
Mouth-To-Ear Latency in Popular VoIP Clients
Chitra Agastya, Dan Mechanic, and Neha Kothari

Department of Computer Science
Columbia University, New York, NY 10027

{csa2111, mechanic, nk2338}@columbia.edu
July 9, 2009

ABSTRACT
Most popular instant messaging clients are now offering Voice-
over-IP (VoIP) technology. The many options running on similar
platforms, implementing common audio codecs and encryption
algorithms offers the opportunity to identify what factors affect
call quality. We measure call quality objectively based on mouth-
to-ear latency. Based on our analysis we determine that the
mouth-to-ear latency can be influenced by operating system
(process priority and interrupt handling), the VoIP client
implementation and network quality.

1. INTRODUCTION
Many IP telephony clients and instant messaging clients are now
offering VoIP technology. These are distributed for popular
platforms such as Windows and Linux. The combination of many
clients running on similar platforms, implementing common audio
codecs and encryption algorithms offers the opportunity to
perform a comparative study to identify what factors affect call
quality. We measure call quality objectively using a mouth-to-ear
delay metric.

Mouth-to-ear delay measures the time delay between when the
speaker utters a word and when the listener actually hears it.
Mouth-to-ear delay can be influenced by: A/D-D/A audio
conversion, VoIP client implementation (including codecs and
encryption solutions) , operating system and network quality.

2. EXPERIMENTS
The measurements for mouth-to-ear latency are performed using
the adelay utility [2] against audio files where a source audio
signal is recorded on the left channel and the right channel
contains the source audio delayed by the cost of a VoIP call
including the A/D-D/A conversion of the audio.

2.1 Experiment Setup
Source audio from an MP3 player is split via its headphone jack
using a 1/8" Stereo TRS (tip, ring, sleeve- Figure 1) - 2x Mono TS
(tip, sleeve) audio splitter (Figure 2). One channel is then patched
to the mic-in on the caller machine. The callee machine's

headphone jack and the second channel from the mp3 player are
connected to the line-in jack of a MacBook laptop using a 2x
Mono - 1x Stereo converter. The resulting stereo audio is recorded
and converted to Sun AU files using Audacity 1.2.5 [12] on a
MacBook laptop via the line-in interface. Fig 3. sows the setup.

Over the course of six weeks (Nov-Dec 2008) we captured 326
samples of various combinations of platforms, clients, codecs and
encryption options. Additionally, metrics regarding memory usage
and OS priority were taken from the caller and callee machines
during recording. The audio files were then analyzed for latency
using the adelay utility developed in the Internet Real-Time
Laboratory at Columbia University [2]. Figure 3 shows the setup
for testing mouth-to-ear latency on soft VoIP clients.

2.2 Hardware
The following are the details of the hardware used in our
experiments:
The caller machine, which receives our sound source via its
microphone input, is a Dell Optiplex GX260 (Intel Pentium 4
2.8Ghz machine with 1 Gig RAM, Intel 82540EM Gigabit
Ethernet Controller and an Intel 82801DB/DBL/DBM AC'97
Audio Controller. The callee machine, which receives audio from
the network, is a Dell Optiplex GX620 with a Dual Core Intel
Pentium D 3.4Ghz, 1 Gig RAM, Broadcom NetXtreme BCM5751
Gigabit Ethernet and an Intel 82801G AC'97 Controller.

2.3 Operating Systems
The experiments were run to test VoIP clients on two very
popular platforms: Linux and Windows XP

2.3.1 Linux
We used two flavors of the Linux kernel to perform our tests. One
version was Fedora Core 9’s default kernel 2.6.27.5-37.fc9 with
Alsa sound library version alsa-lib-1.0.17-2-fc9. The Alsa audio
libraries [13] have become the default for Linux as of kernel
version 2.6 [11].

Users of audio recording and production software have
demanding requirements for their systems to handle high quality
audio whilst maintain extremely low latencies. The Stanford
University Center for Computer Research in Music and Acoustics
(CCRMA), distribute rpm'd kernels for Fedora which include real-
time preemption patches by Ingo Molnar. According to CCRMA:
"While the stock Fedora kernels will also work for non-critical
audio work the real-time preemption patches are pretty much a
requirement for reliable behavior at low latencies" [7]. In addition
to the standard 2.6.27.5-37.fc9 kernel provided by the Fedora
repositories, we tested clients on the real-time kernel, kernel-rt-
2.6.24.7-1.rt3.2.fc9 kernel provided by CCRMA (referred to as
RT in the graphs in this report)
The PulseAudio networked sound server is enabled by default in
Fedora, however we removed these packages. With PulseAudio
we experienced difficulty getting sound to work consistently.
PulseAudio [14] is currently still under development and a major
stable release was not available at the time of our experiments.

2.3.2 Windows
We used Windows XP Professional version 2002 Service Pack 2
for testing clients.

3. MOUTH TO EAR DELAY TESTS
Mouth-to-ear delay is the time delay incurred in speech by the IP
telephony system. This is usually measured in milliseconds and is
the time taken from when a user begins to speak until when the
listener actually hears the speech. This one-way latency is known
as mouth-to-ear delay. The ITU-T recommendation is that “up to
150 ms mouth-to-ear delay can be tolerated by the human ear with
virtually no quality loss”.
Table 2 in the Appendix A shows how one study [15] has
suggested the relationship between the perceived link quality vs.
mouth-to-ear delay for IP telephony [4].

3.1 Basic Loopback Tests
We performed simple loopback tests in an attempt to remove the
A/D-D/A conversion variable from the equation for latency.
These experiments were staged using audio cables to perform
loopback tests by routing the audio via the mic-in and out via a
headphone jack on the same machine running a simple sound
recording program. Figure 4 shows the setup for the basic
Loopback tests we performed. These tests were performed on both
the Linux kernels as well as on the Windows platform.

This experiment failed, apparently due the audio hardware in our
test machines. No delay could be detected even when a second
machine was piggybacked into the audio chain. The AC’97 audio
controller has a front end analog audio mixer which allows analog
routing (no A/D-D/A conversion) from microphone/line-in to
line-out [3]. All tests in this fashion showed no delay. A
loopback client to force conversion would be necessary to
properly test A/D-D/A conversion delay, however such a client
would introduce it’s own delay. These tests were abandoned.

3.2 Hard Phones
We performed the mouth to ear latency tests on two Grandstream
GXP2000 phones. Figure 5 illustrates the set up for the latency
test with the Grandstream phones. The Grandstream GXP2000
phone supports a 2.5 mm audio jack. To perform these
experiments we first configure the Grandstream phones as SIP
user agents with user names and IP addresses. Then, we connect
one mono line from the audio source directly into the audacity
recorder. The second line from the audio source is patched into
the audio in of one of the phones using a standard 1/8” audio jack
to 2.5mm audio jack converter. Finally we connect the audio out
of the other phone into the Audacity recorder. Then, calls from
one Grandstream phone to the other are established using their
configured IP addresses.

We performed the mouth-to-ear latency tests on these phones for
the following codecs: G.711 µ-law, G.711 a-law for both RTP as
well as encrypted RTP (SRTP) media. We attempted using iLBC
codec. However, the phones experienced difficulty with this codec

Figure 1: Image showing sleeve (1) ring
(2) and tip (3) and insulating ring (4)
sections of TRS/TS connectors [16]

Figure 3: Setup for measuring mouth-to-ear latency

Figure 2: Image showing TRS
to 2xTS splitter

and produced audio distortion rendering the recordings useless.
We did not take packetization intervals into account. The usable
readings collected from these tests are tabulated in Table 3 in the
Appendix A.

In our tests, we observe that the latency is larger for packets with
SRTP encryption than for packets without encryption.

3.3 Soft Phones
We performed tests using several VoIP clients on Linux as well as
on the Windows operating systems. While taking measurements,
we performed the tests on different codecs supported by the
clients.

3.3.1 Tests on Linux
In order to see how real-time kernels can impact latency, we
performed tests on two different versions of the kernel: the Linux
kernel as distributed by Fedora and a real-time kernel distributed
by the planet CCRMA project at Stanford University.
Since none of the popular VoIP clients (gtalk, Windows
messenger, and yahoo) are distributed for Linux with the
exception of Skype, we performed the tests on some VoIP clients
we used for the VoIP lab exercises. Clients we performed our
experiments on include Ekiga, Linphone, Skype and Twinkle.

Ekiga: We used Ekiga version 2.0.12-2.fc9 [10] for our
experiments. Ekiga supports many audio codecs. We performed
our tests for some of the popular codecs: Speex 16kHz, Speex
8kHz, iLBC, G.711 µ-law, G.711 a-law and G721. We ran these
tests on both the real-time kernel as well as the regular kernel.
Ekiga does not support encryption so no latency tests were
performed with encryption.

Linphone: We used Linphone version 2.1.1-1.fc9 for our
experiments and performed our tests on the client for the
following codecs: Speex 16kHz, Speex 8kHz, G.711 µ-law, G.711
a-law. We ran these tests on both the real-time kernel as well as
the regular kernel. Linphone also does not support encryption so
no latency tests were performed with encryption.

Skype: We used Skype version 2.0.0.72-fc5.i586 for our tests.
Skype is perhaps the most popular peer to peer VoIP client and is
distributed for both Windows as well as Linux. We found Skype
to be an interesting candidate for this project as we could perform
the latency tests for our three operating systems: FC9 kernel,
CCRMA real-time kernel and Windows XP.

Twinkle: Twinkle is a SIP client that we used extensively for our
VoIP lab exercises. We consider Twinkle an interesting candidate
for these tests because it supports many codecs and also supports
encryption using zRTP, a key agreement protocol used to improve
upon the security of SRTP. We used Twinkle version 1.2-
3.fc9.i386 for our experiments. We observe the latency to be
larger when packets are encrypted. We also observe that the
latency is larger for the FC9 kernel vs. real-time kernel.

Table 4 through Table 8 shows the different results for our tests
on Linux.

3.3.2 Tests on Windows
To make a comparative analysis of clients on different operating
systems we performed our experiments on Windows as well. The
clients we tested include Skype, AIM, yahoo, Ekiga, Windows
messenger and gtalk. Ekiga and Skype are the only clients in this
set available for both Windows and Linux. We noted the bit rate
and also the memory footprint for each client when the call is in
process. To identify the codecs that these clients support, we trace
the signaling packets using Wireshark. The clients that use SIP
signaling mention the media attributes with the codecs in the SDP
message.

AIM: We used AIM v6.8.14.6. AIM uses the GIPS iSAC codec.
One interesting observation we made during our tests was that this
client sometimes has flash advertisements during a call. The
latency values were seen to go as high as 786 ms when such
advertisements were being downloaded. In the absence of these
advertisements, the call latency was seen to be around 120ms.

Ekiga: We used Ekiga v3.0.0 for our tests on Windows. We
consider Ekiga an interesting candidate because it is distributed

Figure 4: Setup for loopback test

Figure 5: Setup for measuring hard phone latency

for both Windows and Linux platforms. This client also supports a
variety of codecs, which the user can choose from.

Gtalk: Google Talk supports the following standard voice codecs:
G.711 a-law, G.711 µ-law, G.723, iLBC, and Speex. It also
supports iSAC, IPCMWB, EG711U, EG711A. Gtalk does not
allow the user to specify codec preference [5].

Windows Messenger: We used Windows Messenger v4.7.3000
for our experiments. Wireshark captured SDP packets showing
that this client supports a variety of codecs: red, SIREN, G7221,
DVI4, G.711 a-law, G.711 µ-law, G723 and GSM.

Skype: We used Skype v3.8.0.180 for our experiments. The
readings for Skype provide a good comparison between Windows
and Linux. Skype reports the codec it is using as Sinusoidal Voice
Over Packet Coder (SVOPC).

Yahoo: We used Yahoo messenger v9.0.0.2034 for our tests.
This client reports using the TrueSpeech codec.

Table 9 shows our results for Windows.

4. ANALYSIS
The experiments for this project were performed over a period of
6 weeks (Nov-Dec’08). The data that we have collected has been
used to analyze some of the factors that affect the mouth-to-ear
latency.

4.1 Codecs
The analysis of the different codecs used by the clients we tested
on Linux is given below for both the kernels.
 Figure 7 shows the latency of different clients using different
codecs across the real-time(RT) as well as Fedora Core9 (FC9)
kernel. The Grandstream phones seem to have least latency which
could possibly be explained by the dedicated nature of their
hardware.
As can be seen from the figure 6, different clients seem to show
the same trend for similar codecs. For example, latency for
Speex16 and Speex8 follows a similar trend for different clients.

Similarly G.711 µ-law and G.711 a-law follow similar trends for
different clients. Codecs performing well on one client seem to
perform well across all clients (e.g. G.711 A-law) and codecs
performing badly on one client seem to perform badly on all
clients (e.g. iLBC). The effect of the codec seems to be a constant
across all the clients. Another observation is that Twinkle appears
to show similar latency for different codecs. This latency is under
150ms for all codecs used in the experiments.

4.2 Kernels
As predicted, the real-time CCRMA kernel improves upon the
performance of processing audio over FC9 kernel in most cases.

Figure 10 shows the mouth-to-ear latency for the two flavors of
linux kernels used in our experiments. As seen from the graphs,
the latency values on CCRMA are lower than that on the FC9
kernel. The same observations are made for Ekiga and Linphone.

4.3 Encryption
Among the clients we tested, only two support encryption:
Twinkle and Grandstream. While Grandstream uses sRTP to
encrypt packets, Twinkle uses zRTP. Encryption appears to
increase latency. The graph for latency of encrypted vs
unencrypted packets for Twinkle and Grandstream are shown in
the Figures 8 and 9.
The graphs clearly illustrate that the latency incurred on encrypted
media packets is greater. The percentage overhead for encryption
in the case of Twinkle is 6.67% for the real-time kernel and
6.83% for the FC9 kernel. The percentage overhead for
encryption in the case of Grandstream is 14.15%.

4.4 Windows Clients
Most of the clients we tested on Windows did not support
selecting a codec explicitly. Figure 11 shows the latency for
different VoIP clients tested on Win XP.
Our analysis shows that Windows Messenger has the smallest
latency. Windows Messenger is the only client test which uses
Siren, a codec licensed from Polycom, which may contribute to
it’s fine performance. Other popular clients like AIM, gtalk,
Skype and Yahoo have higher latency values. Of these, AIM,
gtalk and Skype all have similar latency values, likely due to
using the same GIPS iSAC audio codec.
The readings observed here vary from the ones observed in a
similar tests conducted in 2005 at Columbia University[6]. In

Figure 6: Graph showing latency trends by codec for different VoIP clients

Figure 7: Chart showing latency values by codec for
different VoIP clients

Figure 1: Chart showing latency for different Windows clients

those tests Skype had a much lower latency than the other IM
clients. The older version (v1.4.0.84) ran at a high process priority
while the current version (v3.8.0.180) runs at normal.
To complete our analysis, we tested Skype with different process
priorities by setting the priority to high, normal and low and
calculated the mouth-to-ear latency. The results are plotted in
Figure 12. There was a difference in latency of roughly 7
milliseconds between high and normal priorities and 4
milliseconds between normal and low priorities.

4.5 Comparisons across all platforms
Table 1 in the Appendix A shows the latency for the different
clients in increasing order of mouth-to-ear latency. Our
observation showed majority of the clients have latencies between
0-300ms range. We did not observe any latency in the 300-450ms
range. Ekiga on windows shows latency values greater than
450ms.

4.6 Conclusions
The results we have gathered suggest that operating system
features such as real-time kernels and process priority and VoIP
client implementations such as encryption do affect call quality.
Codecs seem to show a similar performance trend across clients.

However, more investigation needs to be done with respect to
packetization interval of the codecs to understand their behavior
better.

4.7 Further Work
From our observations we see several things worthy of
investigation: Windows Messenger has the best performance
among all clients we tested, including hard phones. What are the
underlying reasons? Is it possible that Microsoft took advantage
of owning operating system to improve performance, or is it the
codec? Could extensions be made to Alsa to improve its
performance for VoIP? And of course, are these improvements at
the expense of some subjective measure of quality, such as MOS.

5. ACKNOWLEDGMENTS
We are thankful to Alan Crosswell of CUIT and Andrea Forte for
providing us with the necessary hardware for the experiment
setup. Our sincere thanks to Salman Abdul Baset for guiding us
through the project and providing us with the NIC cards for the
MOS experiment setup. We thank Supreeth Subramanya for
checking our progress on the project. Finally we like to thank
Prof. Henning Schulzrinne for his suggestions on future work and
for reviewing this report.

Figure 10: Chart comparing latency on Realtime vs Fedora Core 9 kernels on Linux

Figure 8: Chart showing effect of encryption on Twinkle
latency

Figure 9: Chart showing effect of encryption on
Grandstream latency

Figure 11: Chart showing latency for different Windows
clients Figure 12: Chart showing Skype latency for different process

priorities

6. REFERENCES
[1] http://en.wikipedia.org/wiki/Mean_Opinion_Score
[2] http://www.cs.columbia.edu/irt/software/adelay/
[3] http://download.intel.com/support/motherboards/desktop/sb/a

c97_r23.pdf
[4] http://www.telephonyworld.com/training/brooktrout/iptel_lat

ency_wp.html
[5] http://code.google.com/apis/talk/open_communications.html
[6] www1.cs.columbia.edu/~salman/presentations/skype-

infocom06.ppt
[7] http://ccrma.stanford.edu/planetccrma/software/installplanete

ight.html
[8] http://www.alsa-project.org

[9] http://ekiga.org/
[10] http://en.wikipedia.org/wiki/ZRTP
[11] William von Hagen "Migrating to Linux kernel 2.6 -- Part 3:

Using the 2.6 Kernel with your current system" whitepaper
TimeSys Corporation

[12] http://audacity.sourceforge.net
[13] http://www.alsa-project.org/
[14] http://www.pulseaudio.org
[15] Brooktrout Whitepaper “Understanding Latency in IP

Telephony”
[16] http://en.wikipedia.org/wiki/TRS_connector

Appendix A

Table 1: Table showing the latency of all clients tested

Client OS Kernel Codec Latency
MSN Windows XP Siren 88.05
Grandstream NA NA G.711 A-law 98.86
Grandstream NA NA G.711 µ-law 114.61
Twinkle Linux Fedora Core 9 G.711 µ-law 116.17
Twinkle Linux CCRMA Speex 8 kHz VBR 118.22
AIM Windows XP GIPS iSAC 119.10
Twinkle Linux Fedora Core 9 Speex 8 kHz VBR 124.76
Gtalk Windows XP GIPS iSAC 125.28
Twinkle Linux CCRMA G.711 A-law 125.80
Twinkle Linux Fedora Core 9 G.711 A-law 125.84
Twinkle Linux CCRMA Speex 8 kHz 134.22
Twinkle Linux CCRMA Speex 16kHz 135.63
Twinkle Linux Fedora Core 9 Speex 16kHz 136.11
Yahoo Windows XP TrueSpeech 138.20
Twinkle Linux Fedora Core 9 Speex 8 kHz 138.24
Twinkle Linux CCRMA Speex 16 kHz VBR 141.12
Skype Windows XP SVOPC 142.18
Twinkle Linux Fedora Core 9 Speex 16 kHz VBR 142.54
Grandstream NA NA iLBC 156.04
Linphone Linux CCRMA G.711 µ-law 159.21
Linphone Linux CCRMA G.711 A-law 160.80
Linphone Linux Fedora Core 9 G.711 µ-law 163.88
Linphone Linux CCRMA Speex 8 kHz 172.96
Linphone Linux CCRMA Speex 16 kHz 173.65
Linphone Linux Fedora Core 9 Speex 16 kHz 176.98
Linphone Linux Fedora Core 9 G.711 A-law 177.02
Linphone Linux Fedora Core 9 Speex 8 kHz 187.95
Ekiga Linux CCRMA G.721 204.45
Ekiga Linux CCRMA G.711 A-law 209.54
Ekiga Linux Fedora Core 9 G.721 213.07
Ekiga Linux CCRMA G.711 µ-law 216.88
Skype Linux Fedora Core 9 SVOPC 218.72
Ekiga Linux Fedora Core 9 G.711 A-law 221.88
Ekiga Linux Fedora Core 9 G.711 µ-law 225.69
Skype Linux CCRMA SVOPC 234.87
Ekiga Linux CCRMA Speex 8 kHz 237.91
Ekiga Linux Fedora Core 9 Speex 8 kHz 242.59
Twinkle Linux CCRMA G.711 µ-law 247.67
Ekiga Linux Fedora Core 9 Speex 16 kHz 252.75
Ekiga Linux CCRMA Speex 16 kHz 255.31
Ekiga Linux CCRMA iLBC 262.95
Ekiga Linux Fedora Core 9 iLBC 295.30
Ekiga Windows XP G.711 µ-law 467.21
Ekiga Windows XP Speex 16kHz 483.03
Ekiga Windows XP Speex 8kHz 624.73
Ekiga Windows XP iLBC 635.88
Ekiga Windows XP G.711 A-law 677.26

Table 2: Perceived quality vs. mouth-to-ear latency

Latency in ms Perceived Quality

0-150 Excellent

150-300 Good

300-450 Poor

>450 Unacceptable

Table 3: Latency for Grandstream, in ms
Codec RTP SRTP

G.711 µ-law 114.61 121.18

G.711 a-law 98.86 121.17

Table 4: Mouth-to-ear latency in for Ekiga, in ms
Codec CCRMA kernel FC9 kernel

Speex 16kHz 255.31 252.75

Speex 8 kHz 237.91 242.59

iLBC 262.95 295.30

G.711 µ-law 216.88 225.69

G.711 a-law 209.54 221.85

G721 204.45 213.07

Table 5: Mouth-to-ear latency reading for Linphone, in ms
Codec CCRMA kernel FC9 kernel
Speex 16kHz 173.65 176.98

Speex 8 kHz 172.96 187.95

G.711 µ-law 159.21 163.88

G.711 a-law 160.78 177.02

Table 6: Mouth-to-ear latency for Skype, in ms
CCRMA Kernel FC9 Kernel
234.87 226.04

Table 7: Mouth-to-ear latency for Twinkle, in ms
CCRMA Kernel Linux Kernel Codec
RTP ZRTP RTP ZRTP

Speex 16 135.63 156.04 136.11 150.43

Speex16
VBR 141.12 142.85 142.54 157.86

Speex8 134.22 134.76 138.23 141.77

Speex8 VBR 118.22 133.06 124.76 137.32

G.711 a-law 125.79 128.25 125.84 131.02

G.711 µ-law 117.96 128.36 127.41 131.23

Table 8: Mouth-to-ear latency reading for Ekiga, in ms

Codec Latency in ms

Speex16 483.03

Speex8 624.73

iLBC 635.88

G.711 µ-law 467.21

G.711 a-law 677.26

Table :9 Latency of clients on Windows XP SP2, in ms

Clients Latency in ms

AIM 119.10

Gtalk 125.28
Windows
Messenger

88.05

Skype 142.18

Yahoo 138.20

