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ABSTRACT 
Most popular instant messaging clients are now offering Voice-
over-IP (VoIP) technology.  The many options running on similar 
platforms, implementing common audio codecs and encryption 
algorithms offers the opportunity to identify what factors affect 
call quality. We measure call quality objectively based on mouth-
to-ear latency. Based on our analysis we determine that the 
mouth-to-ear latency can be influenced by operating system 
(process priority and interrupt handling), the VoIP client 
implementation and network quality.  

1. INTRODUCTION 
Many IP telephony clients and instant messaging clients are now 
offering VoIP technology.  These are distributed for popular 
platforms such as Windows and Linux. The combination of many 
clients running on similar platforms, implementing common audio 
codecs and encryption algorithms offers the opportunity to 
perform a comparative study to identify what factors affect call 
quality.  We measure call quality objectively using a mouth-to-ear 
delay metric. 

Mouth-to-ear delay measures the time delay between when the 
speaker utters a word and when the listener actually hears it. 
Mouth-to-ear delay can be influenced by: A/D-D/A audio 
conversion, VoIP client implementation (including codecs and 
encryption solutions) , operating system and network quality. 

2. EXPERIMENTS 
The measurements for mouth-to-ear latency are performed using 
the adelay utility [2] against audio files where a source audio 
signal is recorded on the left channel and the right channel 
contains the source audio delayed by the cost of a VoIP call 
including the A/D-D/A conversion of the audio. 

2.1 Experiment Setup 
Source audio from an MP3 player is split via its headphone jack 
using a 1/8" Stereo TRS (tip, ring, sleeve- Figure 1) - 2x Mono TS 
(tip, sleeve) audio splitter (Figure 2).  One channel is then patched 
to the mic-in on the caller machine.  The callee machine's 

headphone jack and the second channel from the mp3 player are 
connected to the line-in jack of a MacBook laptop using a 2x 
Mono - 1x Stereo converter. The resulting stereo audio is recorded 
and converted to Sun AU files using Audacity 1.2.5 [12] on a 
MacBook laptop via the line-in interface.  Fig 3. sows the setup. 

Over the course of six weeks (Nov-Dec 2008) we captured 326 
samples of various combinations of platforms, clients, codecs and 
encryption options. Additionally, metrics regarding memory usage 
and OS priority were taken from the caller and callee machines 
during recording. The audio files were then analyzed for latency 
using the adelay utility developed in the Internet Real-Time 
Laboratory at Columbia University [2]. Figure 3 shows the setup 
for testing mouth-to-ear latency on soft VoIP clients. 

2.2 Hardware  
The following are the details of the hardware used in our 
experiments: 
The caller machine, which receives our sound source via its 
microphone input, is a Dell Optiplex GX260 (Intel Pentium 4 
2.8Ghz machine with 1 Gig RAM, Intel 82540EM Gigabit 
Ethernet Controller and an Intel 82801DB/DBL/DBM AC'97 
Audio Controller. The callee machine, which receives audio from 
the network, is a Dell Optiplex GX620 with a Dual Core Intel 
Pentium D 3.4Ghz, 1 Gig RAM, Broadcom NetXtreme BCM5751 
Gigabit Ethernet and an Intel 82801G AC'97 Controller. 

2.3 Operating Systems 
The experiments were run to test VoIP clients on two very 
popular platforms: Linux and Windows XP 

2.3.1 Linux 
We used two flavors of the Linux kernel to perform our tests. One 
version was Fedora Core 9’s default kernel 2.6.27.5-37.fc9 with 
Alsa sound library version alsa-lib-1.0.17-2-fc9. The Alsa audio 
libraries [13] have become the default for Linux as of kernel 
version 2.6 [11].  



Users of audio recording and production software have 
demanding requirements for their systems to handle high quality 
audio whilst maintain extremely low latencies. The Stanford 
University Center for Computer Research in Music and Acoustics          
(CCRMA), distribute rpm'd kernels for Fedora which include real-
time preemption patches by Ingo Molnar. According to CCRMA: 
"While the stock Fedora kernels will also work for non-critical 
audio work the real-time preemption patches are pretty much a 
requirement for reliable behavior at low latencies" [7]. In addition 
to the standard 2.6.27.5-37.fc9 kernel provided by the Fedora 
repositories, we tested clients on the real-time kernel, kernel-rt-
2.6.24.7-1.rt3.2.fc9 kernel provided by CCRMA (referred to as 
RT in the graphs in this report) 
The PulseAudio networked sound server is enabled by default in 
Fedora, however we removed these packages.  With PulseAudio 
we experienced difficulty getting sound to work consistently.  
PulseAudio [14] is currently still under development and a major 
stable release was not available at the time of our experiments. 
 
 
 

2.3.2 Windows 
We used Windows XP Professional version 2002 Service Pack 2 
for testing clients. 

3. MOUTH TO EAR DELAY TESTS 
Mouth-to-ear delay is the time delay incurred in speech by the IP 
telephony system. This is usually measured in milliseconds and is 
the time taken from when a user begins to speak until when the 
listener actually hears the speech. This one-way latency is known 
as mouth-to-ear delay. The ITU-T recommendation is that “up to 
150 ms mouth-to-ear delay can be tolerated by the human ear with 
virtually no quality loss”.  
Table 2 in the Appendix A shows how one study [15] has 
suggested the relationship between the perceived link quality vs. 
mouth-to-ear delay for IP telephony [4]. 

3.1 Basic Loopback Tests 
We performed simple loopback tests in an attempt to remove the 
A/D-D/A conversion variable from the equation for latency. 
These experiments were staged using audio cables to perform 
loopback tests by routing the audio via the mic-in and out via a 
headphone jack on the same machine running a simple sound 
recording program. Figure 4 shows the setup for the basic 
Loopback tests we performed. These tests were performed on both 
the Linux kernels as well as on the Windows platform. 

This experiment failed, apparently due the audio hardware in our 
test machines.  No delay could be detected even when a second 
machine was piggybacked into the audio chain. The AC’97 audio 
controller has a front end analog audio mixer which allows analog 
routing (no A/D-D/A conversion) from microphone/line-in to 
line-out [3].  All tests in this fashion showed no delay.  A 
loopback client to force conversion would be necessary to 
properly test A/D-D/A conversion delay, however such a client 
would introduce it’s own delay.  These tests were abandoned. 

3.2  Hard Phones 
We performed the mouth to ear latency tests on two Grandstream 
GXP2000 phones. Figure 5 illustrates the set up for the latency 
test with the Grandstream phones. The Grandstream GXP2000 
phone supports a 2.5 mm audio jack. To perform these 
experiments we first configure the Grandstream phones as SIP 
user agents with user names and IP addresses.  Then, we connect 
one mono line from the audio source directly into the audacity 
recorder.  The second line from the audio source is patched into 
the audio in of one of the phones using a standard 1/8” audio jack 
to 2.5mm audio jack converter.  Finally we connect the audio out 
of the other phone into the Audacity recorder.  Then, calls from 
one Grandstream phone to the other are established using their 
configured IP addresses.  

We performed the mouth-to-ear latency tests on these phones for 
the following codecs: G.711 µ-law, G.711 a-law for both RTP as 
well as encrypted RTP (SRTP) media. We attempted using iLBC 
codec. However, the phones experienced difficulty with this codec  

Figure 1: Image showing sleeve (1) ring 
(2) and tip (3) and insulating ring (4) 
sections of TRS/TS connectors [16] 

Figure 3: Setup for measuring mouth-to-ear latency 

Figure 2: Image showing TRS 
to 2xTS splitter 



and produced audio distortion rendering the recordings useless.   
We did not take packetization intervals into account.  The usable 
readings collected from these tests are tabulated in Table 3 in the 
Appendix A. 

In our tests, we observe that the latency is larger for packets with 
SRTP encryption than for packets without encryption. 

3.3 Soft Phones 
We performed tests using several VoIP clients on Linux as well as 
on the Windows operating systems. While taking measurements, 
we performed the tests on different codecs supported by the 
clients. 

3.3.1 Tests on Linux 
In order to see how real-time kernels can impact latency, we 
performed tests on two different versions of the kernel: the Linux 
kernel as distributed by Fedora and a real-time kernel distributed 
by the planet CCRMA project at Stanford University. 
Since none of the popular VoIP clients (gtalk, Windows 
messenger, and yahoo) are distributed for Linux with the 
exception of Skype, we performed the tests on some VoIP clients 
we used for the VoIP lab exercises. Clients we performed our 
experiments on include Ekiga, Linphone, Skype and Twinkle. 
 
Ekiga: We used Ekiga version 2.0.12-2.fc9 [10] for our 
experiments. Ekiga supports many audio codecs. We performed 
our tests for some of the popular codecs: Speex 16kHz, Speex 
8kHz, iLBC, G.711 µ-law, G.711 a-law and G721. We ran these 
tests on both the real-time kernel as well as the regular kernel. 
Ekiga does not support encryption so no latency tests were 
performed with encryption.  
 
Linphone: We used Linphone version 2.1.1-1.fc9 for our 
experiments and performed our tests on the client for the 
following codecs: Speex 16kHz, Speex 8kHz, G.711 µ-law, G.711 
a-law. We ran these tests on both the real-time kernel as well as 
the regular kernel. Linphone also does not support encryption so 
no latency tests were performed with encryption.  
 

Skype: We used Skype version 2.0.0.72-fc5.i586 for our tests. 
Skype is perhaps the most popular peer to peer VoIP client and is 
distributed for both Windows as well as Linux. We found Skype 
to be an interesting candidate for this project as we could perform 
the latency tests for our three operating systems: FC9 kernel, 
CCRMA real-time kernel and Windows XP.  
 
Twinkle: Twinkle is a SIP client that we used extensively for our 
VoIP lab exercises. We consider Twinkle an interesting candidate 
for these tests because it supports many codecs and also supports 
encryption using zRTP, a key agreement protocol used to improve 
upon the security of SRTP.  We used Twinkle version 1.2-
3.fc9.i386 for our experiments. We observe the latency to be 
larger when packets are encrypted.  We also observe that the 
latency is larger for the FC9 kernel vs. real-time kernel. 
 
Table 4 through Table 8 shows the different results for our tests 
on Linux. 

3.3.2 Tests on Windows 
To make a comparative analysis of clients on different operating 
systems we performed our experiments on Windows as well. The 
clients we tested include Skype, AIM, yahoo, Ekiga, Windows 
messenger and gtalk. Ekiga and Skype are the only clients in this 
set available for both Windows and Linux. We noted the bit rate 
and also the memory footprint for each client when the call is in 
process. To identify the codecs that these clients support, we trace 
the signaling packets using Wireshark. The clients that use SIP 
signaling mention the media attributes with the codecs in the SDP 
message.   
 
AIM: We used AIM v6.8.14.6. AIM uses the GIPS iSAC codec.  
One interesting observation we made during our tests was that this 
client sometimes has flash advertisements during a call. The 
latency values were seen to go as high as 786 ms when such 
advertisements were being downloaded. In the absence of these 
advertisements, the call latency was seen to be around 120ms.  
 
Ekiga: We used Ekiga v3.0.0 for our tests on Windows. We 
consider Ekiga an interesting candidate because it is distributed 

Figure 4: Setup for loopback test 

Figure 5: Setup for measuring hard phone latency 



for both Windows and Linux platforms. This client also supports a 
variety of codecs, which the user can choose from. 
 
Gtalk: Google Talk supports the following standard voice codecs: 
G.711 a-law, G.711 µ-law, G.723, iLBC, and Speex. It also 
supports iSAC, IPCMWB, EG711U, EG711A. Gtalk does not 
allow the user to specify codec preference [5]. 
 
Windows Messenger: We used Windows Messenger v4.7.3000 
for our experiments. Wireshark captured SDP packets showing 
that this client supports a variety of codecs: red, SIREN, G7221, 
DVI4, G.711 a-law, G.711 µ-law, G723 and GSM. 
 

Skype: We used Skype v3.8.0.180 for our experiments. The 
readings for Skype provide a good comparison between Windows 
and Linux. Skype reports the codec it is using as Sinusoidal Voice 
Over Packet Coder (SVOPC). 
 
Yahoo:  We used Yahoo messenger v9.0.0.2034 for our tests. 
This client reports using the TrueSpeech codec. 
 
Table 9 shows our results for Windows. 

4. ANALYSIS 
The experiments for this project were performed over a period of 
6 weeks (Nov-Dec’08).  The data that we have collected has been 
used to analyze some of the factors that affect the mouth-to-ear 
latency. 

4.1 Codecs 
The analysis of the different codecs used by the clients we tested 
on Linux is given below for both the kernels. 
 Figure 7 shows the latency of different clients using different 
codecs across the real-time(RT) as well as Fedora Core9 (FC9) 
kernel. The Grandstream phones seem to have least latency which 
could possibly be explained by the dedicated nature of their 
hardware.  
As can be seen from the figure 6, different clients seem to show 
the same trend for similar codecs. For example, latency for 
Speex16 and Speex8 follows a similar trend for different clients. 

Similarly G.711 µ-law and G.711 a-law follow similar trends for 
different clients. Codecs performing well on one client seem to 
perform well across all clients (e.g. G.711 A-law) and codecs 
performing badly on one client seem to perform badly on all 
clients (e.g. iLBC). The effect of the codec seems to be a constant 
across all the clients. Another observation is that Twinkle appears 
to show similar latency for different codecs. This latency is under 
150ms for all codecs used in the experiments. 

4.2 Kernels 
As predicted, the real-time CCRMA kernel improves upon the 
performance of processing audio over FC9 kernel in most cases.   
 
Figure 10 shows the mouth-to-ear latency for the two flavors of 
linux kernels used in our experiments. As seen from the graphs, 
the latency values on CCRMA are lower than that on the FC9 
kernel. The same observations are made for Ekiga and Linphone. 

4.3 Encryption 
Among the clients we tested, only two support encryption: 
Twinkle and Grandstream. While Grandstream uses sRTP to 
encrypt packets, Twinkle uses zRTP. Encryption appears to 
increase latency. The graph for latency of encrypted vs 
unencrypted packets for Twinkle and Grandstream are shown in 
the Figures 8 and 9. 
The graphs clearly illustrate that the latency incurred on encrypted 
media packets is greater. The percentage overhead for encryption 
in the case of Twinkle is 6.67% for the real-time kernel  and 
6.83% for the FC9 kernel. The percentage overhead for 
encryption in the case of Grandstream is 14.15%. 

4.4 Windows Clients 
Most of the clients we tested on Windows did not support 
selecting a codec explicitly.  Figure 11 shows the latency for 
different VoIP clients tested on Win XP. 
Our analysis shows that Windows Messenger has the smallest 
latency.  Windows Messenger is the only client test which uses 
Siren, a codec licensed from Polycom, which may contribute to 
it’s fine performance. Other popular clients like AIM, gtalk, 
Skype and Yahoo have higher latency values. Of these, AIM, 
gtalk and Skype all have similar latency values, likely due to 
using the same GIPS iSAC audio codec. 
The readings observed here vary from the ones observed in a 
similar tests conducted in 2005 at Columbia University[6]. In 

Figure 6: Graph showing latency trends by codec for different VoIP clients 

Figure 7: Chart showing latency values by codec for 
different VoIP clients 

Figure 1: Chart showing latency for different Windows clients 



those tests Skype had a much lower latency than the other IM 
clients. The older version (v1.4.0.84) ran at a high process priority 
while the current version (v3.8.0.180) runs at normal.  
To complete our analysis, we tested Skype with different process 
priorities by setting the priority to high, normal and low and 
calculated the mouth-to-ear latency. The results are plotted in 
Figure 12. There was a difference in latency of roughly 7 
milliseconds between high and normal priorities and 4 
milliseconds between normal and low priorities. 

4.5 Comparisons across all platforms 
Table 1 in the Appendix A shows the latency for the different 
clients in increasing order of mouth-to-ear latency. Our 
observation showed majority of the clients have latencies between 
0-300ms range. We did not observe any latency in the 300-450ms 
range. Ekiga on windows shows latency values greater than 
450ms. 

4.6 Conclusions 
The results we have gathered suggest that operating system 
features such as real-time kernels and process priority and VoIP 
client implementations such as encryption do affect call quality. 
Codecs seem to show a similar performance trend across clients. 

However, more investigation needs to be done with respect to 
packetization interval of the codecs to understand their behavior 
better. 

4.7  Further Work 
From our observations we see several things worthy of 
investigation: Windows Messenger has the best performance 
among all clients we tested, including hard phones.  What are the 
underlying reasons?  Is it possible that Microsoft took advantage 
of owning operating system to improve performance, or is it the 
codec? Could extensions be made to Alsa to improve its 
performance for VoIP?  And of course, are these improvements at 
the expense of some subjective measure of quality, such as MOS. 
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Figure 10: Chart comparing latency on Realtime vs Fedora Core 9 kernels on Linux 

Figure 8: Chart showing effect of encryption on Twinkle 
latency 

Figure 9: Chart showing effect of encryption on 
Grandstream latency 
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Appendix A 
 
Table 1: Table showing the latency of all clients tested 

Client OS Kernel Codec Latency 
MSN Windows XP Siren 88.05 
Grandstream  NA NA G.711 A-law 98.86 
Grandstream NA NA G.711 µ-law 114.61 
Twinkle  Linux Fedora Core 9 G.711 µ-law 116.17 
Twinkle Linux CCRMA Speex 8 kHz VBR 118.22 
AIM Windows XP GIPS iSAC 119.10 
Twinkle Linux Fedora Core 9 Speex 8 kHz VBR 124.76 
Gtalk Windows XP GIPS iSAC 125.28 
Twinkle Linux CCRMA G.711 A-law 125.80 
Twinkle Linux Fedora Core 9 G.711 A-law 125.84 
Twinkle Linux CCRMA Speex 8 kHz 134.22 
Twinkle Linux CCRMA Speex 16kHz 135.63 
Twinkle  Linux Fedora Core 9 Speex 16kHz 136.11 
Yahoo Windows XP TrueSpeech 138.20 
Twinkle Linux Fedora Core 9 Speex 8 kHz 138.24 
Twinkle Linux CCRMA Speex 16 kHz VBR 141.12 
Skype Windows XP SVOPC 142.18 
Twinkle Linux Fedora Core 9 Speex 16 kHz VBR 142.54 
Grandstream  NA NA iLBC 156.04 
Linphone  Linux CCRMA G.711 µ-law 159.21 
Linphone Linux CCRMA G.711 A-law 160.80 
Linphone  Linux Fedora Core 9 G.711 µ-law 163.88 
Linphone Linux CCRMA Speex 8 kHz 172.96 
Linphone Linux CCRMA Speex 16 kHz 173.65 
Linphone Linux Fedora Core 9 Speex 16 kHz 176.98 
Linphone  Linux Fedora Core 9 G.711 A-law 177.02 
Linphone  Linux Fedora Core 9 Speex 8 kHz 187.95 
Ekiga  Linux CCRMA G.721 204.45 
Ekiga Linux CCRMA G.711 A-law 209.54 
Ekiga Linux Fedora Core 9 G.721 213.07 
Ekiga Linux CCRMA G.711 µ-law 216.88 
Skype  Linux Fedora Core 9 SVOPC 218.72 
Ekiga  Linux Fedora Core 9 G.711 A-law 221.88 
Ekiga  Linux Fedora Core 9 G.711 µ-law 225.69 
Skype  Linux CCRMA SVOPC 234.87 
Ekiga  Linux CCRMA Speex 8 kHz 237.91 
Ekiga  Linux Fedora Core 9 Speex 8 kHz 242.59 
Twinkle  Linux CCRMA G.711 µ-law 247.67 
Ekiga  Linux Fedora Core 9 Speex 16 kHz 252.75 
Ekiga  Linux CCRMA Speex 16 kHz 255.31 
Ekiga  Linux CCRMA iLBC 262.95 
Ekiga  Linux Fedora Core 9 iLBC 295.30 
Ekiga  Windows XP G.711 µ-law 467.21 
Ekiga  Windows XP Speex 16kHz 483.03 
Ekiga  Windows XP Speex 8kHz 624.73 
Ekiga  Windows XP iLBC 635.88 
Ekiga  Windows XP G.711 A-law 677.26 

 



Table 2: Perceived quality vs. mouth-to-ear latency 

Latency in ms Perceived Quality 

0-150 Excellent 

150-300 Good 

300-450 Poor 

>450 Unacceptable 

 
Table 3: Latency for Grandstream, in ms 
Codec RTP SRTP 

G.711 µ-law 114.61 121.18 

G.711 a-law 98.86 121.17 

 
Table 4: Mouth-to-ear latency in for Ekiga, in ms 
Codec CCRMA kernel FC9 kernel 

Speex 16kHz 255.31 252.75 

Speex 8 kHz 237.91 242.59 

iLBC 262.95 295.30 

G.711 µ-law 216.88 225.69 

G.711 a-law 209.54 221.85 

G721 204.45 213.07 

 
Table 5: Mouth-to-ear latency reading for Linphone, in ms 
Codec CCRMA kernel FC9 kernel 
Speex 16kHz 173.65 176.98 

Speex 8 kHz 172.96 187.95 

G.711 µ-law 159.21 163.88 

G.711 a-law 160.78 177.02 

 
Table 6: Mouth-to-ear latency for Skype, in ms 
CCRMA Kernel FC9 Kernel 
234.87 226.04 

 
 
 
 
 
 
 
 
 
 
 

Table 7: Mouth-to-ear latency for Twinkle, in ms 
CCRMA Kernel Linux Kernel Codec 
RTP ZRTP RTP ZRTP 

Speex 16 135.63 156.04 136.11 150.43 

Speex16 
VBR  141.12 142.85 142.54 157.86 

Speex8 134.22 134.76 138.23 141.77 

Speex8 VBR 118.22 133.06 124.76 137.32 

G.711 a-law 125.79 128.25 125.84 131.02 

G.711 µ-law 117.96 128.36 127.41 131.23 

 
Table 8: Mouth-to-ear latency reading for Ekiga, in ms 

Codec Latency in ms 

Speex16 483.03 

Speex8 624.73 

iLBC 635.88 

G.711 µ-law 467.21 

G.711 a-law 677.26 

 
Table :9 Latency of clients on Windows XP SP2, in ms 

Clients Latency in ms 

AIM 119.10 

Gtalk 125.28 
Windows 
Messenger 

88.05 

Skype 142.18 

Yahoo 138.20 
 


