≥ 1 let us define a quantity Bj as follows

Bj
def
= max

i1,...,ij
Pr

x∈Un

[x simultaneously satisfies terms Ti1, . . . , Tij in ∨U⊆S(gU )]



60

where the max is taken over all j-tuples of distinct terms in ∨U⊆S(gU ). Then it is not hard

to see that by a union bound, we have

|ConS(C)| ≤ B|C|
∏

U∈C
(#gU ), (5.4)

where #gU denotes the number of terms in the monotone DNF formula gU .

The idea of why (5.4) is a useful bound is as follows. Intuitively, one would expect that

the value of Bj decreases as j (the number of terms that must be satisfied) increases. One

would also expect the value of #gU to decrease as the size of U increases (if U contains

more variables then fewer terms in f will contain all of those variables). This means that

there is a trade-off which helps us bound (5.4): if |C| is large then B|C| is small, but if |C|
is small then (since we know that

⋃
U∈C U = S) some U is large and so

∏
U∈C#gU will be

smaller.

5.2.3 Bounding f̂(S) Based on Whether S Co-occurs in Some Term of f .

We are now ready to state formally the conditions on f̂ that allow us to detect a co-

occurrence of variables in the value of the corresponding Fourier coefficient.

Lemma 39. Let f : {0, 1}n → {−1, 1} be a monotone DNF formula. Fix a set S ⊂ [n] of

size |S| = s and let

Y = {C ⊆ P(S) : C covers S and S /∈ C}.

Suppose that we define α, β1, . . . , β2s and Φ : Y →R so that:

(C1) Each term in f is uniquely satisfied with probability at least α;

(C2) For 1 ≤ j ≤ 2s, each j-tuple of terms in f is simultaneously satisfied with probability

at most βj ; and

(C3) For every CY ∈ Y we have
∏

U∈CY (#gU ) ≤ Φ(CY ).

Then,

1. If the variables in S do not simultaneously co-occur in any term of f , then

|f̂(S)| ≤ Υ where Υ :=
∑

CY ∈Y

(
2sβ|CY |Φ(CY )

)
;



61

2. If the variables in S do simultaneously co-occur in some term of f , then |f̂(S)| ≥
α
2s − 2 · Υ.

Using Lemma 39, if f satisfies conditions (C1) through (C3) with values of βj and

Φ(·) so that there is a “gap” between α/2s and 3Υ, then we can determine whether all the

variables in S simultaneously co-occur in a term by estimating the magnitude of f̂(S).

Proof. Let C⋆ denote the ‘special’ element of P (S) that consists solely of the subset S, i.e.,

C⋆ = {S}, and let X = {C ⊆ P(S) : C covers S and S ∈ C and C 6= C⋆}. Using Lemma 38,

we have

f̂(S) = ConS(C⋆) +
∑

CY ∈Y

ConS(CY ) +
∑

CX ∈X

ConS(CX ). (5.5)

We first prove point 1. Suppose that the variables of S do not simultaneously co-occur

in any term of f . Then gS is the empty disjunction and #gS = 0, so ConS(C) = 0 for

any C containing S. Thus in this case we have f̂(S) =
∑
CY ∈Y

ConS(CY ); using (5.4) and

condition (C3), it follows that |f̂(S)| is at most
∑
CY ∈Y

B|CY |Φ(CY ).

We now claim that B|CY | ≤ 2sβ|CY |; we establish this by showing that Bj ≤ 2sβj for

all j. In other words, we shall bound the probability of simultaneously satisfying any fixed

collection of j terms in the DNF formula f ′ = ∨U⊆S(gU ). We have that for 1 ≤ j ≤ 2s, each

j-tuple of terms in f is simultaneously satisfied with probability at most βj . Consider any

fixed sequence T ′i1 , . . . , T
′
ij

of terms from f ′. Let Ti1 , . . . , Tij denote the sequence of terms in

f from which the terms T ′i1 , . . . , T
′
ij

were derived, i.e., each term T consists of T ′∧ (∧i∈Uxi)

for some U ⊆ S. Since Ti1 ∧ · · · ∧Tij is simply a monotone conjunction and T ′i1 ∧ · · · ∧T ′ij is

simply the corresponding conjunction obtained by removing at most |S| = s variables from

Ti1 ∧ · · · ∧ Tij , we have that Prx[T ′i1 ∧ · · · ∧ T ′ij ] ≤ 2sβj .

So in this case we have:

|f̂(S)| ≤
∑

CY ∈Y

|ConS(CY )| ≤
∑

CY ∈Y

B|CY |Φ(CY ) ≤
∑

CY ∈Y

(
2sβ|CY |Φ(CY )

)
= Υ.

Now we turn to point 2. Suppose that the variables of S do co-occur in some term of

f . Let x be any element of PC⋆ , so x satisfies gU if and only if U = S. It is easy to see

from (5.1) that for such an x we have ConS(x) = (−1)|S|/(2n2s). We thus have that

ConS(C⋆) =
(−1)|S|

2s
· Pr[x ∈ PC⋆ ] =

(−1)|S|

2s
Pr[gS ∧ (

∧

U(S

gU )]. (5.6)



62

Since S co-occurs in some term of f , we have that gS contains at least one term T . By

condition (C1), the corresponding term (T ∧ (∧i∈Sxi)) of f is uniquely satisfied with prob-

ability at least α. Since each assignment that uniquely satisfies (T ∧ (∧i∈Sxi)) (among all

the terms of f) must satisfy gS ∧ (
∧

U(S gU ), we have that the magnitude of (5.6) is at least

α/2s.

We now show that |∑CX ∈X
ConS(CX )| ≤ Υ, which completes the proof, since we

already have that |∑CY ∈Y
ConS(CY )| ≤ ∑

CY ∈Y
|ConS(CY )| ≤ Υ. First note that if the

set CX \ {S} does not cover S, then by Lemmas 37 and 38 we have that ConS(x) = 0 for

each x ∈ PCX and thus ConS(CX ) = 0. So we may restrict our attention to those CX such

that CX \ {S} covers S. Now since such a CX \ {S} is simply some CY ∈ Y , and each

CY ∈ Y is obtained as CX \ {S} for at most one CX ∈ X , we have:
∣∣∣∣∣∣

∑

CX ∈X

ConS(CX )

∣∣∣∣∣∣
≤
∑

CY ∈Y

|ConS(CY )| ≤ Υ.

�

5.3 Hypothesis Formation

In this section, we show that if a target monotone DNF formula f satisfies the conditions

of Lemma 39 and two other simple conditions stated below (see Theorem 40), then it is

possible to learn f from uniform random examples.

Theorem 40. Let f be a t-term monotone DNF formula. Fix s ∈ [n]. Suppose that

• For all sets S ⊂ [n], |S| = s, conditions (C1) through (C3) of Lemma 39 hold for

certain values α, βj , and Φ(·) satisfying ∆ > 0, where ∆ := α/2s − 3 ·Υ. (Recall that

Υ :=
∑
CY ∈Y

(
2sβ|CY |Φ(CY )

)
, where Y = {C ⊆ P(S) : C covers S and S /∈ C}.)

(C4) Every set S of s co-occurring variables in f appears in at most γ terms (here γ ≥ 2);

and

(C5) Every term of f contains at most κ variables (note that s ≤ κ ≤ n).

Then A (see Figure 5.1) PAC learns f to accuracy ǫ with confidence 1 − δ given access to

EX(f, Un), and runs in time poly(ns+γ , t, 1/∆, γκ, 1/ǫ, log(1/δ)).



63

Algorithm A (inputs are ǫ, δ, s, α,Υ, γ, κ, and access to EX(f, Un))

1. Define ∆ := α/2s − 3 · Υ.

2. For each S ⊂ [n], |S| = s, empirically estimate f̂(S) to within ±∆/3 (with confi-

dence 1 − δ/3 that all estimates have the required accuracy); let f̃(S) be the em-

pirical estimate thus obtained. Mark as “good” each S for which |f̃(S)| ≥ Υ + ∆
2 .

3. Let Gf denote the following n-vertex hypergraph: the vertices of Gf correspond

to variables x1, . . . , xn, and Gf contains each s-vertex hyperedge S if and only if

S was marked as “good” in the previous step.

4. Run algorithm A′ (see Figure 5.2) to identify the set HCf of all of the k-

hypercliques in Gf , as k ranges over {s, . . . , κ}.

5. Run the standard elimination algorithm for disjunctions—with ǫ as the accuracy

input parameter and δ/3 as the confidence—over the “features” that are the mono-

tone conjunctions corresponding to the hypercliques identified in the previous step.

Output the resulting hypothesis h (which is a monotone DNF formula).

Figure 5.1: The Algorithm A.

Proof. Lemma 39 implies that for each set S ⊂ [n], |S| = s,

• if the variables in S all co-occur in some term of f , then |f̂(S)| is at least ∆/2 larger

than Υ + ∆/2;

• if the variables in S do not all co-occur in some term of f , then |f̂(S)| is at least ∆/2

smaller than Υ + ∆/2.

A straightforward application of Hoeffding bounds (to estimate the Fourier coefficients using

a random sample of uniformly distributed examples) shows that Step 1 of Algorithm A can

be executed in poly(ns, 1/∆, log(1/δ)) time, and that with probability 1− δ/3 the S’s that

are marked as “good” will be precisely the s-tuples of variables that co-occur in some term

of f .



64

Algorithm A′ (input is the list of “good” sets S identified in Step 1 of Algorithm A)

1. For each good set S, run Algorithm A′′ (see Figure 5.3) to identify the set NS of

all variables in [n] \ S that occur in some term that also contains all variables in

S.

2. For all s ≤ k ≤ κ, using brute-force search over all subsets N ′ of at most (k − s)

many elements from NS , check whether N ′ ∪ S is a k-hyperclique in Gf .

Figure 5.2: The Algorithm A′.

Algorithm A′′ (input is a good set S)

1. For each subset N of at most γ variables from [n] \ S, perform the following:

(a) Empirically estimate f̂N←0(S) to additive accuracy ±∆/3; let f̃N←0(S) be

the empirical estimate thus obtained. Mark each N for which f̃N←0(S) ≥
Υ + ∆

2 .

2. Let NS be the union of all the N ’s that were marked in the previous step. Return

NS .

Figure 5.3: The Algorithm A′′.

Conceptually, the algorithm next constructs the hypergraph Gf that has one vertex per

variable in f and that includes an s-vertex hyperedge if and only if the corresponding s

variables co-occur in some term of f . Clearly there is a k-hyperclique in Gf for each term

of k variables in f . So if we could find all of the k-hypercliques in Gf (where again k ranges

between s and κ), then we could create a set HCf of monotone conjunctions of variables

such that f could be represented as an OR of t of these conjunctions. Treating each of

the conjunctions in HCf as a variable in the standard elimination algorithm for learning

disjunctions (see e.g., Chapter 1 of [KV94]) would then enable us to properly PAC learn f

to accuracy ǫ with probability at least 1 − δ/3 in time polynomial in n, t, |HCf |, 1/ǫ, and

log(1/δ). Thus, A will use a subalgorithm A′ to find all of the k-hypercliques in Gf and



65

will then apply the elimination algorithm over the corresponding conjunctions to learn the

final approximator h.

We now explain the subalgorithm A′ for locating the set HCf of k-hypercliques. For

each set S of s co-occurring variables, let NS ⊆ ([n] \ S) be defined as follows: a variable

xi is in NS if and only if xi is present in some term that contains all of the variables in

S. Since by assumption there are at most γ terms containing such variables and each term

contains at most κ variables, this means that |NS | < κγ. The subalgorithm will use this

bound as follows. For each set S of s co-occurring variables, A′ will determine the set NS

using a procedure A′′ described shortly. Then, for each s ≤ k ≤ κ and each (k− s)-element

subset N ′ of NS , A′ will test whether or not N ′ ∪ S is a k-hyperclique in Gf . The set of

all k-hypercliques found in this way is HCf . For each S, the number of sets tested in this

process is at most
κ∑

i=0

(|NS |
i

)
≤

κ∑

i=0

(
κγ

i

)
≤
(eκγ
κ

)κ
= (eγ)κ.

Thus, |HCf | = O(ns(eγ)κ), and this is an upper bound on the time required to execute

Step 2 of subalgorithm A′.
Finally, we need to define the procedure A′′ for finding NS for a given set S of s co-

occurring variables. Fix such an S and let Nγ be a set of at most γ variables in ([n] \ S)

having the following properties:

(P1) In the projection fNγ←0 of f in which all of the variables of Nγ are fixed to 0, the

variables in S do not co-occur in any term; and

(P2) For every set N ′γ ⊂ Nγ such that |N ′γ | = |Nγ | − 1, the variables in S do co-occur in at

least one term of fN ′
γ←0.

We will use the following claim:

Claim 41. NS is the union of all sets Nγ of cardinality at most γ that satisfy (P1) and

(P2).

Proof. We first show that the union of all sets satisfying (P1) and (P2) is a subset of NS .

To see this, note that if variable xi is not in NS (i.e., xi does not co-occur with S in any

term), then any set Nγ that includes xi cannot satisfy both properties. This is because if



66

Nγ satisfies (P1) (i.e., S does not co-occur in any term of fNγ←0), then the set N ′γ = Nγ \xi

will also be such that S do not co-occur in any term of fN ′
γ←0, since x does not co-occur

with S in any term.

Next, consider the minimal monotone DNF representation Df of the target f . Let DfS

be the monotone DNF expression obtained from Df by removing from Df all terms in which

the variables of S do not co-occur and then fixing all of the variables in S to 1. Since DfS

has at most γ terms, there is an equivalent minimal CNF CfS
in which each clause contains

at most γ variables. For each clause Ci in CfS
, the set of variables in Ci satisfies both (P1)

and (P2): setting all of the variables in Ci to 0 falsifies both CfS
and DfS

and therefore

removes from f all terms in which the variables of S co-occur; but setting any proper subset

of the variables in Ci to 0 does not falsify DfS
and therefore leaves at least one term in f in

which the variables of S co-occur. Furthermore, all of the variables in DfS
are also relevant

in CfS
, so every variable in DfS

appears in at least one clause of CfS
. It follows that the

union of the variables in the sets Nγ satisfying (P1) and (P2) is a superset of the set of

variables in DfS
, that is, the set NS. �

There are only O(nγ) possible candidate sets Nγ to consider, so our problem now reduces

to the following: given a set N of at most γ variables, determine whether the variables in

S co-occur in fN←0.

Recall that since f satisfies the three conditions (C1), (C2) and (C3), Lemma 39

implies that |f̂(S)| is either at most Υ (if the variables in S do not co-occur in any term

of f) or at least α
2s − 2 · Υ (if the variables in S do co-occur in some term). We now claim

that the function fN←0 has this property as well: i.e., |f̂N←0(S)| is either at most the same

value Υ (if the variables in S do not co-occur in any term of fN←0) or at least the same

value α
2s −2 ·Υ (if the variables in S do co-occur in some term of fN←0). To see this, observe

that the function fN←0 is just f with some terms removed. Since each term in f is uniquely

satisfied with probability at least α (this is condition (C1)), the same must be true of fN←0

since removing terms from f can only increase the probability of being uniquely satisfied

for the remaining terms. Since each j-tuple of terms in f is simultaneously satisfied with

probability at most βj (this is condition (C2)), the same must be true for j-tuples of terms

in fN←0. Finally, for condition (C3), the value of #gU can only decrease in passing from



67

f to fN←0. Thus, the upper bound of Υ that follows from applying Lemma 39 to f is also

a legitimate upper bound when the lemma is applied to |f̂N←0(S)|, and similarly the lower

bound of α
2s − 2 · Υ is also a legitimate lower bound when the lemma is applied to fN←0.

Therefore, for every |N | ≤ γ, a sufficiently accurate (within ∆/2) estimate of f̂N←0(S)

(as obtained in Step 1 of subalgorithm A′′) can be used to determine whether or not the

variables in S co-occur in any term of fN←0.

To obtain the required estimate for f̂N←0, observe that for a given set N , we can simulate

a uniform example oracle for fN←0 by filtering the examples from the uniform oracle for

f so that only examples setting the variables in N to 0 are accepted. Since |N | ≤ γ, the

filter accepts with probability at least 1/2γ . A Hoeffding bound argument then shows that

the Fourier coefficients f̂N←0(S) can be estimated (with probability of failure no more than

a small fraction of δ) from an example oracle for f in time polynomial in n, 2γ , 1/∆, and

log(1/δ).

Algorithm A′′, then, estimates Fourier coefficients of restricted versions of f , using a

sample size sufficient to ensure that all of these coefficients are sufficiently accurate over

all calls to A′′ with probability at least 1 − δ/3. These estimated coefficients are then used

by A′′ to locate the set NS as just described. The overall algorithm A therefore succeeds

with probability at least 1 − δ, and it is not hard to see that it runs in the time bound

claimed. �

Required parameters. In the above description of Algorithm A, we assumed that it is

given the values of s, α,Υ, γ, and κ. In fact it is not necessary to assume this; a standard

argument gives a variant of the algorithm which succeeds without being given the values of

these parameters.

The idea is simply to have the algorithm “guess” the values of each of these parameters,

either exactly or to an adequate accuracy. The parameters s, γ and κ take positive integer

values bounded by poly(n). The other parameters α,Υ take values between 0 and 1; a

standard argument shows that if approximate values α′ and Υ′ (that differ from the true

values by at most 1/poly(n)) are used instead of the true values, the algorithm will still

succeed. Thus there are at most poly(n) total possible settings for (s, γ, κ, α,Υ) that need

to be tried. We can run Algorithm A for each of these candidate parameter settings, and



68

test the resulting hypothesis; when we find the “right” parameter setting, we will obtain a

high-accuracy hypothesis (and when this occurs, it is easy to recognize that it has occurred,

simply by testing each hypothesis on a new sample of random labeled examples). This

parameter guessing incurs an additional polynomial factor overhead. Thus Theorem 40

holds true for the extended version of Algorithm A that takes only ǫ, δ as input parameters.

5.4 Random Monotone DNF

Let Mt,k
n be the probability distribution over monotone t-term DNF formulas induced by

the following process: each term is independently and uniformly chosen at random from all
(
n
k

)
monotone ANDs of size exactly k over x1, . . . ,xn.

Given a value of t, throughout this section we consider the Mt,k
n distribution where

k = ⌊log t⌋ (we will relax this and consider a broader range of values for k in Section 5.6).

To motivate this choice, consider a random draw of f from Mt,k
n . If k is too large relative

to t then a random f ∈ Mt,k
n will likely have Prx∈Un [f(x) = 1] ≈ 0, and if k is too

small relative to t then a random f ∈ Mt,k
n will likely have Prx∈Un [f(x) = 1] ≈ 1; such

functions are trivial to learn to high accuracy using either the constant-0 or constant-1

hypothesis. A straightforward analysis (see e.g., [JS05b]) shows that for k = ⌊log t⌋ we

have that Ef∈Mt,k
n

[Prx∈Un [f(x) = 1]] is bounded away from both 0 and 1, and thus we feel

that this is an appealing and natural choice.

5.4.1 Probabilistic analysis.

In this section we will establish various useful probabilistic lemmas regarding random mono-

tone DNF formulas of polynomially bounded size.

Assumptions: Throughout the rest of Section 5.4 we assume that t(n) is any function

such that n3/2 ≤ t(n) ≤ poly(n). To handle the case when t(n) ≤ n3/2, we will use the

results from [JS05b]. Let a(n) be such that t(n) = na(n). For brevity we write t for t(n)

and a for a(n) below, but the reader should keep in mind that a actually denotes a function

3
2 ≤ a = a(n) ≤ O(1).

The first lemma provides a bound of the sort needed by condition (C3) of Lemma 39:



69

Lemma 42. Let |S| = s = ⌊a⌋ + 2. Fix any CY ∈ Y . Let δterms = n−Ω(log n). With

probability at least 1− δterms over the random draw of f from Mt,k
n , we have that for some

absolute constant c and all sufficiently large n,

∏

U∈CY
(#gU ) ≤ c · t

|CY |−1k2s

√
n

. (5.7)

Proof. We prove the lemma assuming that that ∅ /∈ CY . This is sufficient because if ∅ ∈
CY , then C′

Y
= CY \ ∅ is still contained in Y , and applying the result to C′

Y
gives that

∏
U∈C′

Y

(#gU ) ≤ c · t|C
′
Y

|−1k2s

√
n

with probability at least 1 − δterms. Since #g∅ ≤ t and

|C′
Y
| = |CY | − 1, the conclusion of the lemma holds for CY as well.

Fix any ∅ 6= U ∈ CY (note that since U ∈ CY we also have U 6= S, and hence |U | ≤
s− 1 = ⌊a⌋+ 1.). Recall that f is chosen by picking each term Ti to be a uniformly chosen

set of k distinct variables. The probability (over a random choice of f) that T1 contains

all the elements of U and none of the elements of S \ U is
( n−s
k−|U |

)
/
(n
k

)
; let us write pU to

denote this quantity. Using the facts that k = Θ(log n) and 1 ≤ |U | < s = O(1), one can

verify that:
1

2
(k/n)|U | ≤ pU ≤ (k/n)|U | . (5.8)

Since each of the t terms of f is chosen independently, we have that #gU is binomially

distributed according to B(t, pU ), so t · 1
2( k

n)|U | ≤ E[#gU ] = tpU ≤ t( k
n)|U |. Now recall that

the Chernoff bound gives that Pr[X ≥ (1 + ζ) E[X]] ≤ e−ζ2tp/3 where X is an independent

and identically distributed random variable. For X drawn from B(t, p) and taking ζ = 1,

we get:

Pr
[
#gU > 2t (k/n)|U |

]
≤ Pr[#gU > 2tpU ] ≤ exp(−tpU/3) ≤ exp(−t(k/n)|U |/6). (5.9)

Suppose first that |U | ≤ s − 2 = ⌊a⌋. If |U | = 1, then since t ≥ n3/2 we have that

(5.9) is at most exp(−√
n log n). On the other hand, if |U | > 1 then ⌊a⌋ ≥ 2, and since

t/n|U | ≥ t/n⌊a⌋ ≥ 1 we have that (5.9) ≤ exp(−k|U |/6) ≤ n−Ω(log n).

Now suppose that |U | = s − 1. In this case we use the following form of the Hoeffding

bound (see e.g., Exercise 4.1 in [MR95]): if ζ > 2e − 1, then Pr[X > (1 + ζ) E[X]] ≤
2−(1+ζ) E[X] for X drawn from B(t, p). Let ζ be such that (1+ ζ)t(k/n)|U | = t1/2a; note that



70

this gives:

1 + ζ = t(1/(2a))−1(n/k)|U | = (
√
n/t)(n/k)|U | ≥ (

√
n/t)(n/k)a =

√
n/polylog(n) ≫ 2e,

so we may indeed apply the Hoeffding bound for this choice of ζ. Using (5.8), we obtain

Pr[#gU > t1/2a] ≤ Pr[#gU > (1 + ζ)tpU ] ≤ 2
−t1/2a

2 ≤ 2−
√

n/2.

Taking a union bound over all possible sets U 6= ∅ (at most 2s = O(1) many possibilities),

we have that with probability at least 1− δterms over the draw of f , every such set U ∈ CY

satisfies:

• if |U | ≤ s− 2 then #gU ≤ 2t(k/n)|U |; and

• if |U | = s− 1 then #gU ≤ t1/2a.

We henceforth assume the above conditions are satisfied, and now show that this gives the

bound (5.7).

We partition CY according to the size of U : let CA
Y

= {U ∈ CY : |U | = s − 1} and

CB
Y

= CY \ CA
Y

= {U ∈ CY : |U | ≤ s− 2}. Then,

∏

U∈CY
(#gU ) =

∏

U∈CA
Y

(#gU )
∏

U∈CB
Y

(#gU ) ≤ t|C
A
Y
|/2a · (2t)|CB

Y
|(k/n)

P

U∈CB
Y

|U |
.

By definition of CY we have that
∑

U∈CY |U | ≥ s. Now if |CA
Y
| = 0 , then we have

∏

U∈CY
(#gU ) ≤ (2t)|CY |(k/n)

P

U∈CY
|U | ≤ (2t)|CY |(k/n)s = 2|CY |

t|CY |−1ks

ns−a
≤ 2|CY |

t|CY |−1ks

n
.

On the other hand, if |CA
Y
| > 0, then

∏

U∈CY
(#gU ) ≤ 2|C

B
Y
|t|C

A
Y
|/2a+|CB

Y
|(k/n)|C

B
Y
|.

Since |CY | − (2a−1
2a )|CA

Y
| = |CA

Y
|/2a+ |CB

Y
|, observing that |CB

Y
| ≤ 2s it suffices to show that

2|C
B
Y
|k2s t|CY |

n
2a−1

2
|CA

y |+|CB
Y
| ≤ c · t

|CY |−1k2s

√
n

,

which holds when 2a−1
2 |CA

Y
| + |CB

Y
| ≥ a + 1/2. This inequality follows from the fact that

|CY | ≥ 2 (since S /∈ CY and ∪U∈CY U = S), |CA
Y
| ≥ 1, and a ≥ 3

2 . �



71

The following lemma shows that for f drawn from Mt,k
n , with high probability each

term is “uniquely satisfied” by a noticeable fraction of assignments as required by condition

(C1). (Note that since k = O(log n) and t > n3/2, we have δusat = n−Ω(log log n) in the

following.)

Lemma 43. Let δusat := exp(−tk
3n ) + t2( k

n)log log t. For n sufficiently large, with probability

at least 1 − δusat over the random draw of f = T1 ∨ · · · ∨ Tt from Mt,k
n , f is such that for

all i = 1, . . . , t we have Prx[Ti is satisfied by x but no other Tj is satisfied by x ] ≥ Θ(1)
2k .

Proof. For a monotone t-term DNF formula f = T1 ∨ · · · ∨ Tt, let f i denote the projected

function obtained from f by removing the term Ti from f and restricting all of the variables

which were present in term Ti to 1. For ℓ 6= i we write T i
ℓ to denote the term obtained

by setting all variables in Ti to 1 in Tℓ, i.e., T i
ℓ is the term in f i corresponding to Tℓ.

Now the probability that Ti is satisfied and no other Tj is satisfied is given by Pr[Ti] ·
Pr[T i

ℓ for all ℓ 6= i |Ti] = Pr[Ti] · Pr[f i]. Since Pr[Ti] = 1
2k , it suffices to bound Pr[f i] from

below. As in [JS05b], we show that the following four facts all hold with probability 1−δusat:

1. Pr[f i] ≥∏ℓ:ℓ 6=i Pr[T i
ℓ ].

2.
∏

ℓ:T i
ℓ≡Tℓ

Pr[T i
ℓ ] > 1/16.

3. |{T i
ℓ : ℓ 6= i ∧ T i

ℓ 6≡ Tℓ}| ≤ 2tk2

n .

4. No term in f i has fewer than k − log log t variables.

Together, these conditions imply that

Pr[f i] ≥
∏

ℓ:Tℓ≡T i
ℓ

Pr[T i
ℓ ]

∏

ℓ:Tℓ 6≡T i
ℓ ,ℓ 6=i

Pr[T i
ℓ ] ≥

1

16

(
1 − log t

2k

)2tk2/n

≥ 1

32
.

We now prove (1)–(4). To prove (1) note that

Pr[f ] = Pr[T1 ∧ T2 ∧ · · · ∧ Tt] = Pr[T1|T2 ∧ · · · ∧ Tt] Pr[T2|T3 ∧ · · · ∧ Tt] · · ·Pr[Tt−1|Tt] Pr[Tt]

which is at least
∏t

i=1 Pr[Ti] since f is monotone. (Conditioning on terms being unsatisfied

can only increase the number of variables set to 0 and thus can only increase the chances a

particular term is unsatisfied).



72

For any i and ℓ such that T i
ℓ ≡ Tℓ, we have Pr[T i

ℓ ] = Pr[Tℓ] = 1 − Pr[Tℓ] = 1 − 1
2k .

Certainly there are at most t such T i
ℓ , so (2) follows from the fact that k = ⌊log t⌋ so

(1 − 1
2k )t > 1/16.

For (3), first we prove that with probability at least 1− exp(−tk
3n ), any variable appears

in at most 2tk
n many terms. Each variable vj appears in each fixed term Tℓ with probability

k/n. Since the terms are chosen independently, the number of occurrences of vj is binomially

distributed according to B(t, p) with p = k/n. Now recall that the Chernoff bound gives

that Pr[X ≥ (1 + ζ) E[X]] ≤ e−ζ2tp/3 where X is drawn from B(t, p). Taking ζ = 1, we

get that Pr[X > 2tk
n ] < exp(−tk

3n ). If Tℓ 6≡ T i
ℓ then Tℓ must contain some variable from

Ti. Assuming every variable appears in at most 2tk/n terms, and term Ti has at most k

variables, there can be at most k · 2tk/n such terms.

Finally, Lemma 3.5 of Jackson and Servedio’s paper [JS05b] gives that (4) holds with

probability at least 1 − t2(k2

n )log log t. Thus we have that conditions (1)–(4) all hold with

probability at least 1 − δusat. �

We now upper bound the probability that any j distinct terms of a random DNF formula

f ∈ Mt,k
n will be satisfied simultaneously (condition (C2)). (In the following lemma, note

that for j = Θ(1), since t = nΘ(1) and k = Θ(log n) we have that the quantity δsimult is

n−Θ(log log n).)

Lemma 44. Let 1 ≤ j ≤ 2s, and let δsimult := tjejk−log k(jk−log k)log k

nlog k . With probability at

least 1− δsimult over the random draw of f = T1 ∨ · · · ∨Tt from Mt,k
n , for all 1 ≤ ι1 < · · · <

ιj ≤ t we have Pr[Tι1 ∧ . . . ∧ Tιj ] ≤ βj , where βj := k
2jk .

Proof. Fix any sequence ι1 < · · · < ιj of j terms. Let v ≤ jk be the number of distinct

variables that occur in these terms. First, we will bound the probability that v > w :=

jk − log k. Consider any particular fixed set of w variables. The probability that none of

the j terms includes any variable outside of the w variables is precisely (
(w

k

)
/
(n
k

)
)j . Thus,

the probability that v ≤ w is by the union bound:

Pr[v ≤ w] ≤
(
n

w

)((w
k

)
(
n
k

)
)j

≤
(en
w

)w (w
n

)jk
≤ ejk−log k(jk − log k)log k

nlog k
.



73

Taking a union bound over all (at most tj) sequences 1 ≤ ι1 < · · · < ιj ≤ t, we have that

with probability 1−δsimult, every sequence of j terms contains at least w distinct variables,

and thus for every sequence we have Pr[Tι1 ∧ · · · ∧ Tιj ] ≤ 2−w = k/2jk. �

Finally, the following lemma shows that for all sufficiently large n, with high probability

over the choice of f , every set S of s variables appears in at most γ terms, where γ is

independent of n (see condition (C4)).

Lemma 45. Fix any constant c > 0. Let s = ⌊a⌋ + 2 and let γ = a+ c+ 1. Let δγ = n−c.

Then for n sufficiently large, with probability at least 1− δγ over the random draw of f from

Mt,k
n , we have that every s-tuple of variables appears in at most γ terms of f .

Proof. For any fixed r ∈ {1, . . . , t} and any fixed S such that |S| = s, we have Pr[all

variables in S occur in Tr] = k(k−1)···(k−s+1)
n(n−1)···(n−s+1) ≤

(
k
n

)s
. Since terms are chosen independently,

the probability that the variables in S co-occur in a fixed collection of γ + 1 terms is

at most
(

k
n

)s(γ+1)
. By the union bound, the probability that these variables co-occur in

any collection of γ + 1 terms is at most
(

t
γ+1

)
· ( k

n)s(γ+1) ≤
(

tks

ns

)γ+1
. Using the union

bound again, we have that the probability that any s-tuple of variables co-occurs in more

than γ terms is at most
(n

s

)
·
(

tks

ns

)γ+1
. Recalling that t = na, that s = ⌊a⌋ + 2, and that

k = ⌊log t⌋ = O(log n), we have that this probability is at most polylog(n) ·na(γ+1)−(a+1)γ =

polylog(n) · na−γ . By our choice of γ this is at most δγ , and the proof is done. �

5.5 Proof of the Main Theorem

Theorem 46. [Formally] Let t(n) be any function such that t(n) ≤ poly(n), let a(n) =

O(1) be such that t(n) = na(n), and let c > 0 be any fixed constant. Then for any n−c < δ < 1

and 0 < ǫ < 1, Mt(n),⌊log t(n)⌋
n is PAC learnable under Un in poly(n2a(n)+c+3,(a(n) + c +

1)log t(n),t(n),1/ǫ, log 1/δ) time.

Proof. The result is proved for t(n) ≤ n3/2 already by Jackson and Servedio [JS05b], so we

henceforth assume that t(n) ≥ n3/2. We use Theorem 40 and show that for s = ⌊a(n)⌋+ 2,

random monotone t(n)-term DNF formulas, with probability at least 1 − δ, satisfy condi-

tions (C1)–(C5) with values α, βj ,Φ(·),∆, γ, and κ such that ∆ > 0 and the quantities



74

ns+γ , 1/∆, and γκ are polynomial in n. This will show that the extended version of Algo-

rithm A defined in Section 5.3 PAC learns random monotone t(n)-term DNF formulas in

time poly(n, 1/ǫ). Let t = t(n) and k = ⌊log t⌋, and let f be drawn randomly from Mt,k
n .

By Lemmas 42–45, with probability at least 1 − δusat − δγ − 22s
δterms − δsimult, f will

satisfy (C1)–(C5) with the following values:

(C1) α > Θ(1)
2k ; (C2) βj ≤ k

2jk for 1 ≤ j ≤ 2s;

(C3) Φ(CY ) ≤ O(1) t|CY |−1k2s

√
n

for all CY ∈ Y ; (C4) γ ≤ a(n) + c+ 1;

(C5) κ = k = ⌊log t⌋,

which gives us that ns+γ = n2a+c+3 and γκ = (a + c + 1)⌊log t⌋. Finally, we show that

∆ = Ω(1/t) so 1/∆ is polynomial in n:

∆ = α/2s − 3 · Υ =
Θ(1)

t2s
− 3

∑

CY ∈Y

2sβ|CY |Φ(CY )

≥ Θ(1)

t2s
− Θ(1)

∑

CY ∈Y

2s k

t|CY |
· t
|CY |−1k2s

√
n

=
Θ(1)

t2s
− Θ(1)k2s+1

t
√
n

= Ω(1/t).

�

5.6 Discussion

Robustness of parameter settings. Throughout Sections 5.4 and 5.5 we have assumed

for simplicity that the term length k in our random t-term monotone DNF formula is exactly

⌊log t⌋. In fact, the results extend to a broader range of k’s; one can straightforwardly verify

that by very minor modifications of the given proofs, Theorem 36 holds for Mt,k
n for any

(log t) −O(1) ≤ k ≤ O(log t).

Relation to previous results. Our results are powerful enough to subsume some known

“worst-case” results on learning restricted classes of monotone DNF formulas. Hancock and

Mansour [HM91] have shown that read-k monotone DNF formulas are learnable under the

uniform distribution in poly(n) time for constant k. Their result extends an earlier result

of Kearns et al. [KLV94] showing that read-once DNF formulas (which can be assumed to



75

be monotone without loss of generality) are polynomial-time learnable under the uniform

distribution.

It is not hard to see that (a very restricted special case of) our algorithm can be used to

learn read-k monotone DNF formulas in polynomial time. Note first that we may assume

the unknown target read-k DNF formula f has ǫ
2 ≤ Pr[f(x) = 1] ≤ 1 − ǫ

2 , since otherwise

it is trivial to learn to accuracy ǫ.

We show that we can apply Theorem 40 to learn f. Any read-k DNF formula has at

most kn total occurrences of variables, so we certainly have that f is a t(n)-term DNF

formula with t(n) = O(n). We will take s = 1. Since f is a read-k DNF formula, we may

take γ = 2 in condition (C4). By the usual reasoning, we may suppose without loss of

generality that each term of f contains at most O(log n
ǫ ) many variables (this is because

the probability that any longer term is ever satisfied by any example in a poly(n/ǫ)-size

set of random examples is negligibly small). Thus we may take κ = O(log n
ǫ ) in condition

(C5).

Turning to Lemma 39, since s = 1 we have that the collection Y is in fact empty – for

S = {xi}, the only C ⊆ P(S) that cover S are C = {∅, {xi}} and C = {{xi}}, both of which

clearly contain S. We thus have Υ = 0, so ∆ = α
2 and it remains only to prove that α

is “not too small,” i.e., that each term in f is uniquely satisfied with probability at least

Ω(1/poly(n/ǫ)). An easy argument in [HM91] gives precisely the desired result; they show

that for any monotone read-k DNF formula f that has Pr[f(x) = 0] = p, every term T that

contains C variables satisfies Pr[T is true and all other terms are false] ≥ p2−k|C|. Since we

have p ≥ ǫ
2 and C ≤ κ = O(log n

ǫ ), we obtain α ≥ Ω(1/poly(n/ǫ)) as required. So we may

apply Theorem 40 to conclude that our algorithm learns f in time poly(n, 1/ǫ, log(1/δ)).



76

Chapter 6

The Structure of Monotone

Decision Trees

In this chapter we consider the concept class of polynomial-size monotone decision trees – a

subset of polynomial-size monotone DNF formulas. We show the relationship between the

average depth of a monotone decision tree, the influences of the variables and its variance.

6.1 Introduction

Decision trees are one of the most important concept classes in the field of computational

learning theory. They are perhaps the smallest concept class for which no efficient algorithms

exist, yet they are also widely used in experimental and applied machine learning. The

heuristics used in machine learning (e.g., the C4.5 and CART software packages [BFSO84,

Qui93]) “grow” a tree from the root to its leaves by repeatedly replacing an existing leaf

with a node labeled with a variable that minimizes the empirical error with respect to the

given data sample.

Unfortunately, these heuristics have been difficult to analyze in the PAC model of learn-

ing. The most theoretically rigorous work on these heuristics [KM96] showed that they were

in some sense boosting algorithms. If the error-minimizing nodes were assumed to be good

weak-learners, the decision tree growing algorithms would boost them into strong learners.

The best algorithm for PAC-learning decision trees is still the one by Ehrenfeucht and



77

Haussler from 1989 [EH89], which learns size-s decision trees in time O(nlog s). Even

when the inputs are assumed to be distributed uniformly, finding an efficient algorithm

for polynomial-size decision trees remains an open problem.

As is usually the case when researchers have difficulty solving a problem, many alter-

native models to uniform-distribution PAC-learning have been considered. Efficient algo-

rithms for learning polynomial-size decision trees exist when: the algorithms are allowed to

make membership queries [KM93]; when the examples are assumed to come from a random

walk on the Boolean hypercube [BMOS03]; when the learner is allowed extended statistical

queries [BF02]; or as in Chapter 5 when there is a natural distribution over the concept

class [JS05a].

Much like DNF formulas, the lack of success should be somewhat expected since poly(n)-

size decision trees can compute parity functions of size log(n) over n variables, and thus have

super-polynomial statistical-query dimension. This, of course, is not an issue when learning

polynomial-size decision trees that compute monotone functions (we call these “monotone

decision trees”). In fact, there is an algorithm for learning poly(n)-size decision trees that

compute monotone functions to accuracy ǫ in O(n1/ǫ2) time [OS07] (which is polynomial-

time for constant ǫ). Their algorithm outputs a real-valued polynomial threshold function

as its hypothesis.

6.1.1 Our Results

Ideally, one would hope for an algorithm that learns polynomial-size monotone decision

trees to arbitrary accuracy, under any distribution, and outputs a polynomial-size monotone

decision tree as a hypothesis. We look to the machine learning heuristics for inspiration

and propose the following algorithm.

Let T be a decision tree computing a function f : {0, 1}n → {+1,−1}. We write δi(T )

to be the probability that coordinate xi is queried by the decision tree on a uniform random

input, and we write:

∆(T )
def
=

n∑

i=1

δi(T ) = E
x

[# coords T queries on x] .

∆(T ) can also be thought of as the average depth of the decision tree, or as a refinement of



78

the notion of the size of the decision tree as, ∆(T ) ≤ log(size(T )) [OS07]. As an example,

consider the decision tree in Figure 6.1. It has δ1(T ) = 3/4, δ2(T ) = 1, δ3(T ) = 1/2, and

∆(T ) = 9/4.

x2

x1

1 0

x3

0 x1

0 1

Figure 6.1: A decision tree with ∆(T ) = 9/4.

When learning a decision tree with average-depth ∆, our proposed algorithm will grow

a decision tree as the hypothesis by repeatedly replacing an existing leaf with a node labeled

with the variable that has the greatest influence (defined in Section 6.2). We will do this

for poly(∆, ǫ−1) rounds, and hopefully have an ǫ-accurate hypothesis at the end. Unlike

non-monotone functions, the variable influences of monotone functions can be estimated

given uniform random examples. There are also two recent results that give us hope that

our proposed algorithm can be analyzed successfully.

The first, which was the main technical result that lead to the O(n1/ǫ2)-time algorithm

for learning monotone decision trees by O’Donnell and Servedio [OS07] is:

Theorem 47 ([OS07] Theorem 2). Let f be a monotone Boolean function. Then, the

average sensitivity of f is at most
√

∆(f), where ∆(f) is the average-depth of the decision

tree for f that minimizes ∆.

We give a slight refinement1 of their theorem for decision trees:

1In the paper by O’Donnell and Servedio, the definition of ∆(f) was extended to the average number

of variables fixed in the “subcube partition” representation of the function, which is a generalization of the

decision-tree representation. Thus, their Theorem 2 is incomparable with our theorem which only holds for

decision trees.



79

Theorem 48. Let f be a monotone Boolean function. Then, the average sensitivity of f

is at most
√

Var[f ] · ∆(f).

The second by O’Donnell et al. [OSSS05], which was used to prove a lower bound on

the randomized query complexity of nontrivial monotone graph properties is:

Theorem 49 ([OSSS05] Theorem 1.1). Let f be a Boolean function, and let T be a decision

tree computing f . Then,

Var[f ] ≤
n∑

i=1

δi(T )Infi(f).

Their proof of this result relied on some delicate probabilistic reasoning about the inde-

pendence of certain hybrid inputs to the decision tree. We give a simple inductive proof of

this same theorem, which closely follows the structure of our proposed algorithm.

We give the needed background on influences in Section 6.2. Then we reprove the

O’Donnell et al. [OSSS05] result in Section 6.3. Finally, we give our variant of the bound

on average sensitivity in Section 6.4.

6.2 Influence

The notion of variable influences was introduced by Ben-Or and Linial [BOL87] in the

context of computational game theory, and it has proven to be very useful in Boolean

function analysis [KKL88, BKS99, KOS04, FKN02, OS07].

Definition 50. For f : {0, 1}n → R, i ∈ [n], the influence of i on f is:

Infi(f) =
∑

S:i∈S

f̂(S)2.

Proposition 51. For any Boolean function f : {0, 1}n → {+1,−1},

Infi(f) = Pr
x∈{0,1}n

[f(x) 6= f(x(i))],

where x(i) denotes x with its i-th bit flipped (negated).



80

Proof.

Pr
x∈{0,1}n

[f(x) 6= f(x(i))] = E
x

[
1

2
− 1

2
f(x)f(x(i))

]

=
1

2
− 1

2
E
x

[
f(x)f(x(i))

]

=
1

2
− 1

2

∑

S,T⊆[n]

f̂(S)f̂(T ) E
x

[
χS(x)χT (x(i))

]

=
1

2
− 1

2

∑

S,T

f̂(S)f̂(T ) E
x

[
χS⊕T (x)(−1)1i∈T

]

=
1

2
− 1

2

∑

S

f̂(S)2(−1)1i∈S

=
1

2

∑

S

f̂(S)2 − 1

2

∑

S

f̂(S)2(−1)1i∈S

=
∑

S:i∈S

f̂(S)2,

where the penultimate equality is due to Parseval’s Theorem. �

The total influence is defined to be the sum of all the influences:

I(f) :=

n∑

i=1

Infi(f) =

n∑

i=1

∑

S:i∈S

f̂(S)2 =
∑

S⊆[n]

|S|f̂(S)2.

The sensitivity of a Boolean function f on an input x is the number of neighbors of x with

different values. The average sensitivity of f is the average of the sensitivities of all inputs:

E
x

[∣∣∣{i ∈ [n] : f(x) 6= f(x(i))}
∣∣∣
]
.

It should be easy to see that the average sensitivity is the same as the total influence.

The influences of monotone functions have the nice property that they are just the

degree-1 Fourier coefficients.

Proposition 52. If f : {0, 1}n → {+1,−1} is monotone, then f̂({i}) = Infi(f).

Proof. By Proposition 51,

Infi(f) = Pr
x

[f(x) 6= f(x(i))]

= Pr
x

[f(x) = (−1)xi ∧ f(x(i)) = −(−1)xi ]

+ Pr
x

[f(x) = −(−1)xi ∧ f(x(i)) = (−1)xi ].



81

However, the second term is always 0 when f is monotone. Similarly,

f̂({i}) = E
x
[f(x)(−1)xi ] = Pr

x
[f(x) = (−1)xi ] − Pr

x
[f(x) = −(−1)xi ].

We can expand this to:

Pr
x

[f(x) = (−1)xi ∧ f(x(i)) = −(−1)xi ] + Pr
x

[f(x) = (−1)xi ∧ f(x(i)) = (−1)xi ]

− Pr
x

[f(x) = −(−1)xi ∧ f(x(i)) = (−1)xi ] − Pr
x

[f(x) = −(−1)xi ∧ f(x(i)) = −(−1)xi ].

The second and fourth terms cancel each other out, and the third is always 0 when f is

monotone. �

Thus, one can estimate the influences of monotone functions from uniform examples (by

a simple application of the Hoeffding bound).

The variance of f : {0, 1}n → R can also be expressed as the sum of squares of Fourier

coefficients.

Var[f ] = E[f2] − E[f ]2 =
∑

S

f̂(S)2 − f̂(∅)2 =
∑

S:|S|≥1

f̂(S)2.

We can conclude that Var[f ] ≤ I(f) for all f . (This inequality is also known as the Poincaré

Inequality for the discrete cube.)

6.3 A Poincaré-type Inequality for Decision Trees

In this section we reprove the O’Donnell et al. [OSSS05] inequality:

Var[f ] ≤
n∑

i=1

δi(T )Infi(f).

This inequality can be viewed as a refinement of the Poincaré Inequality that takes into

account the complexity of the function’s representation.

We will prove this inequality by induction. To do so, we will consider the function’s

behavior under the two cases when the root variable takes the value 0 and the value 1, but

first we will review a fact from probability theory.

For a function f : {0, 1}n → R, let ci = E[f |(x1, . . . ,xi)]−E[f |(x1, . . . ,xi−1)], that is the

average of f over the points y that coincide with x in the first i coordinates. The sequence



82

{ci} is a martingale difference sequence. Let g be another real-valued function, and let {di}
be its martingale difference sequence. Then Cov[f, g] =

∑n
i=1 E cidi. We’ll prove this fact

for the sake of completeness.

Fact 53. Let f, g : {0, 1}n → R be real-valued functions, with martingale difference se-

quences:

ci = E[f |(x1, . . . ,xi)] − E[f |(x1, . . . ,xi−1)] and di = E[g|(x1, . . . ,xi)] − E[g|(x1, . . . ,xi−1)].

Then Cov[f, g] =
∑n

i=1 E cidi.

Proof. We’ll use some basic properties of conditional expectation and martingales. For

j < k, we have

E cjdk = E E [cjdk|(x1, . . . ,xk−1)]

= E cj E [dk|(x1, . . . ,xk−1)]

= E cj · 0 = 0.

Given this, the rest of the proof is straight-forward:

Cov[f, g] = E[f − E f ] E[g − E g]

= E
[∑

ci

]
E
[∑

di

]

= E
∑

j

∑

k

cjdk

=

n∑

i=1

E cidi.

�

Let f0 and f1 denote the function f restricted to inputs where xn = 0 and xn = 1

respectively. Then we have that cn = f − (f0 + f1)/2. We can rewrite the covariance as

Cov[f, g] =
n−1∑

i=1

E cidi + E

(
f − f0 + f1

2

)(
g − g0 + g1

2

)
.

Now let f, g : {0, 1}n → {+1,−1} be Boolean functions. For i 6= n, we get the following

expression:

Infi(f) =
1

2
Infi(f0) +

1

2
Infi(f1),



83

and we get: Infn(f) = Prx∈{0,1}n−1 [f0(x) 6= f1(x)], for the influence of xn on f .

Going back to our expression for the covariance, notice that the quantity (f − (f0 +

f1)/2)(g − (g0 + g1)/2) is 0 unless both f0 6= f1 and g0 6= g1. We can thus upper-bound the

covariance by:

Cov[f, g] ≤
n−1∑

i=1

E cidi + Infn(g),

where our choice of g is arbitrary. Note that this upper-bound is an equality when we

consider the special case of f = g,

Cov[f, f ] = Var[f ] =

n−1∑

i=1

E c2i + Infn(f).

Let T be a decision tree computing f . Without loss of generality, let xn be the root of

the tree, and let T0 and T1 be the left and right subtrees. Then we have:

δi(T ) =
1

2
δi(T0) +

1

2
δi(T1).

We are now ready to prove the main statement.

Theorem 54. Let f, g : {0, 1}n → {+1,−1} be Boolean functions, and let T be a decision

tree computing f . Then,

Cov[f, g] ≤
n∑

i=1

δi(T )Infi(g).

Proof. We’ll prove the statement by induction on the number of variables. When there is

only one variable, the function is either constant, in which case Var[f ] = Inf1(f) = δ1(T ) =

0, or x1, in which case Var[f ] = Inf1(f) = δ1(T ) = 1. One can easily verify that the theorem

holds for all the possible combinations.

Now we’ll consider f and g on n variables. As in the discussion above, let us assume

without loss of generality that the root of T queries xn. Let f0 and f1 denote the function

f restricted to inputs where xn = 0 and xn = 1 respectively. Let ci,0 = E[f0|(x1, . . . ,xi)] −

E[f0|(x1, . . . ,xi−1)]. Define g0, g1, ci,1, di,0, di,1 similarly. Then we have ci = (ci,0 + ci,1)/2,

di = (di,0 + di,1)/2, and we can write the covariance as:

Cov[f, g] =

n∑

i=1

E cidi =
1

4

∑

a,b∈{0,1},i∈[n−1]

E ci,adi,b +E cndn. =
1

4

∑

a,b∈{0,1}
Cov[fa, gb]+E cndn.



84

Since fa and gb are functions on n − 1 variables we can use the induction hypothesis, and

we have:

Cov[f, g] ≤ 1

4

∑

a,b∈{0,1},i∈[n−1]

δi(Ta)Infi(gb) + E cndn =
∑

i∈[n−1]

δi(T )Infi(g) + E cndn.

Finally, we have that E cndn ≤ Infn(g), and δn(T ) = 1 since xn is the root of the tree. Thus,

the induction holds. �

As a corollary we get:

Corollary 55. Let f : {0, 1}n → {+1,−1} be a Boolean function, and let T be a decision

tree computing f . Then,

Var[f ] ≤
n∑

i=1

δi(T )Infi(f).

The corollary implies a lower bound on the maximum influence variable of f :

Infmax(f) ≥ Var[f ]/∆(T ).

6.4 The Average Sensitivity of Monotone Decision Trees

In this section we prove our variant of the O’Donnell and Servedio inequality [OSSS05]:

I(f) ≤
√

∆(f).

This inequality can be viewed as an edge-isoperimetric inequality for the discrete cube, and

yields the classic upper bound on the average sensitivity of monotone functions:

I(f) ≤ I(Maj) = Θ(
√
n),

which follows from the Kruskal-Katona theorem.

We will be using Jensen’s inequality in the proof of our theorem.

Fact 56 (Jensen’s inequality). For a real convex function φ, numbers b1, . . . ,bn in its do-

main, and positive weights ai,

φ

(∑
aibi∑
ai

)
≤
∑
aiφ(bi)∑
ai

.



85

Theorem 57. Let f be a monotone Boolean function, and let T be a decision tree computing

f . Then,
n∑

i=1

Infi(f) ≤
√

Var[f ] · ∆(T ).

Proof. Recall that the value δi(T ) is the probability over a uniform input that the decision

tree T queries the variable xi. Let i1, . . . ,iℓ be all the instances of xi in the tree. Then

δi(T ) =

ℓ∑

j=1

ai
j ,

where ai
j := 2−depth(ij).

Now consider Infi(f). We can rewrite the influence in terms of the subfunctions of f

that consist of the subtrees whose roots are xi. Consider some instance ij of xi in T . Let bij

be the influence of xi in the function calculated by the sub-tree rooted at ij . Note that the

only instance of xi in the sub-tree rooted at ij is ij itself, and that any input to the tree f

can only go to one instance of xi in the tree. Thus, we can write:

Infi(f) =

ℓ∑

j=1

ai
jb

i
j .

Finally, let us consider the variance. As in the proof of Theorem 54, let us consider

the two subfunctions f0 and f1 that are the function f restricted to inputs where the root

variable takes the value 0 and 1, respectively.

Since f is monotone, E[f0] = E[f ] − Infn(f) and E[f1] = E[f ] + Infn(f). We know that

Var[f ] = 1 − E[f ]2, and so we have:

Var[f0] = 1 − E[f0]
2 = 1 − (E[f ] − Infn(f))2.

If we average the variances of both f0 and f1 we get:

Var[f0] + Var[f1]

2
=

1 − (E[f ] + Infn(f))2 + 1 − (E[f ] − Infn(f))2

2

= 1 − E[f ]2 − Infn(f)2

= Var[f ] − Infn(f)2.

That is, each node in the decision tree T contributes its influence squared weighted by

its depth to the variance. So,

Var[f ] =
n∑

i=1

∑

j

ai
j(b

i
j)

2.



86

Now we will use Jensen’s inequality:

(∑
i,j a

i
jb

i
j∑

i,j a
i
j

)2

≤
∑

i,j a
i
j(b

i
j)

2

∑
i,j a

i
j

.

Or in other words: (
I(f)

∆(f)

)2

≤ Var[f ]

∆(f)
,

as was to be shown. �

It’s important to note that our bound crucially relies on the fact that f is monotone. The

parity function on n variables is not monotone, and it has Var[f ] = 1 and I(f) = ∆(f) = n.



87

Chapter 7

Teaching DNF in the Average Case

In our last chapter, we return to monotone DNF formulas, and we show that they are

teachable in the average case. In the teaching model of learning the example oracle acts

as a helpful teacher and provides “useful” examples instead of random ones. We also show

that non-monotone DNF formulas, juntas, and sparse GF2 formulas are teachable in the

average case.

7.1 Introduction

Many results in computational learning theory consider learners that have some form of

access to an oracle that provides labeled examples. Viewed as teachers, these oracles tend

to be unhelpful as they typically either provide random examples selected according to some

distribution, or they put the onus on the learner to select the examples herself. In noisy

learning models, oracles are even allowed to lie from time to time.

In this chapter we study a learning model in which the oracle acts as a helpful teacher

[GK92, GRS93, SM90]. Given a target concept c that belongs to a concept class C, the

teacher provides the learner with a carefully chosen set of examples that are labeled accord-

ing to c. This set of labeled examples is called a teaching set and must have the property

that no other concept c′ 6= c in C is consistent with the teaching set; thus every learner

that outputs a consistent hypothesis will correctly identify c as the target concept. The

minimum number of examples in any teaching set for c is called the teaching dimension of



88

c with respect to C, and the maximum value of the teaching dimension over all concepts in

C is the teaching dimension of C.

Some concept classes that are easy to learn can be very difficult to teach in the worst

case in this framework. As one example, let the concept class C over a finite domain X

contain |X|+ 1 concepts which are the |X| singletons and the empty set. Any teaching set

for the empty set must contain every example in X, since if x ∈ X is missing from the set

then the singleton concept {x} is not ruled out by the set. Thus the teaching dimension for

this concept class is |X|.
Many interesting concept classes include the empty set and all singletons, and thus have

teaching dimension |X|. Consequently for many concept classes the (worst-case) teaching

dimension is not a very interesting measure. With this motivation, researchers have consid-

ered the average teaching dimension, namely the average value of the teaching dimension

of c as c ranges over all of C.

Anthony et al. [ABST95] showed that the average teaching dimension of the class of

linearly separable Boolean functions over {0, 1}n is O(n2). Kuhlmann [Kuh99] showed that

concept classes with VC dimension 1 over finite domains have constant average teaching

dimension and also gave a bound on the average teaching dimension of concept classes Bd(c)

(balls of center c and size ≤ d). Kushilevitz et al. [KLRS96] constructed a concept class C
that has an average teaching dimension of Ω(

√
|C|) (this lower bound was also proved in

[CS98]) and also showed that every concept class has average teaching dimension at most

O(
√

|C|). More recently, Balbach [Bal05] showed that the classes of 2-term DNF formulas

and 1-decision lists each have average teaching dimension linear in n.

Our Results. Our main results are the following theorems, proved in Sections 7.3

and 7.4, which show that the well-studied concept classes of monotone DNF formulas and

DNF formulas are efficiently teachable in the average case:

Theorem 58. Fix any 1 ≤ s ≤ 2Θ(n) and let C be the concept class of all Boolean functions

over {0, 1}n representable as a monotone DNF formulas with at most s terms. Then the

average teaching dimension of C is O(ns).

Theorem 59. Fix any 1 ≤ s ≤ 2Θ(n) and let C be the concept class of all Boolean functions

over {0, 1}n representable as a DNF with at most s terms. Then the average teaching



89

dimension of C is O(ns).

Theorem 59 is a broad generalization of Balbach’s result on the average teaching di-

mension of the concept class of DNF formulas with at most two terms. It is easy to see

that even the class of at-most-2-term DNF formulas has exponential worst-case teaching

dimension; as we show in Section 7.3, the worst-case teaching dimension of at-most-s-term

monotone DNF formulas is exponential as well. Thus our results show that there is a dra-

matic difference between the worst-case and average teaching dimensions for these concept

classes.

We also consider some other well-studied concept classes, namely juntas and sparse GF2

polynomials. For the class of k-juntas, we show in Section 7.5 that while the worst-case

teaching dimension has a logarithmic dependence on n (the number of irrelevant variables),

the average teaching dimension has no dependence on n. For a certain class of sparse

GF2 polynomials (roughly, the class of GF2 polynomials with fewer than log n terms; see

Section 7.6), we show that while the worst-case teaching dimension is nΘ(log log n), the average

teaching dimension is O(n log n). Thus in each case we establish an asymptotic separation

between the worst-case teaching dimension and the average teaching dimension. Our results

here suggest that rich and interesting concept classes that are difficult to learn in many

models may in fact be easy to teach in the average case.

7.2 Preliminaries

Recall that for a given instance x ∈ X, the value of c(x) is referred to as a label, and for

y ∈ {0, 1}, the pair (x, y), is referred to as a labeled example. If y = 0 (y = 1) then the pair

is called a negative (positive) example. A concept class C is consistent with a set of labeled

examples if c(x) = y for all the examples in the set.

A set S of labeled examples is a teaching set for c with respect to C if c is the only concept

in C that is consistent with S; thus every learner that outputs a consistent hypothesis from

C will correctly identify c as the target concept. We will also refer to a teaching set S for c

as TS(c). The minimum number of examples in any teaching set for c is called the teaching

dimension of c with respect to C (sometimes written TD(c) when C is understood), and the



90

maximum value of the teaching dimension over all concepts in C is the (worst-case) teaching

dimension of C. The average teaching dimension of C is the average value of the teaching

dimension of c with respect to C for all c, i.e., 1
|C|
∑

c∈C TD(c). Given a set S of variables,

we write 0|S=1 to denote the truth assignment that sets each variable in S to 1 and sets all

other variables to 0. The truth assignment 1|S=0 is defined similarly.

DNF Formulas. Recall that a term is a conjunction of Boolean literals. A term over n

variables is represented by a string T ∈ {0, 1, ∗}n, where the k-th character of T is denoted

T [k]. The value of T [k] is 0, 1, or ∗ depending on whether xk occurs negated, unnegated,

or not at all in the term. If x ∈ {0, 1}n is an assignment that satisfies T , we sometimes

say that T covers x. Note that the satisfying assignments of a term T form a subcube of

dimension n−|T | within the n-dimensional hypercube {0, 1}n. Also recall that s-term DNF

formula φ is an OR of s terms φ = T1∨· · ·∨Ts. A satisfying assignment to the DNF formula

is sometimes referred to as a positive point and an unsatisfying assignment as a negative

point.

A term Ti is said to be compatible with a set of labeled examples S if Ti does not cover

any negative example in S. A term Ti is said to imply another term Tj if every positive point

of Ti is also a positive point of Tj . We similarly say that a term T implies a DNF formula φ,

or that a DNF formula φ1 implies another DNF formula φ2. Two different DNF formulas φ1

and φ2 are said to be logically equivalent if each implies the other, i.e., if they are different

syntactic representations of the same Boolean function. Throughout this chapter we will

use the Greek letter φ to denote formulas (which are syntactic objects) and Roman letters

f, g, . . . to denote Boolean functions (which are abstract mappings from {0, 1}n to {0, 1}).
We write Ds to denote the class of “exactly-s-term” DNF formulas; this is the class of all

Boolean functions f : {0, 1} → {0, 1}n that have some s-term DNF formula representation

and have no s′-term DNF formula representation for any s′ < s. Similarly, we write D≤s to

denote the class of “at-most-s-term” DNF formulas, which is D≤s = ∪s′≤sDs′ . Note that

the elements of Ds and D≤s are “semantic” functions, not syntactic formulas. The class

D≤s corresponds to the standard notion of “s-term DNF formulas” which is a well studied

concept class in computational learning theory. Note that the identically-false concept is

computed by an empty disjunction of terms, i.e., a zero-term DNF formula, and thus this



91

concept belongs to D≤s for all s. The concept classes of exactly-s-term monotone DNF

formulas and at-most-s-term monotone DNF formulas are denoted Ms and M≤s and are

defined analogously with Ds and D≤s above. The following fact is well known:

Fact 60. If f ∈ Ms then there is a unique (up to ordering of the terms) s-term monotone

DNF representation φ = T1 ∨ · · · ∨ Ts for f.

7.3 Monotone DNF formulas

Worst-case teaching dimension of at-most-s-term monotone DNF formulas. Here

we state upper and lower bounds on the worst-case teaching dimension of M≤s.

Theorem 61. The teaching dimension of M≤s is at most ns + s.

Proof. Let f be an element of Mk for some k ≤ s. We have that f is represented by a

unique monotone DNF formula φ = T1 ∨ · · · ∨ Tk, where each Tk corresponds to a minterm

(minimal satisfying assignment) of f. For the rest of the proof we will view each term Ti as

the set of variables that it contains; note that these sets are pairwise incomparable, i.e., no

Ti is contained in any other Tj .

We will show that the following set of examples is a teaching set for f :

• For each term Ti in T1, . . . , Tk we give the positive example 0|Ti=1; this is clearly at

most s examples.

• We also give a set of negative examples which consists of precisely those examples

that have exactly one variable of each term set to zero and all other variables set to

one. In other words, for every set S ⊆ ∪k
i=1Ti that satisfies |S ∩ Ti| = 1 for all i,

we give the example 1|S=0. Since there are at most ns ways to choose exactly one

variable from each of the s terms, this is at most ns examples.

We first note that any g ∈ M≤s (in fact any monotone function g) that is consistent

with the negative set must label negative any assignment which does not satisfy at least

one of the terms T1, . . . ,Tk. This is because for any assignment y which satisfies none of

the k terms, there is an example y′ in the negative set such that y ≤ y′ with respect to



92

the bitwise partial order on {0, 1}n. Since g(y′) = 0 and g is monotone, this implies that

g(y) = 0.

It follows that for all Ti, for all xj ∈ Ti, the example 0|(Ti\xj)=1 must be negative under

f . Thus for each term Ti, we have that 0|Ti=1 is positive while flipping any positive bit

in 0|Ti=1 makes f negative. Consequently, any g ∈ M≤s which is consistent with both

the positive and negative examples must contain each of the terms T1, . . . ,Tk. If k = s

then since g cannot contain any other terms, we must have that g is equivalent to f. If

k < s, suppose that g contains some other non-redundant term Ts+1. Then there must be

an assignment that is positive under g but which does not satisfy any of T1, . . . ,Tk. The

negative set shows that this is not possible. �

Theorem 62. Given s, let s′ ≤ s be any value such that (s′−1) divides n. Then the teaching

dimension of M≤s is at least ( n
s′−1)s

′−1.

Proof. We exhibit a concept in M≤s−1 whose teaching set must contain all the negative

examples in the teaching set for the proof of Theorem 61 in order to disambiguate it from

various concepts in Ms. Let d = n/(s′ − 1) and consider the tribes function, Tribess′−1
d

(see Definition 1). Suppose not all of the negative examples from the proof of Theorem

61 are part of a teaching set for Tribess′−1
d , i.e., that there is some S ⊆ ∪s′−1

i=1 Ti with

|S ∩ Ti| = 1 such that 1|S=0 /∈ TS(Tribess
′−1

d ). Let TS be the term exactly satisfied by

1|S=0 so that TS includes variable xi if and only if the i’th bit of 1|S=0 is set to 1. Then the

concept f = Tribess
′−1

d ∨TS will label TS(Tribess
′−1

d ) consistently with Tribess
′−1

d . Clearly

any positive example in TS(Tribess
′−1

d ) will also be positive under f . Take any negative

example y ∈ TS(Tribess′−1
d ). Unless y satisfies TS , it is negative under f . But to satisfy

TS , y ≥ 1|S=0. This is impossible, since if y > 1|S=0 it would be a positive example, and

y = 1|S=0 is not in the teaching set by assumption.

Thus TS(Tribess
′−1

d ) must contain a negative example for every S ⊆ ∪s′−1
i=1 Ti satisfying

|S ∩ Ti| = 1 for all i. For Tribess′−1
d there are ds′−1 = ( n

s′−1)s
′−1 such sets. �

Average-case teaching dimension of at-most-s-term monotone DNF formulas.

We now prove Theorem 58. The idea is to show that almost every at-most-s-term monotone

DNF formula in fact has exactly s terms; as we shall see, these exactly-s-term monotone



93

DNF formulas can be taught very efficiently with O(ns) examples. The remaining concepts

are so few that they can be handled with a brute-force approach and the overall average

teaching dimension will still be O(ns).

We start with a simple lemma from [GK92]:

Lemma 63 ([GK92]). Let c be any concept in Ms. Then the teaching dimension of c with

respect to M≤s is at most (n+ 1)s.

Proof sketch: Let φ = T1 ∨ · · · ∨ Ts be the unique s-term monotone DNF formula for

c. For each i = 1, . . . , s the teaching set contains the positive example 0|Ti=1 and contains

|Ti| many negative examples which are the neighbors of 0|Ti=1 that are obtained by setting

one of the 1s to 0. Each of the s terms thus contributes at most n + 1 examples; an easy

argument based on Fact 60 given in [GK92] shows that this is indeed a teaching set.

Lemma 64. For 1 ≤ i < 1
4e

n
72 , we have 2ni−1

i! ≤ |Mi| ≤ 2ni

i! .

Proof. The upper bound is easy: the number of i-term monotone DNF formulas is at most

the number of ways to choose i terms from the set of all 2n many monotone terms over

variables x1, . . . ,xn. The latter quantity is
(2n

i

)
≤ 2ni

i! .

For the lower bound we consider all 2ni ways to select a sequence of i terms (with

replacement) from the set of all 2n possible monotone terms. We show that at least half of

these 2ni ways result in a sequence T1, . . . , Ti of terms which are pairwise incomparable, i.e.,

no Ti implies any other Tj . Each such sequence yields an i-term monotone DNF formula,

and each such monotone DNF formula occurs i! times because of different orderings of the

terms in a sequence. This gives the lower bound.

Note that a collection of i monotone terms T1, . . . , Ti will be pairwise incomparable if

the following two conditions hold: (1) Each of the i terms contains between 5n/12 and

7n/12 many variables; and (2) Viewing each term Ti as a set of variables, for any j 6= k

the symmetric difference |Tj∆Tk| is of size at least n/4. (This is because if |Tj |, |Tk| ∈
[5n/12, 7n/12] and Tj ⊆ Tk, then the symmetric difference must be of size at most n/6.)

For condition (1), Hoeffding’s bound implies that a uniformly selected monotone term T

will contain fewer than 5n/12 or more than 7n/12 many variables with probability at most

2e−n/72, so a union bound gives that condition (1) fails with probability at most 2ie−n/72.



94

For condition (2), observe that given two uniform random terms Tj , Tk, each variable xℓ is

independently in their symmetric difference with probability 1/2. Thus Hoeffding’s bound

implies that |Tj∆Tk| < n/4 with probability at most e−n/8. By a union bound, the proba-

bility that condition (2) fails is at most
(i
2

)
e−n/8. Thus for i < 1

4e
n
72 , the probability that

conditions (1) and (2) both hold is at least 1/2. �

Fix 1 ≤ s ≤ 1
4e

n
72 . It is easy to check that by Lemma 64, for any k < s we have |Mk| <

1
2 |Mk+1|. Thus (again by Lemma 64) we have |M≤s−1| ≤ 2ns−n+1

(s−1)! while |Ms| ≥ 2ns−1

s! .

Combining these bounds gives that |Ms|
|M≤s−1| ≥

2n

4s . By Lemma 63, each concept c ∈ M≤s

which is in Ms can be taught using n(s + 1) examples. Each of the remaining concepts

can surely be taught using at most 2n examples. We thus have that the average teaching

dimension of M≤s is at most:

(n+ 1)s|Ms| + 2n|M≤s−1|
|Ms| + |M≤s−1|

≤ (n+ 1)s+
2n

1 + 2n/4s
≤ (n+ 1)s+ 4s,

giving us the following result which is a slightly sharper version of Theorem 58:

Theorem 65. Let s be any value 1 ≤ s ≤ 1
4e

n
72 . The class M≤s of at-most-s-term monotone

DNF formulas has average teaching dimension at most s(n+ 5).

Note that if s > 1
4e

n
72 , then 2n is bounded by some fixed polynomial in s, and thus the

worst-case teaching dimension 2n is actually poly(n, s) for such a large s. This gives the

following corollary which says that the class of at-most-s-term monotone DNF formulas is

efficiently teachable on average for all possible values of s:

Corollary 66. Let s be any value 1 ≤ s ≤ 2n. The class M≤s of at-most-s-term monotone

DNF formulas has average teaching dimension poly(n, s).

7.4 DNF Formulas

Now we will tackle the teaching dimension of the unrestricted class of size-at-most-s DNF

formulas. The high-level approach is similar to the monotone case, but the details are more

complicated. The idea is to identify a subset S of D≤s and show that (i) any function f ∈ S
can be uniquely specified within all of D≤s using only O(ns) examples; and (ii) at most



95

a O(s)
2n fraction of all functions in D≤s do not belong to S. Given (i) and (ii) it is easy to

conclude that the average teaching dimension of D≤s is O(ns).

The challenge is to devise a set S that satisfies both conditions (i) and (ii). In the

monotone case, using Fact 60, it was easy to show that Ms is an easy-to-teach subset, but

non-monotone DNF formulas are much more complicated (no analogue of Fact 60 holds for

non-monotone DNF formulas) and it is not at all clear that all functions in Ds are easy to

teach. Thus we must use a more complicated set S of easy-to-teach functions; we define

this set and prove that it is indeed easy to teach in Section 7.4.2. (This argument uses

Balbach’s results for exactly-2-term DNF formulas.) The argument that (ii) holds for S
is correspondingly more complex than the counting argument for monotone DNF formulas

because of S’s more involved structure; we give this in Section 7.4.3.

7.4.1 Preliminaries

We will borrow some terminology from Balbach [Bal05]. Two terms Ti and Tj have a strong

difference at k if Ti[k], Tj [k] ∈ {0, 1} and Ti[k] 6= Tj [k] (e.g., x1x̄5x6 and x̄5x̄6x12x23 have

a strong difference at position 6). Two terms have a weak difference at k if Ti[k] ∈ {0, 1}
and Tj [k] = ∗ or vice-versa. Two weak differences at positions k and ℓ are of the same

kind if Ti[k], Ti[ℓ] ∈ {0, 1} and Tj[k] = Tj[ℓ] = ∗ or vice-versa, that is both ∗’s occur in

the same term (e.g., x̄5x6 and x̄5x̄6x12x23 have two weak differences of the same kind at

positions 12 and 23). Two weak differences at positions k and ℓ are of different kinds if

Ti[k], Tj [ℓ] ∈ {0, 1} and Tj [k] = Ti[ℓ] = ∗ or vice-versa (e.g., x̄5x6 and x̄5x12 have two weak

differences of different kinds at positions 6 and 12).

Now we introduce some new terminology. Given y ∈ {0, 1}n which satisfies a term T ,

we denote by NT (y) the set consisting of y and all its neighbors that do not satisfy T. A

satisfying assignment y ∈ {0, 1}n of a term T in φ is called a cogent corner point of T if all

the neighbors of y that satisfy φ satisfy T , and all the neighbors that do not satisfy T do

not satisfy φ. Note that if y is a cogent corner point of T , then each of the neighbors of y

in NT (y) does not satisfy φ. A pair of points y, z ∈ {0, 1}n that satisfy a term T are said to

be antipodal around T if yk = zk for all k such that T [k] = ∗. A pair of points are cogent

antipodal points around T if they are both cogent corner points of T and antipodal around



96

T . This leads us to our first preliminary lemma:

Lemma 67. Let φ = T1 ∨ · · · ∨ Ts be any DNF formula. Let y be a cogent corner point of

Ti. Any T̂ that covers y and is compatible with NTi(y) must imply Ti.

Proof. Let T̂ be any term that covers y. Observe that for each literal ℓ in Ti, if T̂ did not

contain ℓ then T̂ would not be compatible with NTi(y) since the corresponding negative

neighbor of y is contained in NTi(y) but would be covered by T̂ . It follows that every literal

in Ti is also present in T̂ , and consequently T̂ implies Ti. �

Two terms are said to be close if they have at most one strong difference. Note that

there is no strong difference between two terms if and only if they have some satisfying

assignment in common, and there is one strong difference between two terms if and only if

they have neighboring satisfying assignments.

Given a Boolean function f : {0, 1} → {0, 1}n, we let Gf denote the undirected graph

whose vertices are the satisfying assignments of f and whose edges are pairs of neighboring

satisfying assignments. A cluster C of f is a set of satisfying assignments that form a

connected component in Gf . We sometimes abuse notation and write C to refer to the

Boolean function whose satisfying assignments are precisely the points in C. We say that

a DNF formula φ computes cluster C if the set of satisfying assignments for φ is precisely

C. The DNF-size of a cluster C is the minimum number of terms in any DNF formula that

computes C. For intuition, we can view a cluster as being a connected set of positive points

that have a “buffer” of negative points separating them from all other positive points. The

following lemma is immediate:

Lemma 68. Let f be an element of Ds, i.e., f is an exactly-s-term DNF formula. Let

C1, . . . , Cr be the clusters of f . Then DNF-size(C1) + · · · + DNF-size(Cr) = s.

7.4.2 Teaching S

We are now ready to define our “nice” (easy to teach) subset S ⊆ D≤s of size-at-most-s

DNF formulas. (We emphasize that S is a set of functions, not of DNF expressions.) S
consists of those exactly-s-term DNF formulas (so in fact S ⊆ Ds) all of whose clusters

either: (1) have DNF-size 1; (2) have DNF-size 2; or (3) have DNF-size k, for some k, and



97

are computed by a DNF formula φ = T1 ∨ · · · ∨ Tk in which each Ti has a pair of cogent

antipodal points around it.

Note that if a cluster has DNF-size 1, then it clearly satisfies condition (3) above (in fact

every pair of antipodal points for the term is cogent). Thus we can simplify the description

of S: it is the set of all exactly s-term DNF formulas all of whose clusters either: (i) have

DNF-size k and are computed by a DNF formula φ = T1∨· · ·∨Tk in which each Ti has a pair

of cogent antipodal points around it, or (ii) have DNF-size exactly 2. (Note that there do

in fact exist Boolean functions of DNF-size 2 for which any two-term representation T1 ∨T2

has some term Ti with no pair of cogent antipodal points around it, e.g., x1x3 ∨ x2x3, and

thus condition (ii) is non-redundant.)

The teaching set for functions in S. We will use the following theorem due to Balbach

[Bal05]:

Theorem 69. Let c be any element of D2 (i.e., an exactly-2-term DNF formula). The

teaching dimension of c with respect to D≤2 is at most 2n+ 4.

The teaching set specified in [Bal05] to prove Theorem 69 consists of at most 5 positive

points along with some negative points. Given f ∈ D2, we define BTS(f) to be the union

of the teaching set specified in [Bal05] together with all negative neighbors of the (at most

five) positive points described above (the set specified in [Bal05] already contains some of

these points). With this definition a straightforward consequence of the analysis of [Bal05]

is the following:

Lemma 70. Let φ = T1 ∨ · · · ∨Ts be a DNF formula that has a cluster C with DNF-size 2.

Let BTS(C) be as described above. Let y be a satisfying assignment for φ that is contained

in C. Then any term T̂ that covers y and is consistent with BTS(C) must imply C.

Given any function f ∈ S, our teaching set TS(f) for f will be as follows. For each

cluster C of f , if C:

• satisfies condition (i): then for each term Ti described in condition (i), the set

TS(f) contains a pair y, z of cogent antipodal points for Ti (these are positive exam-

ples) and contains all negative neighbors of these two positive examples (i.e., TS(f)



98

contains NTi(y) and NTi(z)). Thus TS(f) includes at most k(2 + 2n) many points

from such a cluster, where k = DNF-size(C).

• does not satisfy condition (i) but satisfies (ii): then we will give the set BTS(C)

described above. By Theorem 69 and the definition of BTS(C), we have that BTS(C)

contains at most 7n+ 4 points.

Lemma 68 now implies that TS(f) contains at most O(ns) points.

Correctness of the teaching set construction. We now prove that the set TS(f) is

indeed a teaching set that uniquely specifies f within all of D≤s.

We first observe that any term compatible with TS(f) can only cover positive examples

from one cluster of φ.

Lemma 71. Let y be any positive example in TS(f) and let T be any term that covers y

and is compatible with TS(f). Let C be the cluster of φ that covers y. Then if z is any

positive example in TS(f) that is not covered by C, T does not cover z.

Proof. If C satisfies condition (i) then y must be a cogent corner point and Lemma 67 gives

the desired conclusion. If C does not satisfy (i) but satisfies (ii), then the conclusion follows

from Lemma 70. �

The next two lemmas show that any set of terms that covers the positive examples of a

given cluster must precisely compute the entire cluster and only the cluster of the original

function:

Lemma 72. Let C be any case (i) cluster of DNF-size k. Let PC be the intersection of the

positive examples in TS(f) with C. Let T̂1, . . . , T̂j be any set of j ≤ k terms such that the

DNF formula T̂1 ∨ · · · ∨ T̂j both: (a) is compatible with TS(f), and (b) covers every point

in PC . Then it must be the case that j = k and T̂1 ∨ · · · ∨ T̂j exactly computes C (in fact

each term T̂i is equivalent to Ti up to reordering).

Proof. By Lemma 67, a term T̂ that covers a cogent antipodal point from term Ti cannot

cover any of the other 2k − 2 cogent antipodal points from other terms, and thus we must

have j = k since fewer than k terms cannot cover all of PC .Moreover, any term T̂i must cover



99

a pair of antipodal points corresponding to a single term (which without loss of generality

we call Ti). For each antipodal pair corresponding to a term Ti, the covering term T̂i must

be of size at least |Ti|, and since they are cogent antipodal points, the covering term cannot

be any longer than |Ti|, so in fact we have that T̂i and Ti are identical. This proves the

lemma. �

Lemma 73. Let C be any case (ii) cluster. Let PC be the intersection of the positive

examples in TS(f) with C. Let T̂1, . . . , T̂j be any set of j ≤ 2 terms such that the DNF

formula T̂1 ∨ · · · ∨ T̂j both: (a) is compatible with TS(f), and (b) covers every point in PC .

Then it must be the case that j = 2 and T̂1 ∨ T̂2 exactly computes C.

Proof. The fact that BTS(C) is a teaching set (for the exactly-2-term DNF formula corre-

sponding to C, relative to D≤2) implies the desired result, since no single term or 2-term

DNF formula not equivalent to C can be consistent with BTS(C), and any DNF formula

T̂1 ∨ · · · ∨ T̂j as specified in the lemma must be consistent with BTS(C). �

The pieces are in place for us to prove our theorem:

Theorem 74. For any f ∈ S, the set TS(f) uniquely specifies f within D≤s.

Proof. By Lemma 71, positive points from each cluster can only be covered by terms that

do not include any positive points from other clusters. By Lemmas 72 and 73, for each

cluster C, the minimum number of terms required to cover all positive points in the cluster

(and still be compatible with TS(f)) is precisely the DNF-size of C. Since f is an exactly-

s-term DNF formula, Lemma 68 implies that using more than DNF-size(C) many terms

to cover all the positive points in any cluster C will “short-change” some other cluster and

cause some positive point to be uncovered. Thus any at-most-s-term DNF formula φ that is

consistent with TS(f) must have the property that for each cluster C, at most DNF-size(C)

of its terms cover the points in PC ; so by Lemmas 72 and 73, these terms exactly compute

C, and thus φ must exactly compute f. �

7.4.3 Average-Case Teaching Dimension of DNFs

In this section we will show that all but at most a O(s)
2n fraction of functions in D≤s are in

fact in S. We do this by showing that at least a 1 − O(s)
2n fraction of functions in D≤s are



100

in the easy-to-teach set S, i.e., they belong to Ds and are such that each cluster satisfies

either condition (i) or (ii) from Section 7.4.2. Since we have shown that each f ∈ S can be

uniquely specified within D≤s using O(ns) examples, this will easily yield that the average

teaching dimension over all of D≤s is O(ns).

First we show that most functions in D≤s are in fact in Ds. We can bound |Di| using

the same approach as we did for monotone DNF formulas.

Lemma 75. For i < (9/7)n/3, we have 1
2 · 3ni

i! ≤ |Di| ≤ 3ni

i! .

Proof. As in Lemma 64, the upper bound is easy; we may bound the number of functions

in Di by the number of ways to choose i terms from the set of all 3n possible terms over

variables x1, . . . ,xn. This is
(
3n

i

)
≤ 3ni

i! .

For the lower bound, we first note that a DNF formula consisting of i terms that are all

pairwise far from each other cannot be logically equivalent to any other DNF formula over

a different set of i terms. We will show that at least half of all 3ni possible sequences of i

terms have the property that all i terms in the sequence are pairwise far from each other;

this gives the lower bound (since each such set of i terms can be ordered in i! different

ways).

So consider a uniform random draw of i terms T1, . . . , Ti from the set of all 3n possible

terms. The probability that T1 and T2 are close is the probability that they have no

strong differences plus the probability that they have exactly one strong difference. This is

(7/9)n + n(7/9)n−1(2/9) < (n + 1)(7/9)n. By a union bound over all pairs of terms, the

probability that any pair of terms is close at most
(

i
2

)
(n + 1)(7/9)n which is less than 1/2

for i < (9/7)n/3. �

As in Section 7.3, as a corollary we have that |Ds|
|D≤s−1| ≥

3n

4s for s ≤ (9/7)n/3.

We now bound the number of DNF formulas in Ds that are not in S. To do this, we

consider choosing s terms at random with replacement from all 3n terms:

Lemma 76. Fix any s ≤ (9/8)n/25. Let f = T1, . . . , Ts be a sequence of exactly s terms

selected by independently choosing each Ti uniformly from the set of all 3n possible terms.

Let A(Ti) denote the event that term Ti in f has no cogent antipodal pairs, and B(Ti)



101

denote the event that there is more than one other term close to Ti in f . Then Pr[∃Ti ∈ f :

A(Ti) ∧B(Ti)] ≤ O(s)
2n , where the probability is taken over the choice of f .

Using Lemma 76 we can bound the number of functions f ∈ Ds that are not in S. If

f ∈ Ds \ S, then f must have a DNF representation φ = T1 ∨ · · · ∨ Ts in which some term

Ti:

1. has no cogent antipodal pairs, and

2. has at least two other terms Tj, Tk that are close to it.

(If there were no such term, then for any representation φ = T1 ∨ · · · ∨ Ts for the function

f , every Ti is contained in either a cluster of DNF-size 1 or 2, or a cluster of DNF-size k

with a pair of good antipodal points around it. But then φ would be in S.)

We will call such a syntactic DNF formula “bad.” Lemma 76 tells us that the number

of bad syntactic formulas is at most 3nsO(s)
2n , since there are 3ns syntactic formulas. Notice

that any bad formula φ must have s distinct terms (since the function it computes belongs

to Ds), and since these terms can be ordered in s! different ways, there are at least s! bad

formulas that compute the same function as φ. Consequently the number of bad functions

in Ds, |Ds \ S|, is at most O(s)
2n

3ns

s! . By Lemma 75, |Ds| is at at least 3ns

2s! . This gives the

following:

Corollary 77. |Ds\S|
|Ds| ≤ O(s)

2n .

We now proceed to prove Lemma 76.

Proof. The bulk of the argument is in showing that Pr[A(T1)∧B(T1)] is at most O(1) ·2−n;

once this is shown a union bound gives the final result.

We condition on the outcome of T1. Using the fact that each variable occurs indepen-

dently in T1 (either positive or negated) with probability 2/3, a Chernoff bound gives that

Pr[|T1| < .08n] ≤ 2−n, so we have that

Pr[A(T1) ∧B(T1)] ≤ 2−n +
∑

T :|T |≥.08n

Pr[A(T1) ∧B(T1) | (T1 = T )] · Pr[T1 = T ].

Next we show that Pr[A(T1) ∧ B(T1) | (T1 = T )] ≤ O(1) · 2−n for every T satisfying

|T | ≥ .08n; this implies an O(1) · 2−n bound on Pr[A(T1) ∧B(T1)]. To do this we consider



102

a third event which we denote by C(T1); this is the event that T1 is close to at most 25 of

the terms T2, . . . , Ts. Clearly we have that

Pr[A(T1) ∧B(T1) | (T1 = T )] = Pr[A(T1) ∧B(T1) ∧ ¬C(T1) | (T1 = T )]

+ Pr[A(T1) ∧B(T1) ∧ C(T1) | (T1 = T )] (7.1)

and we proceed by bounding each of the terms in (7.1).

The first term is at most Pr[¬C(T1) | (T1 = T )]. Fix any α ∈ [.08, 1] and any term T
of length αn, and fix T1 = T . Then the probability (over a random draw of T2 as in the

statement of the lemma) that T2 is close to T1 is the probability that T1 and T2 have one

strong difference plus the probability that T1 and T2 have no strong difference, which is

exactly αn1
3

(
2
3

)αn−1
+
(

2
3

)αn ≤ 2αn
(

2
3

)αn
. Using the independence of the terms T2, . . . , Ts

and a union bound, it follows that the probability that there exists any set of K terms in

f which are all close to T1 is at most
( s
K

)
(2αn)K

(
2
3

)Kαn
. It is not hard to verify that for

any 1 ≤ s ≤ (9/8)n/25, any K ≥ 26, and any α ∈ [.08, 1], this quantity is asymptotically

less than 2−n.

It remains to bound the second term of (7.1) by O(1) · 2−n. We do this using the

following observation:

Proposition 78. Let f = T1, . . . , Ts be any sequence of s terms. If T1 has no cogent

antipodal pairs with respect to f and is close to at most K of the terms T2, . . . , Ts, then there

must be some term among T2, . . . , Ts that is close to T1 and contains at most k = ⌈logK⌉+1

variables not already in T1.

Proof. We show that if every term in f close to T1 contains more than k variables not

already in T1, there must remain some cogent antipodal pair for T1. Let r be the number

of variables in T1 and let ℓ = n− r. For any z ∈ {0, 1}ℓ let QT1(z) denote the set of points

in {0, 1}n consisting of the antipodal pair induced by z on T1 (these two points each satisfy

T1) and the 2r neighbors of these points that do not satisfy T1. Thus QT1(z) = QT1(z), and

there are 2ℓ−1 distinct QT1(z), each representing a possible cogent antipodal pair.

Consider a term Ti that is close to T1, and partition its satisfying assignments according

to the 2ℓ assignments on the ℓ variables not contained in T1. Since Ti will only eliminate



103

the cogent antipodal pair represented by the neighborhood QT1(z) if it covers some point

in QT1(z), Ti can only eliminate as many cogent antipodal pairs as it has partitions. But if

Ti contains more than k of the ℓ variables not already in T1, then there are fewer than 2ℓ−k

different ways to set the ℓ bits outside of T1 to construct a satisfying assignment for Ti, and

Ti has fewer than 2ℓ−k different partitions. Since by assumption there are at most K ≤ 2k−1

terms close to T1, there are fewer than 2k−1 · 2ℓ−k = 2ℓ−1 different QT (z) eliminated, and

T must have a cogent antipodal pair left. �

By Proposition 78, we know that if A(T1) occurs (T1 has no cogent antipodal pairs)

and C(T1) occurs (T1 is close to no more than K = 25 other terms), then there must be

some term close to T1 that has at most k = 6 variables not in T1. Thus we have that

Pr[A(T1) ∧ B(T1) ∧ C(T1) | (T1 = T )] is at most the probability there exist two terms

close to T1, one of which contains at most k = 6 variables not in T1. We saw earlier

that the probability that a randomly chosen term is close to T1 is at most 2αn(2/3)αn.

However, the probability that a randomly chosen term is close to T1 and contains at most

6 variables not in T1 is much lower (because almost all of the (1 − α)n variables not in

T1 are constrained to be absent from the term); more precisely this probability is at most

2αn
((1−α)n

6

) (
2
3

)αn (1
3

)(1−α)n−6
. A union bound over all possible pairs of terms gives us that

the second term of (7.1) is at most 2αn
(
s
2

)(
(1−α)n

6

)
36
(

2
3

)2αn (1
3

)(1−α)n
. It is straightforward

to check that this is at most O(1) · 2−n for all 1 ≤ s ≤ (9/8)n/25 and all α ∈ [0, 1].

Thus, we have bounded Pr[A(T1)∧B(T1)] by O(1)·2−n. A union bound over the s terms

gives that Pr[∃Ti ∈ f : A(Ti) ∧B(Ti)] is at most O(s)2−n, and the lemma is proved. �

Theorem 79. Let s ≤ (9/8)n/25. The average teaching dimension of D≤s, the class of

DNF formulas over n variables with at most s terms, is O(ns).

Proof. Theorem 74 gives us that the teaching dimension of any concept in S ⊂ Ds is O(ns).

By Lemma 75, we have that |D≤s−1| ≤ 4s
3n |Ds|. This leaves us with Ds \ S, whose size we

bounded by O(s)
2n |Ds| in Corollary 77. Combining these bounds, we are ready to bound the

average teaching number of |D≤s|. Since we can teach any bad concept with at most 2n



104

examples, the average teaching dimension is at most

O(ns)|S| + 2n(|D≤s−1| + |Ds \ S|)
|Ds| + |D≤s−1|

≤ O(ns)|Ds| + 2n( 4s
3n |Ds| + O(s)

2n |Ds|)
|Ds| + |D≤s−1|

≤ O(ns) + (2/3)n · 4s+O(s) = O(ns)

and the theorem is proved. �

As in Corollary 66, we have 2n ≤ poly(s) if s > (9/8)n/25, and thus the worst-case teach-

ing dimension 2n is actually poly(n, s) for such large s. This gives the following corollary:

Corollary 80. Let s be any value 1 ≤ s ≤ 2n. The class D≤s of at-most-s-term DNF

formulas has average teaching dimension poly(n, s).

7.5 Teaching Dimension of k-Juntas

A Boolean function f over n variables depends on its i-th variable if there are two inputs

x, x′ ∈ {0, 1}n that differ only in the i-th coordinate and that have f(x) 6= f(x′). Recall that

a k-junta is a Boolean function which depends on at most k of its n input variables. The

class of k-juntas is well studied in computational learning theory, see e.g., [Blu03, MOS03,

ABF+04]. We write Jk to denote the class of Boolean functions f : {0, 1} → {0, 1}n that

depend on exactly k variables, and we write J≤k to denote the class J≤k = ∪k′≤kJk′ of

Boolean functions over {0, 1}n that depend on at most k variables, i.e., J≤k is the class of

all k-juntas.

We analyze the worst-case and average-case teaching dimensions of the class of k-juntas,

and show that while the worst-case teaching dimension has a logarithmic dependence on

n, the average-case dimension has no dependence on n. Thus k-juntas are another natural

concept class where there is a substantial asymptotic difference between the worst-case and

average teaching dimensions.

Worst-Case teaching dimension of k-juntas. We recall the following:

Definition 81. Let k ≤ n. A set S ⊆ {0, 1}n is said to be an (n, k)-universal set if for

any 1 ≤ i1 < i2 . . . < ik ≤ n, it holds that ∀y ∈ {0, 1}k,∃x ∈ S satisfying (xi1 , . . . , xik) =

(y1, . . . , yk)



105

Nearly matching upper and lower bounds are known for the size of (n, k)-universal sets:

Theorem 82 ([BS88]). Let k ≤ n. Any (n, k)-universal set has size Ω(2k log n), and there

exists an (n, k)-universal set of size O(k2k log n).

This straightforwardly yields:

Theorem 83. The teaching dimension of the class J≤k is at least Ω(2k log n) and at most

O(k2k log n).

Proof. For the lower bound, we show that any teaching set for the identically-0 concept c ≡ 0

(which is a k-junta for any k ≥ 0) must be an (n, k)-universal set. Suppose S ⊆ {0, 1}n is

not an (n, k)-universal set, i.e., there is some i1 < · · · < ik and some y ∈ {0, 1}k such that

for every x ∈ S we have (xi1 , . . . , xik) 6= (y1 . . . yk). Then the k-junta defined as

c′(x) =






1 if (xi1 . . . xik) = (y1 . . . yk)

0 otherwise

labels S the same way as c.

Now we prove the upper bound. Let c be any k-junta that has R = {i1, . . . , ir} as its

set of relevant variables (so r ≤ k). We describe a teaching set for c. For each relevant

variable ij ∈ R, there is a pair of examples x, x′ ∈ {0, 1}n that disagree only in their ij-th

bit and have c(x) 6= c(x′). Let the set S consist of these 2r examples together with an

(n, k)-universal set; we will argue that S is a teaching set for c and thus prove the theorem.

Suppose that c′ is some k-junta that is consistent with S. Clearly c′ must depend on

every variable in R or else it would label one of the first 2r examples differently from c.

We claim that c′ cannot depend on any additional variables. Suppose to the contrary that

c′ depends on exactly q additional variables j1, . . . , jq. Given a ∈ {0, 1}r and b ∈ {0, 1}q,

let V (a, b) = {x ∈ {0, 1}n : (xi1 . . . xir) = a and (xj1 . . . xjq) = b}. Since c′ depends on

j1, . . . , jq , there must be some a ∈ {0, 1}r and b 6= b′ ∈ {0, 1}q such that all the examples

in V (a, b) take one value under c′ while all the examples in V (a, b′) take the other value

under c′. Furthermore, since S is an (n, k)-universal set and |a| + |b| ≤ k, S must contain

some example x1 from V (a, b) and some example x2 from V (a, b′). But c only depends

on variables i1, . . . , ir, so c assigns x1 and x2 the same label while c′ does not. Thus c



106

and c′ must have the exact same set of r ≤ k relevant variables. Since they agree on an

(n, k)-universal set, they agree for every setting of those r variables, and thus they agree on

all of {0, 1}n. �

Average-case teaching dimension of k-juntas. The idea is similar to the case of

monotone DNF formulas: we show that k-juntas with exactly k relevant variables can be

taught with 2k examples (independent of n), and then use the fact that the overwhelming

majority of k-juntas have exactly k relevant variables.

Lemma 84. Let c be any concept in Jk. Then the teaching dimension of c with respect to

J≤k is at most 2k.

Proof. Given any k-junta c with exactly k relevant variables, let S be the set of 2k examples

in which all irrelevant variables are always set to 0 and the relevant variables range over all

2k possible settings. It is straightforward to see that S is a teaching set for c. �

We now claim that 1
2

(n
k

)
22k ≤ |Jk| ≤

(n
k

)
22k

. The upper bound is clear since any k-junta

can be specified by presenting k variables (
(n
k

)
possibilities) and a Boolean function on

those k variables (22k
possibilities). The lower bound (which is very crude but sufficient for

our purposes) follows from the easily verified fact that at least half of all 22k
functions on

{0, 1}k in fact depend on all k variables. It is easy to see from these bounds that |Jk| strictly
increases with k for all k, and thus we have |J≤k−1| ≤ (k − 1)|Jk−1| ≤ (k − 1)

(
n

k−1

)
22k−1

.

By Lemma 84 we can specify any function in Jk with at most 2k examples, and by

Theorem 82 we can specify any of the other functions in J≤k (i.e., any function in J≤k−1)

with at most O(k2k log n) many examples. It follows that the average teaching dimension

of J≤k is at most

2k|Jk| +O(k2k log n) · |J≤k−1|
|Jk| + |J≤k−1|

≤ 2k +
O(k2k log n) · (k − 1)

( n
k−1

)
22k−1

1
2

(n
k

)
22k

.

The second term on the right simplifies to

O(k2k log n) · k(k − 1)

22k−1(n− k + 1)

which is easily seen to be o(1) for any k. We have thus proved:



107

Theorem 85. The average teaching dimension of the class J≤k of k-juntas is at most

2k + o(1).

7.6 Sparse GF2 Polynomials

A GF2 polynomial is a multilinear polynomial with 0/1 coefficients that maps {0, 1}n to

{0, 1} where all arithmetic is done modulo 2. Since addition mod 2 corresponds to parity

and multiplication corresponds to and, a GF2 polynomial can be viewed as a parity of

monotone conjunctions. It is well known, and not hard to show, that every Boolean function

f : {0, 1} → {0, 1}n has a unique GF2 polynomial representation. (For example, the parity

function has x1 ⊕ · · · ⊕ xn as its GF2 polynomial, and x1 ∨ x2 has x1 ⊕ x2 ⊕ x1x2.)

A natural measure of the size of a GF2 polynomial is the number of monomials that it

contains. In keeping with our usual notation, let Gs denote the class of all Boolean functions

f : {0, 1} → {0, 1}n that have GF2 polynomial representations with exactly s monomials

and let G≤s denote ∪s′≤sGs′ . We sometimes refer to functions in G≤s as being s-sparse GF2

polynomials. The class of s-sparse GF2 polynomials has been studied by several researchers

in learning theory and complexity theory, see e.g., [RB91, BM02, SS96].

Roth and Benedek [RB91] showed that any f ∈ G≤s is uniquely determined by the values

it assumes on those x ∈ {0, 1}n that contain at least n− (1 + ⌊log2 s⌋) many 1s. They also

showed that it is in fact necessary to specify the value of f on every such point even in

order to uniquely determine the parity (even or odd) of |f−1(1)| where f ranges over all of

G≤s. We thus have:

Theorem 86 ([RB91]). Fix any 1 ≤ s ≤ 2n. The (worst-case) teaching dimension of G≤s

is:
1+⌊log2 s⌋∑

i=0

(
n

i

)

(which is nΘ(log s) for s subexponential in n).

In contrast, we show that if s is sufficiently small, the average-case teaching dimension

of G≤s is O(ns):



108

Theorem 87. Fix 1 ≤ s ≤ (1−ǫ) log2 n, where ǫ > 0 is any constant. Then the average-case

teaching dimension of G≤s is at most ns+ 2s.

For s = ω(1), s < (1 − ǫ) log2 n, this gives a superpolynomial separation between the

worst-case and average-case teaching dimension of s-sparse GF2 polynomials.

Proof of Theorem 87. We now define the “nice” (easy-to-teach) subset of G≤s, in analogy

with S in Section 7.4. We say that a function f = M1 ⊕ · · · ⊕Ms ∈ Gs is individuated if for

each i = 1, . . . , s there is some j ∈ {1, . . . , n} such that the variable xj occurs in monomial

Mi and does not occur in any of the other s − 1 monomials. Let I ⊆ Gs denote the set of

all functions in Gs that are individuated.

We first show that any function in I can be specified using few examples:

Lemma 88. For any f ∈ I, the teaching dimension of f with respect to G≤s is at most

ns+ 2s − 1.

Proof. Given x1, . . . , xr ∈ {0, 1}n, we write join(x1, . . . , xr) to denote the string z ∈ {0, 1}n

that has for all i = 1, . . . , n, zi = max{x1
i , . . . , x

r
i }.

Let f = M1 ⊕ · · · ⊕Ms ∈ I be any individuated GF2 polynomial. For i = 1, . . . , s let yi

denote the minimal (with respect to bitwise ≤ ordering described above) assignment that

satisfies Mi, i.e., yi has 1s in precisely the variables contained in Mi. Note that since f is

individuated the points y1, . . . , ys are all pairwise incomparable with respect to the bitwise

partial ordering. Thus we have f(yi) = 1 but f(x) = 0 for any x such that x < yi for some

i. We sometimes say that y is above x if x ≤ y.

Let S ⊂ {0, 1}n be the set which contains: (a) each yi (which is a positive example) and

all of its neighbors that can be obtained by flipping a single 1 to 0 (all of these are negative

examples); and (b) the (s− 1) additional points z2 = join(y1, y2), z3 = join(y1, y2, y3), . . . ,

zs = join(y1, y2, . . . , ys) (it is not hard to see that zi is a positive example for i odd and

a negative example for i even, since zi satisfies precisely the monomials M1, . . . ,Mi and

M1 ⊕· · ·⊕Ms is individuated). There are at most (n+1)s points from (a) and s− 1 points

from (b) so we have |S| ≤ ns+ 2s − 1.

We will show that S is a teaching set for f and thus prove the lemma. So suppose that

f̂ = M̂1 ⊕ · · · ⊕ M̂r is some GF2 polynomial that is consistent with S where r ≤ s. Let us



109

write ŷj for the minimal assignment that satisfies M̂j .

We first observe that since y1 is a positive example, there must be at least one ŷj such

that ŷj ≤ y1. Since y1 < z2 and z2 is a negative example, there must be at least two ŷj

such that ŷj ≤ z2. Since the labels of z2, z3, . . . always alternate, proceeding in this fashion

there must be at least s many ŷj such that ŷj ≤ zs. It follows that r = s, that y1 is

above precisely one ŷ1, and that in fact each zi is above precisely i of the ŷj’s (call them

ŷ1, . . . , ŷi).

Now the negative examples below y1 show that in fact we must have ŷ1 = y1. Since z2

is above exactly one other ŷj besides ŷ1 (namely ŷ2), and z2 is above y2 which is labeled

positive, it must be the case that ŷ2 ≤ y2 (for if ŷ2 6≤ y2, there would be no ŷj beneath y2

and consequently y2 would be labeled negative). But since all of y2’s downward neighbors

are labeled negative, it must be the case that ŷ2 = y2. Similar logic applied successively to

z3, . . . , zs shows that each of ŷ3, . . . , ŷs must equal the corresponding y3, . . . , ys. Thus we

have M̂i = Mi for i = 1, . . . , s, so f̂ = f and the lemma is proved. �

Now observe that |Gs| =
(
2n

s

)
< 2ns

s! , and thus (2n

s )s ≤ |G≤s| = |Gs| + |G≤s−1| < 2ns

s! +

(s − 1) 2ns−n

(s−1)! = 2ns

s! + 2ns−n

(s−2)! . Our next lemma shows that almost every function in Gs (and

thus almost every function in G≤s) is in fact individuated:

Lemma 89. Recall that 1 ≤ s ≤ (1 − ǫ) log2 n, where ǫ > 0 is any constant. We have

|I| ≥ 2ns

s! (1 − s · e−nǫ
), and thus there are at most s · e−nǫ · 2ns

s! + 2ns−n

(s−2)! many functions in

G≤s \ I.

Proof. Let (M1, . . . ,Ms) be a sequence of s monomials obtained by drawing each one uni-

formly from all 2n possible monomials. We will show that of the 2ns possible outcomes for

(M1, . . . ,Ms), at most an s · e−nǫ
fraction have the property that the corresponding GF2

polynomial M1⊕· · ·⊕Ms is not individuated, and consequently the number of sequences for

which the corresponding GF2 polynomial is individuated is at least 2ns(1 − s · e−nǫ
). Each

such sequence clearly consists of s distinct monomials (since no sequence in which some

monomial occurs more than once can be individuated), so accounting for the s! different

orderings of s distinct elements, we have that there are at least 2ns(1 − s · e−nǫ
)/s! many

individuated GF2 polynomials.



110

We say that a variable individuates a monomial Mi if it occurs in Mi but in no other

Mj . For any fixed variable xj, and fixed index 1 ≤ i ≤ s, the probability (over the random

choice of (M1, . . . ,Ms)) that xj individuates Mi is precisely 1/2s, since xj must occur in

Mi (probability 1/2) and must be absent from each of the other s − 1 terms (probability

1/2s−1). By independence, the probability that none of the n variables individuates Mi

is
(
1 − 1

2s

)n ≤ e−n/2s ≤ e−nǫ
, where we have used the fact that s ≤ (1 − ǫ) log2 n. A

union bound now gives that the probability that any of the s monomials M1, . . . ,Ms is not

individuated by any variable is at most s · e−nǫ
. �

By Lemma 88 we can specify any function in I with at most N := ns+2s−1 examples,

and by Theorem 86 we can specify any of the other functions in G≤s with at most nO(log s)

many examples. It follows from Lemma 89 that the average teaching dimension of G≤s is

at most

N |I| + nO(log s) · |G≤s \ I|
|G≤s|

≤ N +
nO(log s) · (s · e−nǫ · 2ns

s! + 2ns−n

(s−2)! )

(2n

s )s
.

The second term on the right simplifies to ss ·nO(log s) · (s · e−nǫ
/s! + 2−n/(s− 2)!), which is

easily seen to be o(1) since ǫ is a constant greater than 0 and s ≤ (1 − ǫ) log n. This proves

Theorem 87.

While our proof technique does not extend to s that are larger than log n, it is possible

that different methods could establish a poly(n, s) upper bound on the average teaching

dimension for the class G≤s of s-sparse GF2 polynomials for a much larger range of values

of s. This is an interesting goal for future work.



111

Chapter 8

Conclusions and Future Directions

While we have made significant progress on understanding the learnability of succinctly

representable monotone functions, the main question still remains: Are polynomial-size

monotone DNF formulas learnable?

On the impossibility side, one could try to extend our results from Chapter 4 to lower

bound the strong statistical query dimension of monotone DNF formulas. Unfortunately,

the idea of embedding parities in the middle slice of the Boolean hypercube is unlikely to

result in depth-2 monotone circuits.

On the algorithmic side, one could try to extend our algorithm from Chapter 5 to learn

the entire class of monotone DNF formulas. Until a strong statistical query lower bound

is shown, there is no reason to believe that monotone DNF formulas cannot be learned by

Fourier analytic techniques.

As for the general question of learning succinctly representable monotone functions,

an obvious goal for future work is to establish even sharper quantitative bounds on the

cryptographic hardness of learning monotone functions. Blum et al. [BBL98] obtain their

1
2 + ω(log n)

n1/2 information-theoretic lower bound by considering random monotone DNF for-

mulas that are constructed by independently including each of the
( n
log n

)
possible terms of

length log n in the target function. Can we match this hardness with a class of polynomial-

size circuits?

As mentioned in Section 3.1.1, it is natural to consider a pseudorandom variant of the

Blum et al. construction in which a pseudorandom rather than truly random function is used



112

to decide whether or not to include each of the
( n
log n

)
candidate terms. However, we have not

been able to show that a function f constructed in this way can be computed by a poly(n)-

size circuit. Intuitively, the problem is that for an input x with (typically) n/2 bits set to 1,

to evaluate f we must check the pseudorandom function’s value on all of the
( n/2
log n

)
potential

“candidate terms” of length log n which x satisfies. Indeed, the question of obtaining

an efficient implementation of these “huge pseudorandom monotone DNF formulas” has

a similar flavor to Open Problem 5.4 of a paper by Goldreich et al. [GGN03]. In that

question the goal is to construct pseudorandom functions that support “subcube queries”

which give the parity of the function’s values over all inputs in a specified subcube of

{0, 1}n. In our scenario we are interested in functions f which are pseudorandom only over

the
(

n
log n

)
inputs with precisely log n ones (these inputs correspond to the “candidate terms”

of the monotone DNF formula) and are zero everywhere else, and we only need to support

“monotone subcube queries” (i.e., given an input x, we want to know whether f(y) = 1 for

any y ≤ x).

Showing that the candidate algorithm in Section 6.1.1 for properly learning monotone

decision trees works, even only for constant accuracy, would be a huge advance. The

intermediate results obtained in Chapter 6 suggest other possible avenues of research. For

instance, Theorem 54 implies:

Theorem 90 ([OSSS05] Theorem 1.1). Let f : {0, 1}n → {+1,−1}. Then,

max
i∈[n]

Infi(f) = Ω

(
Var[f ]

log(DT-size(f))

)
.

Can we show analogous results for different complexity measures such as subcube

partition-size, CDNF-size, and the ℓ1-norm?



113

Bibliography

[ABF+04] Michael Alekhnovich, Mark Braverman, Vitaly Feldman, Adam R. Klivans,

and Toniann Pitassi. Learnability and automatizability. In Proc. 45th IEEE

Symposium on Foundations of Computer Science (FOCS), pages 621–630.

IEEE Computer Society Press, October 2004.

[ABST95] M. Anthony, G. Brightwell, and J. Shawe-Taylor. On specifying Boolean func-

tions by labelled examples. Discrete Applied Mathematics, 61(1):1–25, 1995.

[AHM+06] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael

Saks. Minimizing DNF formulas and AC
0

d circuits given a truth table. In Proc.

21st Annual IEEE Conference on Computational Complexity (CCC). IEEE

Computer Society Press, 2006.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting net-

work. Combinatorica, 3(1):1–19, 1983.

[AM02] Kazuyuki Amano and Akira Maruoka. On learning monotone boolean functions

under the uniform distribution. In Proc. Algorithmic Learning Theory, 13th

International Conference (ALT), volume 2533 of Lecture Notes in Artificial

Intelligence, pages 57–68. Springer-Verlag, 2002.

[AP95] H. Aizenstein and L. Pitt. On the learnability of disjunctive normal form

formulas. Machine Learning, 19:183–208, 1995.

[Bal05] Frank J. Balbach. Teaching classes with high teaching dimension using few

examples. In Peter Auer and Ron Meir, editors, Proc. of the 18th Annual Con-



114

ference on Computational Learning Theory (COLT), volume 3559 of Lecture

Notes in Computer Science, pages 637–651. Springer-Verlag, 2005.

[BBL98] Avrim Blum, Carl Burch, and John Langford. On learning monotone boolean

functions. In Proc. 39th IEEE Symposium on Foundations of Computer Science

(FOCS), pages 408–415. IEEE Computer Society Press, 1998.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-

muth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the

ACM, 36(84):929–965, 1989.

[Ber82] S. J. Berkowitz. On some relationships between monotone and non-monotone

circuit complexity. Technical report, University of Toronto, 1982.

[BF02] Nader H. Bshouty and Vitaly Feldman. On using extended statistical queries to

avoid membership queries. Journal of Machine Learning Research, 2:359–395,

2002. Prelim. ver. in Proc. of COLT’01 .

[BFJ+94] Avrim Blum, Merrick L. Furst, Jeffrey Jackson, Michael J. Kearns, Yishay

Mansour, and Steven Rudich. Weakly learning DNF and characterizing statis-

tical query learning using Fourier analysis. In Proc. 26th Annual ACM Sym-

posium on Theory of Computing (STOC), pages 253–262. ACM Press, 1994.

[BFKL93] Avrim Blum, Merrick Furst, Michael J. Kearns, and Richard J. Lipton. Cryp-

tographic primitives based on hard learning problems. In Douglas R. Stinson,

editor, Advances in Cryptology (CRYPTO), volume 773 of Lecture Notes in

Computer Science, pages 278–291. Springer-Verlag, 1993.

[BFKV98] Avrim Blum, Alan M. Frieze, Ravi Kannan, and Santosh Vempala. A

polynomial-time algorithm for learning noisy linear threshold functions. Al-

gorithmica, 22(1/2):35–52, 1998.

[BFSO84] Leo Breiman, Jerome Friedman, Charles J. Stone, and RA Olshen. Classifica-

tion and Regression Trees. Wadsworth and Brooks, 1984.



115

[BKS99] Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of boolean

functions and applications to percolation. Publications Mathématiques de

l’I.H.E.S., 90:5–43, 1999.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,

the parity problem, and the statistical query model. Journal of the ACM,

50(4):506–519, July 2003. Prelim. ver. in Proc. of STOC’00 .

[BLR08] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to

non-interactive database privacy. In Proc. 40th Annual ACM Symposium on

Theory of Computing (STOC), pages 609–618. ACM Press, 2008.

[Blu03] Avrim Blum. Learning a function of r relevant variables. In Proc. of the 16th

Annual Conference on Computational Learning Theory (COLT), volume 2777

of Lecture Notes in Computer Science, pages 731–733. Springer-Verlag, 2003.

[BM02] Nader H. Bshouty and Yishay Mansour. Simple learning algorithms for decision

trees and multivariate polynomials. SIAM Journal on Computing, 31(6):1909–

1925, 2002.

[BMOS03] Nader H. Bshouty, Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio.

Learning DNF from random walks. In Proc. 44th IEEE Symposium on Foun-

dations of Computer Science (FOCS), pages 189–198. IEEE Computer Society

Press, October 2003.

[BOL87] Michael Ben-Or and Nathan Linial. Collective coin flipping. Technical report,

Hebrew University of Jerusalem, 1987. Prelim. ver. in Proc. of FOCS’85 .

[BS88] N. Bshouty and G. Seroussi. Vector sets for exhaustive testing of logic circuits.

IEEE Transactions on Information Theory, 34(3):513–522, 1988.

[BT06] Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of monotone

functions. Journal of the ACM, 43(4):747–770, 2006.



116

[Byl94] Tom Bylander. Learning linear threshold functions in the presence of classifica-

tion noise. In Proc. of the 7th Annual Conference on Computational Learning

Theory (COLT), pages 340–347, 1994.

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis

based on the sum of observations. Annals of Mathematical Statistics, 23:493–

509, 1952.

[CS98] J. Cherniavsky and R. Statman. Testing: An abstract approach. In Proceedings

of the 2nd Workshop on Software Testing, 1998.

[Dec93] Scott E. Decatur. Statistical queries and faulty PAC oracles. In Proc. of

the 6th Annual Conference on Computational Learning Theory (COLT), pages

262–268. ACM Press, 1993.

[DSLM+08] Dana Dachman-Soled, Homin K. Lee, Tal Malkin, Rocco A. Servedio, Andrew

Wan, and Hoeteck Wee. Optimal cryptographic hardness of learning monotone

functions. In Proc. 35th International Colloquium on Automata, Languages and

Programming (ICALP), pages 36–47. Springer-Verlag, 2008.

[DV04] John Dunagan and Santosh Vempala. A simple polynomial-time rescaling al-

gorithm for solving linear programs. In Proc. 36th Annual ACM Symposium

on Theory of Computing (STOC), pages 315–320. ACM Press, 2004.

[EH89] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random

examples. Information and Computation, 82:231–246, 1989.

[EHKV89] Andrzej Ehrenfeucht, David Haussler, Michael J. Kearns, and Leslie Valiant.

A general lower bound on the number of examples needed for learning. Infor-

mation and Computation, 82:246–261, 1989.

[Fel08] Vitaly Feldman. Evolvability from learning algorithms. In Proc. 40th Annual

ACM Symposium on Theory of Computing (STOC). ACM Press, 2008.

[Fel09] Vitaly Feldman. A complete characterization of statistical query learning with

applications to evolvability. Manuscript, 2009.



117

[FGKP07] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Pon-

nuswami. On agnostic learning of parities, monomials and halfspaces. SIAM

Journal on Computing, 2007. Prelim. ver. in Proc. of FOCS’06 & CCC’06 .

[FKN02] Ehud Friedgut, Gil Kalai, and Assaf Naor. Boolean functions whose fourier

transform is concentrated on the first two levels. Advances in Applied Mathe-

matics, 29:427–437, 2002.

[Fre95] Yoav Freund. Boosting a weak learning algorithm by majority. Information

and Computation, 121(2):256–185, 1995. Prelim. ver. in COLT’90 .

[FS92] Paul Fischer and Hans-Ulrich Simon. On learning ring-sum-expansions. SIAM

Journal on Computing, 21(1):181–192, 1992. Prelim. ver. in COLT’90 .

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random

functions. Journal of the ACM, 33(4):792–807, October 1986. Prelim. ver. in

FOCS’84 .

[GGN03] Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation

of huge random objects. In Proc. 44th IEEE Symposium on Foundations of

Computer Science (FOCS), pages 68–. IEEE Computer Society Press, 2003.

[GK92] Sally A. Goldman and Michael J. Kearns. On the complexity of teaching.

Journal of Computer and System Sciences, 50(1):20–31, February 1992.

[Gol05] Oded Goldreich. Foundations of cryptography – a primer. Foundations and

Trends in Theoretical Computer Science, 1(1):1–116, 2005.

[GRS93] S. Goldman, R. Rivest, and R. Schapire. Learning binary relations and total

orders. SIAM Journal on Computing, 22(5):1006–1034, 1993.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseu-

dorandom generator from any one-way function. SIAM Journal on Computing,

28(4), 1999.



118

[HM91] Thomas Hancock and Yishay Mansour. Learning monotone k-µ DNF formulas

on product distributions. In Proc. of the 4th Annual Conference on Computa-

tional Learning Theory (COLT), pages 179–183, 1991.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-

ables. American Statistical Association Journal, 58:13–30, 1963.

[HSW92] David Helmbold, Robert Sloan, and Manfred K. Warmuth. Learning integer

lattices. SIAM Journal on Computing, 21(2):240–266, 1992. Prelim. ver. in

COLT’90 .

[HVV04] Alexander Healy, Salil Vadhan, and Emanuele Viola. Using nondeterminism to

amplify hardness. SIAM Journal on Computing, 35(4):903–931, 2004. Prelim.

ver. in STOC’04 .

[Hyl04] K. Hyland. Graduates’ gratitude: the generic structure of dissertation acknowl-

edgements. English for Specific Purposes, 23:303–324, 2004.

[Jac97] Jeffrey C. Jackson. An efficient membership-query algorithm for learning DNF

with respect to the uniform distribution. Journal of Computer and System

Sciences, 55(3):414–440, 1997. Prelim. ver. in Proc. of FOCS’94 .

[JKS02] Jeffrey C. Jackson, Adam Klivans, and Rocco A. Servedio. Learnability beyond

ac0. In Proc. 34th Annual ACM Symposium on Theory of Computing (STOC).

ACM Press, 2002.

[JLSW08] Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and Andrew Wan. Learn-

ing random monotone DNF. In 11th International Workshop on Approximation

Algorithms for Combinatorial Optimization Problems and 12th International

Workshop on Randomization and Computation (RANDOM-APPROX), pages

483–497. Springer-Verlag, 2008.

[JS05a] Jeffrey C. Jackson and Rocco A. Servedio. Learning random log-depth decision

trees under uniform distribution. SIAM Journal on Computing, 34(5):1107–

1128, 2005. Prelim. ver. in Proc. of COLT’03 .



119

[JS05b] Jeffrey C. Jackson and Rocco A. Servedio. On learning random DNF formulas

under the uniform distribution. In 8th International Workshop on Approxi-

mation Algorithms for Combinatorial Optimization Problems and 9th Interna-

tional Workshop on Randomization and Computation (RANDOM-APPROX),

volume 3624 of Lecture Notes in Computer Science, pages 342–353. Springer-

Verlag, 2005.

[JT97] Jeffrey C. Jackson and C. Tamon. Fourier analysis in machine learning.

ICML/COLT 1997 tutorial slides, available at:

http://learningtheory.org/resources.html, 1997.

[Kea98] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries.

Journal of the ACM, 45(6):983–1006, 1998. Prelim. ver. in Proc. of STOC’93 .

[Kha93] Michael Kharitonov. Cryptographic hardness of distribution-specific learning.

In Proc. 25th Annual ACM Symposium on Theory of Computing (STOC),

pages 372–381. ACM Press, 1993.

[Kha95] Michael Kharitonov. Cryptographic lower bounds for learnability of Boolean

functions on the uniform distribution. Journal of Computer and System Sci-

ences, 50(3):600–610, June 1995.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean

functions. In Proc. 29th IEEE Symposium on Foundations of Computer Science

(FOCS), pages 68–80. IEEE Computer Society Press, 1988.

[KLN+08] Shiva Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova,

and Adam Smith. What can we learn privately? In Proc. 49th IEEE Sympo-

sium on Foundations of Computer Science (FOCS). IEEE Computer Society

Press, 2008. To appear.

[KLRS96] Eyal Kushilevitz, Nathan Linial, Yuri Rabinovich, and Michael Saks. Witness

sets for families of binary vectors. Journal of Combinatorial Theory, 73(2):376–

380, February 1996.



120

[KLV94] Michael J. Kearns, Ming Li, and Leslie G. Valiant. Learning Boolean formulas.

Journal of the ACM, 41(6):1298–1328, 1994. Prelim. ver. in Proc. of STOC’87 .

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the

Fourier spectrum. SIAM Journal on Computing, 22(6):1331–1348, December

1993. Prelim. ver. in Proc. of STOC’91 .

[KM96] Michael J. Kearns and Yishay Mansour. On the boosting ability of top-down

decision tree learning algorithms. In Proc. 28th Annual ACM Symposium on

Theory of Computing (STOC). ACM Press, 1996.

[KMSP94] Ludek Kucera, Alberto Marchetti-Spaccamela, and Marco Protasi. On learn-

ing monotone DNF formulae under uniform distributions. Information and

Computation, 110(1):84–95, 1994.

[KOS04] Adam Klivans, Ryan O’Donnell, and Rocco A. Servedio. Learning intersec-

tions and thresholds of halfspaces. Journal of Computer and System Sciences,

68(4):808–840, 2004. Prelim. ver. in Proc. of FOCS’02 .

[KPPY84] Maria M. Klawe, Wolfgang J. Paul, Nicholas Pippenger, and Mihalis Yan-

nakakis. On monotone formulae with restricted depth. In Proc. 16th An-

nual ACM Symposium on Theory of Computing (STOC), pages 480–487. ACM

Press, 1984.

[KS06] Adam R. Klivans and Alexander A. Sherstov. Unconditional lower bounds for

learning intersections of halfspaces. In Proc. of the 19th Annual Conference on

Computational Learning Theory (COLT), 2006.

[Kuh99] Christian Kuhlmann. On teaching and learning intersection-closed concept

classes. In Proc. 4th EUROCOLT, pages 168–182, 1999.

[KV94] M. Kearns and U. Vazirani. An introduction to computational learning theory.

MIT Press, Cambridge, MA, 1994.



121

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,

Fourier transform, and learnability. Journal of the ACM, 40(3):607–620, 1993.

Prelim. ver. in Proc. of FOCS’89 .

[LSW07] Homin K. Lee, Rocco A. Servedio, and Andrew Wan. DNF are teachable in

the average case. Machine Learning, 69(2-3):79–96, 2007. Prelim. ver. in Proc.

of COLT’06 .

[Man94] Yishay Mansour. Learning Boolean functions via the Fourier transform. In

Theoretical Advances in Neural Computation and Learning, chapter 11, pages

391–424. Kluwer Academic Publishers, 1994.

[MO03] Elchanan Mossel and Ryan O’Donnell. On the noise sensitivity of monotone

functions. Random Structures and Algorithms, 23(3):333–350, 2003.

[MOS03] Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning juntas. In

Proc. 35th Annual ACM Symposium on Theory of Computing (STOC), pages

206–212. ACM Press, 2003.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, New York, NY, 1995.

[Nep70] V. Nepomnjaščĭı. Rudimentary predicates and turing calculations. Soviet

Mathematics Doklady, 11:1462–1465, 1970.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient

pseudo-random functions. Journal of the ACM, 51(2):231–262, March 2004.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Com-

puter and System Sciences, 49(2):149–167, 1994. Prelim. ver. in Proc. of

FOCS’98 .

[O’D04] Ryan O’Donnell. Hardness amplification within NP. Journal of Computer and

System Sciences, 69(1):68–94, 2004. Prelim. ver. in Proc. of STOC’02 .



122

[OS07] Ryan O’Donnell and Rocco A. Servedio. Learning monotone decision trees in

polynomial time. SIAM Journal on Computing, 37(3):827–844, 2007. Prelim.

ver. in Proc. of CCC’06 .

[OSSS05] Ryan O’Donnell, Michael Saks, Oded Schramm, and Rocco A. Servedio. Ev-

ery decision tree has an influential variable. In Proc. 46th IEEE Symposium

on Foundations of Computer Science (FOCS), pages 31–39. IEEE Computer

Society Press, 2005.

[OW09] Ryan O’Donnell and Karl Wimmer. KKL, Kruskal-Katona, and monotone

nets. Manuscript, 2009.

[Qui93] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., 1993.

[Raz85] Alexander A. Razborov. Lower bounds on the monotone network complexity

of the logical permanent. Matematicheskie Zametki, 37:887–900, 1985.

[RB91] R. Roth and G. Benedek. Interpolation and approximation of sparse multi-

variate polynomials over GF (2). SIAM Journal on Computing, 20(2):291–314,

1991.

[Sch90] Robert E. Schapire. The strength of weak learnability. Machine Learning,

5:197–227, 1990. Prelim. ver. in Proc. of FOCS’1989 .

[Sch01] Robert E. Schapire. The boosting approach to machine learning: An overview.

In MSRI Workshop on Nonlinear Estimation and Classification, 2001.

[Sel08] Linda Sellie. Learning random monoton DNF under the uniform distribution.

In Proc. of the 21th Annual Conference on Computational Learning Theory

(COLT), pages 181–192, 2008.

[Sel09] Linda Sellie. Exact learning of random dnf over the uniform distribution. In

Proc. 41st Annual ACM Symposium on Theory of Computing (STOC), pages

45–54, 2009.



123

[Ser04] Rocco A. Servedio. On learning monotone DNF under product distribu-

tions. Information and Computation, 193:57–74, 2004. Prelim. ver. in Proc. of

COLT’01 .

[She07] A. Sherstov. Halfspace matrices. In Proc. 22nd Annual IEEE Conference

on Computational Complexity (CCC), pages 83–95. IEEE Computer Society

Press, 2007.

[Sim07] Hans Ulrich Simon. A characterization of strong learnability in the statisti-

cal query model. In Proc. 24th Annual Symposium on Theoretical Aspects of

Computer Science (STACS), pages 393–404, 2007.

[SM90] A. Shinohara and S. Miyano. Teachability in computational learning. In Proc.

Algorithmic Learning Theory, 1st International Workshop (ALT), pages 247–

255, 1990.

[SM00] Y. Sakai and A. Maruoka. Learning monotone log-term DNF formulas under

the uniform distribution. Theory of Computing Systems, 33:17–33, 2000.

[SS96] Robert E. Schapire and Linda M. Sellie. Learning sparse multivariate polyno-

mials over a field with queries and counterexamples. Journal of Computer and

System Sciences, 52:201–213, 1996.

[Tre03] Luca Trevisan. List decoding using the XOR lemma. In Proc. 44th IEEE Sym-

posium on Foundations of Computer Science (FOCS), pages 126–135. IEEE

Computer Society Press, 2003.

[Val84] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134–1142, 1984. Prelim. ver. in Proc. of STOC’84 .

[Ver90] Karsten A. Verbeurgt. Learning DNF under the uniform distribution in quasi-

polynomial time. In Proc. of the 3rd Annual Conference on Computational

Learning Theory (COLT), pages 314–326, 1990.



124

[Ver98] Karsten A. Verbeurgt. Learning sub-classes of monotone DNF on the uniform

distribution. In Proc. Algorithmic Learning Theory, 9th Annual Conference

(ALT), pages 385–399. spver, 1998.

[Yan01] Ke Yang. On learning correlated Boolean functions using statistical query.

Technical Report 98, Electronic Colloquium on Computational Complexity

(ECCC), 2001. Prelim. ver. in Proc. of ALT’01 .

[Yan05] Ke Yang. New lower bounds for statistical query learning. Journal of Computer

and System Sciences, 70(4):485–509, 2005. Prelim. ver. in Proc. of COLT’02 .


	1 Introduction
	1.1 Overview

	2 Background
	2.1 Concepts and Representations
	2.2 PAC Learning
	2.3 Mathematical Background
	2.3.1 The Fourier Transform
	2.3.2 Tail Bounds

	2.4 Learning Monotone Functions

	3 The Cryptographic Hardness of Learning Monotone Functions
	3.1 Introduction
	3.1.1 Our Results and Techniques: Cryptography Trumps Monotonicity.
	3.1.2 Preliminaries

	3.2 Lower Bounds via Hardness Amplification of Monotone Functions
	3.2.1 Hardness Amplification for Learning
	3.2.2 A Simple Monotone Combining Function
	3.2.3 Hardness of Learning Polynomial-size Monotone Circuits

	3.3 Hardness of Learning Simple Circuits
	3.4 A Computational Analogue of the BBL Lower Bound
	3.4.1 Information-Theoretic Lower Bound
	3.4.2 Computational Lower Bound


	4 The Statistical Hardness of Learning Monotone Functions
	4.1 Introduction
	4.2 The Statistical Query Model
	4.2.1 The Strong SQ Dimension

	4.3 The Strong SQ Lower Bound
	4.4 The Circuit Construction

	5 Learning Random Monotone DNF
	5.1 Introduction
	5.1.1 Preliminaries

	5.2 Fourier Coefficients and the Term Structure of Monotone DNF
	5.2.1 Rewriting f(S).
	5.2.2 Bounding the Contribution to f(S) from Various Inputs.
	5.2.3 Bounding f(S) Based on Whether S Co-occurs in Some Term of f.

	5.3 Hypothesis Formation
	5.4 Random Monotone DNF
	5.4.1 Probabilistic analysis.

	5.5 Proof of the Main Theorem
	5.6 Discussion 

	6 The Structure of Monotone Decision Trees
	6.1 Introduction
	6.1.1 Our Results

	6.2 Influence
	6.3 A Poincaré-type Inequality for Decision Trees
	6.4 The Average Sensitivity of Monotone Decision Trees

	7 Teaching DNF in the Average Case
	7.1 Introduction
	7.2 Preliminaries
	7.3 Monotone DNF formulas
	7.4 DNF Formulas
	7.4.1 Preliminaries
	7.4.2 Teaching S
	7.4.3 Average-Case Teaching Dimension of DNFs

	7.5 Teaching Dimension of k-Juntas
	7.6 Sparse GF2 Polynomials

	8 Conclusions and Future Directions

