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Abstract. The deployment and use of Anomaly Detection (AD) sensomnoft
requires the intervention of a human expert to manuallyocaie and optimize
their performance. Depending on the site and the type didrafreceives, the
operators might have to provide recent and sanitized trgidata sets, the char-
acteristics of expected traffic€. outlier ratio), and exceptions or even expected
future modifications of system’s behavior. In this paper,sugly the potential
performance issues that stem from fully automating the Afsees’ day-to-day
maintenance and calibration. Our goal is to remove the digere on human op-
erator using an unlabeled, and thus potentially dirty, darapincoming traffic.
To that end, we propose to enhance the training phase of ABosenvith a
self-calibration phase, leading to the automatic deteation of the optimal AD
parameters. We show how this novel calibration phase camipéoged in con-
junction with previously proposed methods for trainingadsdnitization resulting
in a fully automated AD maintenance cycle. Our approachiispietely agnostic
to the underlying AD sensor algorithm. Furthermore, thé-calibration can be
applied in an online fashion to ensure that the resulting Addlets reflect changes
in the system’s behavior which would otherwise render timsges internal state
inconsistent. We verify the validity of our approach thrbug series of exper-
iments where we compare the manually obtained optimal peters with the
ones computed from the self-calibration phase. Modeliaffitrfrom two differ-
ent sources, the fully automated calibration show$)&% reduction in detection
rate and #@.06% increase in false positives, in the worst case, when cordgare
the optimal selection of parameters. Finally, our adaptiaglels outperform the
statically generated ones retaining the gains in perfoca@tom the sanitization
process over time.
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1 Introduction

In recent years, network anomalies such as flash crowdsldefrservice attacks, port
scans and the spreading of worms and botnets pose a sightficaat for large-scale
networks. The capability to automatically identify andghase anomalous behavior
both in the network and on the host is a crucial component aftrobthe defense and
failure recovery systems currently deployed in entergrised organizations. Indeed,



Anomaly Detection (AD) sensors are becoming increasinglyytar: host-based [24]
and network-based [16,17,21, 25, 30] intrusion detectymtesns rely heavily on AD
components to maintain their high detection rates and nizatine false positives even
when other, non-AD sensors are involved in the detectiongs®.

A major hurdle in the deployment, operation, and mainteaafcAD systems is
the calibration of these sensors to the protected site ctaistics and their ability to
“adapt” to changes in the behavior of the protected systeun a@n is to automatically
determine the values of the critical system parameterstieateeded for both training
and long-term operation using only the intrinsic properté existing behavioral data
from the protected host. To that end, we first address theitigastage and calibration
of the AD sensor. We use an unlabeled, and potentially datye of the training
set to construct micro datasets. On one hand, these datesetdo be large enough
to generate models that capture a local view of normal beha@in the other hand,
the resulting micro-models have to be small enough to fudigtain and minimize the
duration of attacks and other abnormalities which will sgpe a minority of the micro
datasets. To satisfy this trade-off, we generate datalsatscontain just enough data
so that the arrival rate of new traffic patterns is stable. fifiero-models that result
from each data set are then engaged in a voting scheme intoroEmove the attacks
and abnormalities from the data. The voting process is aatioaily adapted to the
characteristics of the traffic in order to provide separatietween normal and abnormal
data.

The second objective is to maintain the performance leviii®fAD sensors over a
medium or long time horizon, as the behavior of the protesitedundergoes changes or
evolution. This is not an easy task [21] because of the intieliiculty in identifying
the rate of change over time for a particular site. Howevercan “learn” this rate by
continuously building new micro-models that reflect thereat behavior of the system:
every time a new model is added to the voting process, an oltehi® removed in an
attempt to adapt the normality model to the observed chah#sout this adaptation
process, legitimate changes in the systems are flagged ambns by the AD sensor
leading to an inflation of alerts. In contrast, our framewads shown to successfully
adapt to modifications in the behavior of the protected systénally, our approach
is agnostic to the underlying AD sensor, making for a geneaahework that has the
potential to improve the general applicability of AD in theat world.

1.1 Contributions

Our target is to create a fully automated protection medmarthat provides a high
detection rate, while maintaining a low false positive rated also adapts to changes
in the system'’s behavior. In [4, 5], we have explored thedpsbblem and proposed
the sanitization techniques for multiple sites using eroglly determined parameters.
We also presented a distributed architecture for coping Wibhg-lasting attacks and
a shadow sensor architecture for consuming false posi{iwE¥ with an automated
process rather than human attention.
Here, we apply those insights to the problem of providing mtime framework

for achieving the goals stated above. This is a significamaacke over our prior work
which, while not requiring a manually cleaned data set faining, relied on empirically



determined parameters and human-in-the-loop calibratiethods. Along these lines,
our current work provides the following contributions:

— ldentifying the intrinsic characteristics of the trainidgta, such as the arrival rate
of new content and the level of outlielisg( self-calibration)

— Cleansing a data set of attacks and abnormalities by auimatiatselecting an
adaptive threshold for the voting method presented prealydoased on the char-
acteristics of the observed traffic resulting in a sanitizathing data seti. auto-
matic self-sanitization)

— Maintaining the performance we gained by applying the gatibn methods be-
yond the initial training phase and extending them throwgltioe lifetime of the
sensor by continuously updating the self-calibrated atfeésaaitized modeli(e.
self-update)

2 Ensemble Classifier using Time-based Partitions

In [4, 5], we focused on methods for sanitizating the tragniata sets for AD sensors.
This resulted in better AD sensor performanice. igher detection rate while keeping
the false positives lowHere, we attempt to fully automate the construction oktho
models by calibrating the sanitization parameters usiegrtrinsic properties of the
training data. We briefly describe the sanitization techaignd the empirical param-
eters that it requires in order to operate optimally. Indéedleanse the training data
for any AD sensor, we harnessed the idea of an “ensembldfi@ddssdefined by [6]
as “a set of classifiers whose individual decisions are cogtbin some way (typically
by weighted or unweighted voting) to classify new exampl@sie option for gener-
ating such an classifier ensemble is to peruse the availediteng data by splitting
them into smaller data sets used to train instances of theekid@. The inherent as-
sumption is thaattacks and abnormalities are a minority compared to thererset
of training data This is certainly true for training sets that span a longqukof time.
Therefore, we proposed the usetmhe-delimited slice®f the training data. Indeed,
consider a large training data Separtitioned into a number of smaller disjoint subsets
(micro-datasets):

T= {mdl,mdg,...,mdN}, (1)

wheremd; is the micro-dataset starting at tinfie— 1) * g and,g is the granularity for
each micro-dataset.
We can now apply a given anomaly detection algorithm. We ddfie model func-
tion AD to be:
M = AD(T), (2)

whereAD can be any chosen anomaly detection algoritfiirig the training data set,
andM denotes the model produced B for the given training set. This formulation
enables us to maintain the stated principle of being agnastihe inner workings of

the AD sensor - we treat it as a black box whose first task is touta normality model

for a data set provided as input.



We use each of the “epochsid; to compute anicro-modelM; = AD(md;) and
generate the classifier ensemble. We posit that each diatiack will be concentrated
in (or around) a certain time period, affecting only a smatfion of the micro-models:
M; computed for time period; may be poisoned, having modeled the attack vector
as normal data, but modéll;, computed for time period, k& # j is likely to be
unaffected by the same attack. We use this ensemble clagsifiglentifying attacks
and abnormalities in the data. Our expectation is that tteerable will be a more
efficient tool that the sum of its parts, with the effects ¢deks and other abnormalities
contained in individual micro-models rather than contaatiimg the entire data set.

A key parameter of the aforementioned sanitization methddé automatic selec-
tion of the optimal time granularity for different trainirdtata sets. Intuitively, choring
a smaller value of the time granularityalways confines the effect of an individual
attack to a smaller neighborhood of micro-models. Howesxecgessively small values
can lead to under-trained models that also fail to captir@dnmal aspects of system
behavior. One method that ensures that the micro-modelsetdrained is based on
the rate at which new content appears in the training dafla J30s has the advantage
of relying exclusively on intrinsic properties of the traig data set. By applying this
analysis, we can then identify for eaeld; the time granularity that ensures a well-
trained micro-model and thus attaining a balance betweeiwth desiderata presented
above.

We consider the training data set as a sequence of high-orgerms (therefore a
stream of values from a high-dimensional alphabet). Whengssing this data, for any
time windowtw;, we can estimate the likelihodd, of the system seeing new n-grams,
and therefore new content, in the immediate future baseti@characteristics of the
traffic seen so far:

3)

wherer; is the number ohew uniquen-grams in the time windoww; and N; is the
total number ofuniquen-grams seen betweew, andtw;.

Assuming that the data processed by the system is not rarttienvalue ofL;
decreases much faster than the time necessary to exhaspaiteof possible n-grams.
We are interested in determining the stabilization pointwhich the number of new
grams appears at a low rate, thus looking for the the kneeedfiuhve. In order to detect
the stabilization point, we use the linear least squarebodsbver a sliding window of
points (in our experiments we use 10 points) to fit a lib&t) = a + b * t. When the
regression coefficieftapproaches zero (0), we consider that the input has stedbitig
long as the standard deviation of the likelihood is not sigant. In our experiments,
we discovered that we can relax the above assumptions tosatuddvalue lower than
0.01 for the regression coefficiett while the standard deviation of the likelihood is
less tharD.1. The time interval betweetwy andtw; is then set as the desired time
granularity for computing the micro-models as describeuvab

Our experimental corpus, used throughout the experimantsis paper, consists
of 500 hours of real network traffic from each of two hostsywl andlists. www1lis
a gateway to the homepages of students in the Computer $digmartment running
several dozen different scripts, whilsts hosts the Computer Science Mailing Lists.
The two servers exhibit different content, diversity antuwee of data. We partitioned
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Fig. 1. Time granularity detectiofiw| = 600s): a) first 10 micro-models (after each modglis
reset); b) zoom on the first model

the data into three separate sets: two used for training ardused for testing. The
first 300 hours of traffic in each set was used to build micradet® Figure 1 shows the
granularity detection method used to characterize both skits. Figure 1 (a) presents
the time granularity for the first ten micro-modelsis reset immediately after a stabi-
lization point is found, and we begin to generate a new maaled first glance, both
sites display similar behavior, with the level of new contstiabilizing within the first
few hours of input traffic. However, they do not exhibit thengstrend in the likelihood
distribution, L.,.,.,1 presenting more fluctuations. Figure 1 (b) presents a zootheon
first micro-model time granularity detection. The soliddinshow the evolution of the
L; likelihood metric over time(we use n-grams of size n=5). db#ed lines show the
linear least squares approximation for the stabilizatialue oftw;, which is used to
compute the time granularity;.

Figure 2 illustrates the automatically generated time glaities over the firs800
hours of traffic for bothwww1 andlists. The average value foxwwlis g = 8562s
(= 2 hours and 22 minutes), while the standard deviatidi3i®s (=~ 21 minutes). For
lists the average time granularity is= 8452s (=~ 2 hours and 20 minutes), while the
standard deviation i819.8s (=. 13 minutes). In the next section, we will present an
extensive comparison between the performance of the saghithodels that use the au-
tomated parameters versus the ones built using the emjyiriegermined parameters.

3 Adaptive Training using Self-Sanitization

Once the micro-models are built, they can be used, togetitietlve chosen AD sensor,
as a classifier ensemble: a given network packet, which istoldssified as either
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Fig. 2. Automatically determined time granularity

normal or anomalous, can be tested, using the AD sensonsgsich of the micro-
models. One possibility would be to apply this testing schéothe same data set that
was used to build the micro-models (we call this prodesespection. Another option
is to apply the micro-model testing to a second set of théaihjtavailable traffic, of
smaller size. The ultimate goal is to effectively sanitilae training data set and thus
obtain the clean training data set needed for anomaly detect

Once again, we treat the AD sensor at a general level, thésdonsidering a generic
TEST function. For a packeP; part of the tested data set, each individual test against
a micro-model results in a label marking the tested packeteasnormalorabnormal

L;; =TEST(P;, M;) 4)

where the labell; ;, has a value of O if the mod@él/; deems the packe?; normal, or
1if M; deems it abnormal. However, these labels are not yet gézetathey remain
specialized to the micro-model used in each test. In ordgeteeralize the labels, we
process each labeled data set through a voting scheme, a$sidns a final score to
each packet:

N
1
SCORE(P}) = 7z > wi~ Ly (5)
i=1

wherew; is the weight assigned to mod&f; andW = vazl w;. We have investi-
gated two possible strategiessmple votingwhere all models are weighted identically,
andweighted votingwhich assigns to each micro-moddl; a weightw; equal to the
number of packets used to train it. In our previous work weeoled that the weighted



version performs slightly better, so throughout this papewill use the weighted vot-
ing scheme.

The set of micro-models is now ready to be used as an overellepalassifier.
Recall our assumption that only a minority of the micro-mledeill be affected by
any given attack or anomaly. Based on the overall scorersessify the set of micro-
models, we split the training data into two disjoint séfs;,,, containing the packets
deemed as normal, affiy,,,, containing the abnormalities/attacks:

Toan = | J{P; | SCORE(P}) <V} (6)
Tuon = | J{P; | SCORE(P}) >V}, (7)

where V is avoting thresholdused to differentiate between the two sets. Next we will
present our method for automatically computing the valué tfat effectively provides
this separation, based on the characteristics of the tr@ffice the disjoint data sets are
constructed, we can apply the modeling function of the ADsseand obtain compact
representations of both normal and abnormal traffic:

J\/[san = AD(Tsan) (8)
Mabn - AD(Tabn) (9)

3.1 \Voting Threshold Detection

Our goal is to automatically determine the voting thresh®ldin order to establish an
effective value for it, we must first analyze the impact of mting threshold on the
number of packets that are deemed normal. The extreme Jadwesan obvious effect:
a threshold oft” = 0 (very restrictive) means that a packet must be approvedlby al
micro-models in order to be deemed normal. In contrast, estiold ofVV = 1 (very
relaxed) means that a packet is deemed as normal as long asdEpted by at least one
micro-model. In general, for a given vallig¢we defineP(V;) as the number of packets
deemed as normal by the classifiSik{ORE(P;) < V;). The behavior of this function
for intermediate values df; is highly dependent on the particular characteristics ef th
available data. For a particular data set, we can plot thetiomP (V") by sampling the
values ofV at a given resolution; the result is equivalent tocheulative distribution of
the classification scores over the entire data 3&iis analysis can provide insights into
three important aspects of our problem: the intrinsic ctiaréstics of the data (number
and relevance of outliers), the ability of the AD sensor tadeldhe differences in the
data, and the relevance of the chosen time granularity.

To illustrate this concept, we will use as an exampledhewl data set and the
Anagram [30] sensor. Figure 3 shows the result of this amafgs time granularity
ranging from 1 to 100 hours. We notice that, as the time geaitylincreases, the plot
“flattens” towards its upper limit: the classifier loses thulity to discriminate as the
micro-models are fewer in number and also more similar betwbemselves. We also
notice that forl’ very close to 1, all the plots converge to similar valuess tkian
indicator of the presence of a number of packets that ardyhdiffierent from the rest
of the data in the set.
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Fig. 3. Impact of the voting threshold over the number of packetsmégkas normal for different
time granularities

Intuitively, the optimal voting thresholdl is the one that provides the best separa-
tion between the normal data class and the abnormal claspddkets that were voted
normal forVV = 0 are not of interest in the separation problem because tleegaanr-
sidered normal by the full majority of the micro-models ahd thoice oft” does not
influence them. So the separation problem applies to thedegatfor whichlV" > 0;
thus, we normalizé(V) as follows:

(10)

The separation problem can be now considered as the taskdofdithe smallest
threshold (minimizd/) that captures as much as possible of the data (maximiZg).
Therefore, if the functiop(V) — V exhibits a strong global maximum, these two classes
can be separated effectively at the value that providesihismum.

We have applied this method to both data sets consideredsipdper, using Ana-
gram. The profiles of botp(1") (solid lines) andp(V) — V' (dotted lines) are shown
in Figure 4. In each case, we have marked the valug tfiat maximizep(V') — V.

In both graphs, the maximum @{V') — V' corresponds to a “breaking point” in the
profile of p(V') (in general, any changes in the behaviopf) are identified by local
maxima or minima op(V') — V). The value of the global maximum can be interpreted
as a confidence level in the ability of the micro-model cliéessio identify outliers, with
larger values indicating a high discriminative power betwéhe normal data and the
abnormalities/attacks. A low value (and therefore a profile(V') following thex = y
line) shows that the two classes are not distinct. This candieative of a poorly cho-



sen time granularity, an AD sensor that is not sensitive t@tians in the data set, or
both. We consider this to be a valuable feature for a systeaims towards fully
autonomous self-calibration: failure cases should betifieth and reported to the user
rather than silently accepted.
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Fig. 4. Determining the best voting threshold for: (@vwZ (b) lists.

Once the value of the voting threshdldhas been determined, the calibration pro-
cess is complete. We note that all the calibration parambtare been set autonomously
based exclusively on observable characteristics of theitigadata. The process can
therefore be seen as a method for characterizing the cotiiraf AD sensor - train-
ing data set, and evaluating its discriminative ability.

3.2 Analysis of Self-Sanitization Parameters

To evaluate the quality of the models built using the auticaly determined saniti-
zation parameters, we compare their performance agamgtetiormance of the san-
itized models built using empirically determined paramet&here is a fundamental
difference between the two types of models: for the first dreesanitization process
is completely hands-free, not requiring any human intetieen while for the latter,
exhaustive human intervention is required to evaluate tiadityy of the models for dif-
ferent parameter values and then to decide on the apprepasameter values.

There are two parameters of interest in the sanitizatiocgs®: the set of values
for the time granularity and the voting threshold. We wiktbfore compare the models
built using empirically determined parameters againshtbéels built using:

— a fixed time granularity and automatically determined \@timreshold;
— automatically determined time granularities and fixedngthreshold;



— both time granularity and voting threshold determined enattically.

Figures 5 and 6 present the false positive and detectios fatenodels built using
different sanitization parameters. The traffic contais¢ances of phpBB forum attacks
(mirela, cbac, nikon, criman) for both hosts that are aredyzach line shows the re-
sults obtained as the voting threshold was sampled betwaed 0, with the granularity

value either fixed at a given value (usually 1, 3 or 6 hours)aonguted automatically
using the method described earlier.
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We note that the time granularity values empirically fouadexhibit high perfor-
mance were 1-, 3- and 6-hour faxwwwl, respectively 3-hour fdists. For each of these
values, we analyzed the performance of the models built antlautomatically deter-
mined voting threshold. For each line representing a givangarity value, the trian-
gular markers represent the results obtained with the aatioatly determined voting
threshold. We observe that the voting threshold is placdbdersafety zone for which
the 100% detection rate is maintained for batlvwl1andlists, while exhibiting a low
false positive rate< 0.17%).

In the case of automated time granularity (the actual vatwegpresented in fig-
ure 2), we initially explored the performance of the modedsedmined for different
values of the voting threshold, ranging from 0 to 1, with gs8€0.1. In figure 5, for
the same fixed threshold, the detection rate is 94.94% o0R92 @ompared to the 3-
hour granularity (empirical optimal - 100%), while maintaig a low false positive rate

! Throughout the paper, we refer to detection and false afesras rates determined for a
specific class of attacks that we observed in these datagetsote that discovering ground
truth for any realistic data set is currently infeasible.
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(< 0.17%). In figure 6, the results are almost identical to the emallycdetermined
optimal (3-hour granularity).

Table 1. Empirically vs. automatically determined parameters

Parameters www1 lists
FP(%) TP (%) FP(%) TP (%)
N/A(no sanitization) 0.07 0 0.04 0
empirical 0.10 100 0.10 100
fully automated 0.16 92.92 0.10 100

When we use both the set of time granularities and the votireshold determined
automatically, the system is fully autonomous. In figures8 @, this is indicated by
replacing the triangular marker with a star-shaped ondeThblso summarizes the val-
ues of false positive (FP) and true positive (TP) for the/fallitomated sanitized model,
the empirical optimal sanitized model and the non-sardtinedel. With automated pa-
rameters, folists we achieve the same values as in the case of empiricallyrieted
parameters, while fonww1the values differ, but we observe that in the absence of the
sanitization process the detection rate woul®bEhe most important aspect is that the
fully-automated sanitization still significantly imprav¢he quality of the AD models

while setting its parameters based only on the intrinsigattaristics of the data and
without any user intervention.



4 Self-Updating Anomaly Detection Models

We presented a method that generates automatically setizeal AD models. How-
ever, the way users interact with systems can evolve over ¢} as can the systems
themselves. As a result, the AD models that once represéimeedormal behavior of
a system can become obsolete over time. Therefor, the modets to adapt to this
phenomenon, usually referred to@mcept drift As shown in [18], online learning can
accommodate changes in the behavior of computer users, Weiso propose to use
an online learning approach to cope with the concept drifthe absence of ground
truth.

Our approach is to continuously create micro-models anifizath models that in-
corporate the changes in the data. An aging mechanism cappliedhin order to limit
the size of the ensemble of classifiers and also to ensuré¢hhanost current data is
modeled. When a new micro-model)M ., is created, the oldest ong)fy, is no
longer used in the voting process (see figure 7). The age ofi@ihwgiven by the time
of its creation.

) © -
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Every time a new micro-model is generated, a new sanitizedeins created as
well. In the previous section, we used the micro-models intang scheme on a second
data set, which was processed into a sanitized and an abihmiadal. For the online
sanitization we will use what we calhtrospection the micro-models are engaged in
a voting scheme against their own micro-datséthis alternative gives us the ability
to apply the self-sanitization processes in an online &ashwithout having to also
maintain a second dataset strictly for model creation. Waeew sanitized model is
built, it is immediately used for testing the incoming traffintil a new sanitized model
is built.

Concept drift appears at different time scales and our mieodels span a particular
period of time. Thus, we are limited in observing drift thajpaars at scales that are
larger than the time window covered by the micro-datasety. ¢hanges that appear
inside this time window are susceptible to being rejectedhieyvoting process rather
than being accepted as legitimate evolution of the systanoul online sanitization
experiments we use 25 classifiers in the voting process fiomyve: 75 hours of real
time traffic) such that we can adapt to drifts that span maaa #b hours of traffic.

We cannot distinguish between a legitimate change and al&stipng attack that
slowly pollutes the majority of the micro-models. A wellafted attack can potentially

2 We recall that we define a micro-dataset as the training eatased for building a micro-
model.



introduce malicious changes at the same or even smalleofégitimate behavioral
drift. As such, it can not be distinguished using strictlyraspective methods that ex-
amine the characteristics of traffic. However, the attadiees to be aware, guess, or
brute-force the drift parameters to be successful with surchttack. In previous work
[4], we presented a different type of information that cambed to break this dilemma:
alert data from a network of collaborative sites. Anotheteptial solution that we in-
tend to explore as future work, is to employ as feedback médion the error responses
returned by the system under protectierg( the HTTP reply as an error pag&\Ve plan

to explore the conjecture that we can indeed ferret outkstatcertain classes by ob-
serving the error responses returned from different ssesys or software modules.

4.1 Self-Update Model Evaluation

To illustrate the self-update modeling, we first apply thérensanitization process for
the first 500 hours of traffic using Anagram as the base seRgurres 2 and 8 present
the fully automated sanitization parameters: the time @eaity for each micro-model
used in the creation of the new sanitized models, respégtive voting threshold for
each newly created sanitized model.
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Fig. 8. Automatically determined voting threshold famw2landlists

If we didn’t employ a model update mechanism, a sanitizedehatuld be built
only once. Thus, we call the first sanitized modedtatic sanitized modeBecause
in the online sanitization process, the models change moatisly we consider them
dynamic sanitized model$o analyze how the online sanitization performs, in figure 9
we compare the static sanitized model alert rate againstthamic sanitized models
alert rate fomwwl

Figure 9 (a) presents the total number of alerts for eachavdataset tested with
both the static and dynamic models. We first notice that, fesamicro-dates the alert
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Fig. 9. Alert rate forwwwZ: (a) both binary and ascii packets; (b) ascii packets.

rate reaches levels up to 30% for both model types. Afteryairad the alert data, we
determined that the high alert rate was generated not bypabhanges in the system'’s
behavior, but rather by packets containing binary media filéh high entropy. This

type of data would be considered anomalous by AD sensorsasiénagram. Thus

the recommendation is to divert all the media traffic to splézed detectors which can
detect malicious content inside binary media files. Figu(e)9resents the alert rate
after ignoring the binary packets. We can observe that tlsere significant difference
between the alert rate exhibited by the static and dynammitizad models. Thus we
can conclude that there are no fundamental changes ove®@heduir period.

In terms of performance, table 2 presents both the falseiy®sate (including the
binary packets) and the detection rateviarwlandlists. Abrupt changes in the voting
threshold (as shown in figure 8) determine the creation oEmestrictive models, thus
the increase in the detection rate and/or the false posiiee Forwwwlthe signal-to-
noise ratio ie. TP/FP) is improved from 155.21 to 158.66, while fists it decreases
from 769.23 to 384.61.

Table 2. Static model vs. dynamic models alert rate

Model wwwl lists
FP(%) TP(%) FP(%) TP (%)

static model 0.61 94.68 0.13 100
dynamic models 0.62 98.37 0.26 100

We also investigated concept drift appearing at largeressath as weeks and
months, as opposed to days. For this, we tested our methdchffic from the same
site, collected at months difference. Figure 10 presemtalbrt rate for both static and
dynamic models, with and without the binary packets. Vattines mark the boundary
between new and old traffic. We can observe that when charaggeeh in the system,
the alert rate increases for both static and dynamic moAékst the dynamic models



start updating to the new data, there is a drop in the alest baick to levels below 1%.
For the static model, the alert rate stays at about 7%, demading the usefulness of a
self-updating sanitization process.

Figure 11 presents the raw number of alerts that our systamnmseon an hourly
basis. We note that spikes in the number of alerts can rendeuah processing diffi-
cult, especially when there are changes in the system umdtrgtion and the models
gradually adapt to the new behavior. However, manual peicg®of alerts is not the
intended usage model for our framework; our ultimate goabibuild a completely
hands-free system that can further identify the true aftdéickn the false positives. In
previous work [4] we have proposed using a shadow sensoitectire such as the
ones presented in [1, 22] to automatically consume andaialithe false positives. Our
study of computational performance presented in [4] shbnas tvith this architecture,
the false positives can be consumed automatically andarelimage the system under
protection nor flood an operational center with alarms.
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Fig. 10. Concept drift detection fowww1 - alert rate for (a) both binary and ascii packets; (b)
ascii packets. Vertical lines mark the boundary betweenaravold traffic

4.2 Computational Performance Evaluation

To investigate the feasibility of our online technique wedéo analyze the computa-
tional overhead that it implies. Ignoring the initial eff@f building the first batch of
micro-models and the sanitized model, we are interestdteinverhead introduced by
the model update process. Table 3 presents a breakdownajieutational stages of
this process.

The overhead has a linear dependency on the number and ¢hefsize micro-
models. Fomvwwl, we used 25 micro-models per sanitization process and tieeo$i
a micro-model was on average 483 KB (trained on 10.98 MB of ATdquests). The
experiments were conducted on a PC with a 3GHz Intel(R) Xep&PU with 4 cores
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Table 3. Computational performance for the online automated zatitin forwww1

Task Time to process
build and save a new micro-model 7.34s
test its micro-dataset against the older micro-models 1w 12
test the old micro-datasets against the new micro-model 8m5
rebuild and save the sanitized model 3mO03s

and 16G of RAM, running Linux. This level of performance ifmient for monitoring
and updating models on the two hosts that we tested in thisrpap it exceeds the
arrival rate of HTTP requests. In the case of hosts disptalgigher traffic bandwidth,
we can also exploit the intrinsic parallel nature of the catagions in order to speed
up the online update process: multiple datasets can belt@génst multiple models in
parallel, as the test for each dataset-model pair is an erignt operation. In future
work, we will implement a parallel version of this algoritimtest these assumptions.

5 Related work

We have previously explored the feasibility of sanitizingining datasets using empir-
ically determined parameters [4,5]. This paper presenthoas that make the process
automatic, by generating the sanitization parametersbasy on the intrinsic charac-

teristics of the data and by also coping with concept drifie Banitization process can



be viewed as an ensemble method [6] with the restrictiondhatvork is an unsuper-
vised learning technique. We generate AD models from sbééise training data, thus
manipulating the training examples presented to the Iagmethod. Bagging predic-
tors [2] also use a learning algorithm with a training set tansists of a sample of
m training examples drawn randomly for the initial data seDABoost [11] gener-
ates multiple hypothesis and maintains a set of weightstbedraining example. Each
iteration invokes the learning algorithm to minimize theigieed error and returns a
hypothesis, which is used in a final weighted vote.

MetaCost [7] is an algorithm that implements cost-sensitikassification. Instead
of modifying an error minimization classification proceduit views the classifier as a
black box, the same as we do, and wraps the procedure aroanarder to reduce the
loss. MetaCost estimates the class probabilities andetsldie training examples such
that the expected cost of predicting new labels is minimizedally it builds a new
model based on the relabeled data. JAM [27] focuses on dangl@nd evaluating a
range of learning strategies for fraud detection. That vwdsents methods for “meta-
learning” by computing sets of “base classifiers” over vasipartitions or sampling of
the training data. The combining algorithms proposed allectédclass-combiner” or
“stacking” and they are built based on work presented in [8] 81]. For more de-
tails on meta-learning techniques we can also refer theerd¢ach more comprehensive
survey [23].

The perceived utility of anomaly detection is based on treumption that mali-
cious inputs rarely occur during the normal operation ofsyxtem. Because a system
can evolve over time, it is also likely that nevan-maliciousnputs will be seen [10].
Perhaps more troubling, Fogla and Lee [8] have shown howetdesanomaly classifiers
by constructing polymorphic exploits that blend with noirraffic (a sophisticated
form of mimicry attack [28]), and Sonet al.[26] have improved on this technique and
shown that content—based approaches may not work agalimsil@norphic threats,
since many approaches often fix on specific byte patterns [19]

The problem of determining anomaly detection parametere baen studied be-
fore. Anagram [30] determines the model stability autoozly based on the rate at
which new content appears in the training data. pH [24] psegdeuristics for deter-
mining an effective training time, minimizing the humandntention as well. Payl [29]
has a calibration phase for which a sample of test data isunsdiagainst the centroids
and an initial threshold setting is chosen. The threshalelsipdated throughout a sub-
sequent round of testing. In [17], the authors propose abased anomaly detection
mechanism, which uses a number of different models to ctexiae the parameters
used in the invocation of the server-side programs. Forthesdels, dynamic thresh-
olds are generated in the training phase, by evaluating ¢hémum score values given
on a validation dataset. PCA-based techniques for detpatiomalous traffic in IP net-
works became popular in the past years. [21] talks about iffieulty of tuning the
parameters for these techniques and discusses pollutibe oformal subspace.

The concept of updating an AD sensor in order to mirror vatidrges in the pro-
tected system’s behavior is discussed in [18]. Most putiioa which propose updat-
ing the model after significant changes to the environmeatg dtream, or application
use supervised learning techniques, such as [12]. MetHdkis dype maintain an adap-



tive time window on the training data [14], select repreatiw¢ training examples [13],
or weigh the training examples [15]. The key idea is to autically adjust the win-
dow size, the example selection, and the example weightasgpectively, so that the
estimated generalization error is minimized. Consequgethtése methods assume the
existence of labeled data which is not the case for the agifwits that we interested
in analyzing. It seems that anomaly detectors would berrefit fan additional source
of information that can confirm or reject the initial classdfiion, and Pietraszek [20]
suggests using human—supervised machine learning fortsnoirty.

6 Conclusions and Future Work

Anomaly detection sensors have become an integral parteohétwork and host-
based defenses both for large-scale network and indivigsets. Currently, AD sen-
sors require human operators to perform initial calibratibthe training parameters to
achieve optimal detection performance and minimize theefpbsitives. In addition, as
the protected system evolves over time, the sensor’s itstate becomes more and
more inconsistent with the protected site. This discrearimetween the initial normal-
ity model and the current system behavior eventually retter AD sensor unusable.

To amend this, we propose a fully automated framework thevalthe AD sensor
to adapt to the characteristics of the protected host duhiedraining phase. Further-
more, we provide an online method to maintain the state osémsor, bounding the
deviations due to content or behavioral modifications thatcensistent over a period
of time. Without this adaptation process and the generatfarew normality models
which we call “dynamic”, legitimate changes in the systemesftagged as anomalous
by the AD sensor leading to an inflation of alerts. Our experital results show that,
compared to the manually obtained optimal parameterspihegutomated calibration
has either identical, or slightly reduced (by)8%) detection rate and@06% increase
in false positives. Furthermore, over a very large time wincur dynamic model gen-
eration maintains a low alert rateé%) as opposed to &% for a system without updates.

We believe that our system can help alleviate some of thelesigds faced as
anomaly detection is increasingly relied upon as a firstsctiefense mechanism. AD
sensors can help counter the threat of zero-day and polynwoatacks; however, the
reliance on user inputis a potential roadblock to their @pgpibn outside of the lab and
into commercial off-the-shelf software. In this paper wedtaken a number of steps
towards AD sensors that enable true hands-free deploymdrderation.

In the future, we intend to establish this feature of our feamork by using more
sensors, that either model data in a different wag.Payl [29], libanomaly [17], Spec-
trogram [25]) or target different applications.§.pH [24]). Despite the best efforts of
the research community, no AD sensor has been proposedddiddtcan detect all
attack types while maintaining a low alert rate. A possilpéan, which we intend to
further explore in the future, is to combine the strengthsnoftiple sensors under a
general and unified framework, following the directiong&d out in this study.

Finally, the methods presented harness the informatiotagwed in the traffic (or
behavior in general) of the protected host. Large-scaléementations of AD systems
can further benefit by exchanging data, such as micro-modsbmitized and abnormal



models, across different sites. Therefore, the tempomadsion of our online sanitiza-
tion process can be complemented by a spatial one. We amndyrin the process of
establishing an information exchange framework that cailitiete these experiments;
we plan to report these result in a future study.
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