
Semantic Ranking and Result Visualization for Life
Sciences Publications

Columibia University Computer Science Technical Report cucs-028-09

Julia Stoyanovich
Columbia University
New York, NY, USA

jds1@cs.columbia.edu

William Mee
Columbia University
New York, NY, USA

wjm2107@columbia.edu

Kenneth A. Ross∗

Columbia University
New York, NY, USA

kar@cs.columbia.edu

ABSTRACT
An ever-increasing amount of data and semantic knowledge in the
domain of life sciences is bringing about new data management
challenges. In this paper we focus on adding the semantic dimen-
sion to literature search, a central task in scientific research. We
focus our attention on PubMed, the most significant bibliographic
source in life sciences, and explore ways to use high-quality seman-
tic annotations from the MeSH vocabulary to rank search results.
We start by developing several families of ranking functions that
relate a search query to a document’s annotations. We then propose
an efficient adaptive ranking mechanism for each of the families.
We also describe a two-dimensional Skyline-based visualization
that can be used in conjunction with the ranking to further improve
the user’s interaction with the system, and demonstrate how such
Skylines can be computed adaptively and efficiently. Finally, we
evaluate the effectiveness of our ranking with a user study.

1. INTRODUCTION
Many scientific domains, most notably the domain of life sci-

ences, are experiencing unprecedented growth. The recent com-
plete sequencing of the Human Genome, and the tremendous ad-
vances in experimental technology are rapidly bringing about new
scientific knowledge. The ever-increasing amount of data and se-
mantic knowledge in life sciences requires the development of new
semantically-rich data management techniques that facilitate scien-
tific research and collaboration.

Literature search is a central task in scientific research.In their
search users may pursue different goals. For example, a user may
need an overview of a broad area of research that is outside his main
field of expertise, or he may need to find new publications in an area
in which he is an expert. PubMed1 is perhaps the most significant
bibliographic source in the domain of life sciences, with over 18
million articles at the time of this writing. PubMed is supported by
the National Center for Biotechnology Information (NCBI), a joint
effort of the US National Library of Medicine and of the National
Institute of Health. Indexed articles go back to 1865, and the num-
ber of articles grows daily, and increases steadily from year to year.
PubMed articles are manually annotated with terms from the Med-
ical Subject Headings (MeSH) controlled vocabulary, maintained
by the National Library of Medicine. MeSH organizes term de-
∗This research was supported by National Institute of Health grant
5 U54 CA121852-05.
1www.pubmed.gov

scriptors into a hierarchical structure, allowing searching at various
levels of specificity. The 2008 version of MeSH contains 24,767
term descriptors that refer to general concepts like Anatomy and
Mental Disorders, as well as to specific concepts like Antiphospho-
lipid Syndrome and Cholesterol.

MeSH terms are classified into an is-a polyhierarchy: the hier-
archy defines is-a relationships among terms, and each term has
one or more parent terms [6]. Figure 1 presents a portion of MeSH
that describes autoimmune diseases and connective tissue diseases.
The hierarchy is represented by a tree of nodes, with one or sev-
eral nodes mapping to a single term label. For example, the term
Rheumatic Diseases is represented by the node C17.300.775.099.

Interestingly, the MeSH hierarchy is scoped: two tree nodes
that map to the same term label may not always induce isomor-
phic subtrees. The term Rheumatoid Arthritis (RA) maps to two
nodes in Figure 1, and induces subtrees of different sizes. Node
C20.111.199 represents the autoimmune aspect of RA and induces
a subtree of size 5, while C17.300.775.099 refers to RA as a rheumatic
disease, and induces a subtree of size 7. (Subtree size is noted next
to the name of the node.) Scoping is an important technique for
modeling complex polyhierarchies. Placing a concept in several
parts of the hierarchy models different aspects of the concept, while
accommodating different context in different parts of the hierarchy
adds to the expressive power and reduces redundancy.

In MeSH it is almost always the case that if one term is a de-
scendant of another in one part of the hierarchy, it will not be an
ancestor of that same term in a different part of the hierarchy.2

PubMed and other NCBI-managed repositories can be searched
with Entrez, the Life Sciences Search Engine3. Entrez implements
sophisticated query processing, allowing the user to specify con-
junctive or disjunctive boolean semantics for the search query, and
to relate the search terms to one or several parts of the document:
title, MeSH annotations, text of the document, etc. In order to im-
prove recall, Entrez automatically expands query terms that are re-
lated to MeSH annotations with synonymous or near-synonymous
terms. For example, the simple query mosquito will be transformed
by Entrez to “culicidae”[MeSH Terms] OR “culicidae”[All Fields]
OR “mosquito”[All Fields]. Term synonymy information is also
provided by MeSH. Entrez also expands the query with descen-
dants of any MeSH terms. For example, the query “blood cells”[MeSH
Terms] will match articles that are annotated with “blood cells” or
with “erythrocytes”, “leukocytes”, or “hemocytes”.

The need to improve recall differentiates bibliographic search
2There is a single exception: Ethics is the parent of Morals in the
Humanities branch of the hierarchy, while Morals is the parent of
Ethics in the Behavior and Behavioral Mechanisms branch.
3www.ncbi.nlm.nih.gov/sites/gquery

Figure 1: Portion of the MeSH polyhierarchy.

from general web search. In web search it is often assumed that
many documents equivalently satisfy the user’s information need,
and so high recall is less important than high precision among the
top-ranked documents. On the other hand, in bibliographic search
the assumption (or at least the hope) is that every scientific arti-
cle contributes something novel to the state of the art, and so no
two documents are interchangeable when it comes to satisfying
the user’s information need. In this scenario the boolean retrieval
model, such as that used by Entrez, guarantees perfect recall and is
the right choice.

However, there is an important common characteristic of bibli-
ographic and general web search: many queries return hundreds,
or even thousands, of relevant results. Query expansion techniques
that maximize recall exacerbate this problem by producing yet more
results. For example, the fairly specific query Antiphospholipid
Antibodies AND Thrombosis, which looks for information about
a particular clinical manifestation of Antiphospholipid syndrome,
returned 3455 matches using the default query translation in June
2009. A more general query that looks for articles about connec-
tive tissue diseases that are also autoimmune returns over 120,000
results.

Because so many results are returned per query, the system needs
to help the user explore the result set. Entrez currently allows the
results to be sorted by several metadata fields: publication date, first
author, last author, journal, and title. This may help the user look
up an article with which he is already familiar (i.e., knows some
of the associated metadata), but does not support true information
discovery.

A useful and well-known way to order results in web information
retrieval is by query relevance. Retrieval models such as the Vector
Space Model [1] have the query relevance metric built in, while
the boolean retrieval model does not. In this paper we propose to
measure the relevance of a document to the query with respect to
the MeSH vocabulary. We illustrate some semantic considerations
and challenges with an example.

EXAMPLE 1.1. Consider the Entrez query “Connective Tissue

Diseases” [MeSH Terms] AND “Autoimmune Diseases” [MeSH
Terms], evaluated against PubMed. Figure 1 represents these query
terms in the context of the MeSH hierarchy. The query will match
all documents that are annotated with at least one term from the
induced subtrees of the query terms.

One of the results, a document with pmid = 17825677, is a
review article that discusses the impact of autoimmune disorders
on adverse pregnancy outcome. It is annotated with the query
terms “Autoimmune Diseases” and “Connective Tissue Diseases”,
and also with several terms from the induced subtrees of the query
terms: “Arthritis, Rheumatoid”, “Lupus Erythematosus, Systemic”,
“Scleroderma, Systemic”, and “Sjögren’s Syndrome”. The arti-
cle is also annotated with general terms that are not related to the
query terms via the hierarchy: “Pregnancy”, “Pregnancy Compli-
cations”, “Female”, and “Humans”.

Another result, an article with pmid = 19107995, describes
neuroimaging advances in the measurement of brain injury in Sys-
temic Lupus. This article matches the query because it is annotated
with “Lupus Erythematosus, Systemic”, which is both a connective
tissue disease and an autoimmune disease. The article is also an-
notated with broader terms “Brain”, “Brain Injuries”, “Diagnostic
Imaging”, and “Humans”.

Based on this example, we observe that, while both articles are
valid matches for the query, they certainly do not carry equal query
relevance. The first article covers the fairly general query terms, as
well as several specific disorders classified below the query terms
in MeSH. In contrast, the second article answers a limited portion
of the query, since it focuses on only one particular disorder. In this
work we propose several ways to measure semantic relevance of a
document to a query, and demonstrate how our semantic relevance
can be computed efficiently on the scale of PubMed and MeSH.

An important dimension in data exploration, particularly in a
high-paced scientific field, is time. An article that contributes to
the state of the art at the time of publication may quickly become
obsolete as new results are published. Semantic relevance mea-
sures of this paper can be used to retrieve ranked lists of results,

or they can be combined with data visualization techniques that
give an at-a-glance overview of thousands of results. We develop a
two-dimensional skyline visualization that plots relevance against
publication date, and show how such skylines can be computed ef-
ficiently on the large scale.

Ranking that takes into account hierarchical structure of the do-
main has been considered in the literature [10, 8, 4]. Such ranking
typically relates two terms via a common ancestor; see Section 6
for a discussion of these methods. When terms appear in the hierar-
chy in multiple places, with subtly different meanings, it is unclear
how such distance-based measures should be generalized. Instead,
in this paper we develop new families of ranking measures that
are aimed specifically at ranking with scoped polyhierarchies like
MeSH, where terms may occur in multiple (partially replicated)
parts of the hierarchy. We argue that the semantics of a term is best
captured by its set of descendants across the whole hierarchy, and
develop measures of relatedness that depend on the nature of the
overlap between these sets of descendants.

Computing similarity based on sets of descendants is algorith-
mically more complex than simpler graph distance measures. We
pay particular attention to efficiency, and provide an extensive ex-
perimental evaluation of our methods with the complete PubMed
dataset and the full MeSH polyhierarchy, demonstrating that inter-
active response times are achievable.

The rest of this paper is organized as follows. We formalize se-
mantics of query relevance for scoped polyhierarchies in Section 2.
We present the data structures and algorithms that implement the
query relevance measures on the large scale in Section 3. Section 4
describes an evaluation of efficiency, and Section 5 presents a user
study. We present related work in Section 6, and conclude in Sec-
tion 7.

2. SEMANTICS OF QUERY RELEVANCE
We now formalize the data model, and define the semantics of

several similarity measures, using the polyhierarchy in Figure 2 for
demonstration. Term labels are denoted by letters A, B, C, . . ., and
nodes are denoted by numerical ids 1, 2, 3, Term > represents
the root of the hierarchy.

2.1 Motivation
We wish to assign a score to documents whose MeSH terms

overlap with the query terms. Our notion of “overlap” includes
cases where a document term represents a sub-concept of a query
term. If a query is {A, B} in Figure 2, and the document contains
MeSH terms C and D, then both C and D contribute to the overlap
because they are sub-concepts of A and B.

Our first similarity measure, which we formalize in Section 2.3,
simply counts the number of elements in common between the de-
scendants of the MeSH terms in the query and those in the docu-
ment. According to this measure, concepts such as C that appear
in multiple parts of the hierarchy count once. However, we might
want to count C more than once because it contributes to the match-
ing of both query terms.

The alternative of simply counting every occurrence of a term
label can be naive. Suppose that the query is {C} and that the
document mentions term G but not C or H . One could argue that
double-counting G is inappropriate, since the only reason we have
two G instances is because C appears in multiple parts of the hier-
archy. Within the context of C, G only appears once. This motivates
us to only double-count when the ancestor concept in the query is
different. We develop a similarity measure that models this intu-
ition in Section 2.4.

The measures mentioned so far are sensitive to the size of the hi-

Figure 2: A sample scoped polyhierarchy.

erarchy. Because A has more descendants than B, an intermediate-
level match in the A subtree may give a much larger score than a
high-level match in the B subtree. The effect of this bias would
be that highly differentiated concepts would be consistently given
more weight than less differentiated concepts. To overcome this
bias, we consider a scoring measure in Section 2.5 that weights
matches in such a way that each query term contributes equally to
theoverall score.

2.2 Terminology
DEFINITION 2.1. A scoped polyhierarchy is a tupleH = {T ,N ,

ISA,L}, where T is a set of term labels, N is a set of nodes,
ISA : N → N is a many-to-one relation that encodes the gener-
alization hierarchy of nodes, and L : N → T associates a term
with each node. When ISA(n, n′) holds, we say n′ is a parent of
n, and n is a child of n′. Every node except the root has exactly
one parent node. n′ is an ancestor of n if (n, n′) is in the reflexive
transitive closure of ISA. (Thus a node is its own ancestor and its
own descendant.)

For a term t ∈ T , we denote by N(t) the set of nodes n with
label t (i.e., having L(n) = t). For a set of terms T ⊆ T , we
denote by N(T) the set of nodes in

S

t∈T
N(t). Likewise, for a set

of nodes M ⊆ N , we denote by L(M) the set of labels of nodes
in M .

DEFINITION 2.2. The node-scope of a term t ∈ T , denoted by
N∗(t), is the set of nodes that have an ancestor with the label t:
N∗(t) = {n|∃n′, t = L(n′) ∧ ancestor(n′, n)}.

The node-scope of a set of terms T ⊆ T , denoted by N∗(T), is
the set of nodes that have an ancestor with the label in T : N∗(T) =
S

t∈T
N∗(t).

In Figure 2, the node-scope of the term C is N∗(C) = {3, 8, 9, 6, 11},
the same as the node scope of a set {C, G, H}.

DEFINITION 2.3. The term-scope of a term t ∈ T , denoted by
L∗(t), is the set of term labels that appear among the nodes in
N∗(t): L∗(t) =

S

n∈N∗(t) L(n).
We define the term-scope of a set of terms T ⊆ T analogously,

and denote it by L∗(T) =
S

t∈T
L∗(t).

The term-scope of the term C in Figure 2 is L∗(C) = {C, G, H},
while L∗({B, C}) = {B, C, G, H,F}.

We use node-scope and term-scope to compare two sets of terms
D and Q, where D is the set of terms that annotate a PubMed
document, and Q is the set of query terms.

2.3 Set-Based Similarity
Our first measure, term similarity, treats the sets D and Q sym-

metrically, and quantifies how closely the two sets are related by
considering the intersection of their term-scopes:

TermSim(D,Q) = |L∗(D) ∩ L
∗(Q)| (1)

Term similarity may be used on its own, or it may be normalized
by another quantity, changing the semantics of the score. For exam-
ple, normalizing term similarity by the size of the term-scope of the
query expresses the extent to which the query is answered by the
document. We refer to this quantity as term coverage. Dividing the
term similarity by the term-scope of the document expresses how
specific the document is to the query. We refer to this quantity as
term specificity. Finally, we may divide term coverage by the size
of the union of the two term scopes, deriving Jaccard similarity.

TermCoverage(D,Q) =
|L∗(D) ∩ L∗(Q)|

|L∗(Q)|
(2)

TermSpecificity(D, Q) =
|L∗(D) ∩ L∗(Q)|

|L∗(D)|
(3)

TermsJaccard(D,Q) =
|L∗(D) ∩ L∗(Q)|

|L∗(D) ∪ L∗(Q)|
(4)

2.4 Conditional Similarity
Set-based similarity treats the query and the document symmet-

rically, although it may prioritize one set over the other in the final
step, as is done in term coverage and term specificity. Conditional
similarity prioritizes the query over the document from the start, by
placing the term-scope of the document within the context of the
term-scope of the query.

As we argued in Section 2.1, simply counting the paths between
two terms can be naive, as we may be double-counting due to struc-
tural redundancy in the hierarchy. We thus define conditional term-
scope by using ancestor-descendant pairs of terms, not full term
paths. In the following definition, q is a query term and d is a doc-
ument term.

DEFINITION 2.4. Let d and q be terms, and let Pd,q be the set
of node pairs (nd, nq) satisfying the following conditions:

• nd ∈ N∗(d), i.e., nd has an ancestor with label d;

• nq ∈ N∗(q), i.e., nq has an ancestor with label q;

• nq is an ancestor of nd.
Conditional term-scope of d given q, denoted by L∗(d|q), is the set
of label pairs (L(n1), L(n2)), where (n1, n2) ∈ Pd,q .

Conditional term-scope of a set D given a set Q, denoted L∗(D|Q),
is the union of conditional term-scopes of all d ∈ D given all
q ∈ Q: L∗(D|Q) =

S

d∈D,q∈Q L∗(d|q).

For example, L∗(G|C) = {(C, G), (G, G)}, while L∗(G|{A, B}) =
{(A, G), (B, G), (C, G), (G, G)}. Note that L∗(q|q) enumerates
all pairs of terms (s, t), where s, t ∈ L∗(q) such that there is a
term-path from a node labeled with t to a node labeled with s. So,
L(C|C) = {(C, G), (C, H), (C, C), (G, G), (H,H)}.

We define conditional similarity as:

CondSim(D, Q) = |L∗(D|Q)| (5)

2.5 Balanced Similarity
Balanced similarity is a refinement of conditional similarity that

balances the contributions of query terms to the score.

BalancedSim(D, Q) =
1

|Q|

X

q∈Q

CondSim(D, q)

CondSim(q, q)
(6)

The relative contribution of each query term q to the score is
normalized by the number of terms in the query, |Q|. For each term
q, we compute the conditional similarity between the document D

and the term q (as per Equation 5), and normalize this value by the
maximum possible conditional similarity that any document may
achieve for q, which is CondSim(q, q).

3. EFFICIENT COMPUTATION OF QUERY
RELEVANCE

In this section we describe the data structures and algorithms that
support computing similarity measures of Section 2 at the scale
of PubMed and MeSH. We do all processing in main memory to
achieve interactive response time, and must control the size of our
data structures so as to not exceed reasonable RAM size. Our data
structures are at most linear in the size of PubMed, and at most
quadratic in the size of MeSH.

We maintain annotations and publication date of PubMed arti-
cles in a hash table Articles, indexed by pmid. The version of
PubMed to which we were given access by NCBI consists of about
17 million articles, published up to September 2007, and we are
able to store publication date and annotations of all these articles in
RAM. There are between 1 and 96 annotations per article, 9.7 on
average.

In this work we focus on queries that are conjunctions or disjunc-
tions of MeSH terms, and rely on the query processing provided by
Entrez to retrieve query matches. We do not discriminate between
AND and OR queries for the purposes of ranking. This is an item
for future work. A query is represented in our system by a set of
MeSH terms: Query : {t1, . . . , tm}.

3.1 Exact Computation
We maintain the following data structures that allow us to com-

pute values for the relevance metrics in Section 2. There are 24,767
terms and 48,442 nodes in MeSH 2008, the version of MeSH that
we use in this work. For each term t ∈ T , we precompute and
maintain the following information in one or several hash tables,
indexed on the term label.

• N(t), the set of nodes that have t as its label. An average
term labels 2 nodes. 50% of the terms label only a single
node. The term WAGR Syndrome labels 19 nodes, the most
of any term in MeSH.

• L∗(t), the set of term labels in the term-scope of t. (see
Definition 2.3). An average MeSH term has 6.4 terms in its
term-scope. The term Amino Acids, Peptides, and Proteins
has the most terms in its term-scope: 2902. Recall that t ∈
L∗(t); 67% of the terms have only their own label in their
term-scope.

• N∗(t), the set of nodes in the node-scope of t. (see Defi-
nition 2.2). On average |N∗(t)| = 9.6. At least 1 and at
most 6458 nodes are in the node-scope of any term in MeSH.
The term Amino Acids, Peptides, and Proteins has the largest
node-scope.

• |L∗(t|t)|, the size of conditional term scope of t., an integer
value (see Definition 2.4).

For each node n ∈ N , we maintain:

• L(n), the term label of n.

• The node-path from the top of the hierarchy to n. The av-
erage length of a node-path is 5, the longest path has length
12. (While one could traverse the hierarchy to construct this
path as needed, it saves time to have all paths precomputed,
and the space investment is modest.)

Algorithm 1 Procedure TermSim
Require: Q = {q1 . . . qn}, R = {pmid1 . . . pmidm}
1: Compute L∗(Q) =

S

i L∗(qi)
2: for pmid ∈ R do
3: Retrieve D = {d1 . . . dm} from Articles
4: Compute L∗(D) =

S

i L∗(di)
5: termSim(D, Q) = |L∗(D) ∩ L∗(Q)|

6: end for

Algorithm 1 describes how term similarity (Eq. 1) is computed
for a query Q and a set of documents R. Consider what is involved
in the computation of the term-scope of a set of terms, as is done
in lines 1 and 4 of the algorithm for the sets Q and D. To compute
the term-scope of a term t (lines 1 and 4), we retrieve L∗(t) with a
hash table lookup. Each lookup returns a set of terms, and the size
of each such set is linear in the size of the hierarchy. In practice,
for terms that denote general concepts, L∗(t) may contain hun-
dreds, or even thousands of term labels, while for terms that denote
very specific concepts, L∗(t) will contain only a handful of labels.
Next, we take a union of the term-scopes of individual terms, which
requires time linear in the size of the input data structures in our im-
plementation. This computation happens once per query, and once
for every document. Finally, having computed the term-scope of
the document, we determine the intersection L∗(D)∩L∗(Q) (line
5). This operation takes time linear in the size of the data structures,
and is executed once per document.

Algorithm 2 computes conditional similarity (Eq. 5) for a query
Q and a document D. Term-scope and node-scope of Q are com-
puted on lines 1 and 2. Then, for each document, we compute DQ,
the set of its terms that are in the term-scope of the query, and re-
trieve the node-scope of DQ (lines 5 and 6). We then find all pairs
of nodes n′ ∈ N∗(Q) and n ∈ N∗(DQ) such that there is a path
from n′ to n. Each document is processed in time proportional to
|N∗(Q)|∗|N∗(DQ)|, which can be high for queries and documents
with large node-scopes.

Algorithm 3 computes balanced similarity (Eq. 6) by consider-
ing each query term q separately, and invoking CondSim for each
document. Computing conditional similarity one query term at a
time has lower processing cost than the corresponding computa-
tion for the query as a whole, as is done in CondSim, as we will see
during our experimental evaluation.

3.2 Computation with Score Upper-Bounds
In the previous section we saw that evaluating similarity of a set

of documents with respect to a query can be expensive, particularly
for queries and documents that are annotated with general MeSH
terms. We now show how score upper-bounds can be computed
more efficiently than exact scores.

Score upper-bounds can be used to limit the number of exact
score computations in ranked retrieval, where only k best entries

Algorithm 2 Procedure CondSim
Require: Q = {q1 . . . qn}, R = {pmid1 . . . pmidm}
1: Compute L∗(Q) =

S

i L∗(qi)
2: Compute N∗(Q) =

S

i N∗(qi)
3: for pmid ∈ R do
4: Retrieve D = {d1 . . . dm} from Articles
5: Compute DQ = D ∩ L∗(Q)
6: Compute N∗(DQ)
7: S = ∅
8: for n′ ∈ N∗(Q) do
9: for n ∈ N∗(DQ) do

10: if ancestor(n′, n) then
11: S = S ∪ (L(n′), L(n))
12: end if
13: end for
14: end for
15: condSim(D,Q) = |S|

16: end for

Algorithm 3 Procedure BalancedSim
Require: Q = {q1 . . . qn}, R = {pmid1 . . . pmidm}
1: Compute weighti = |Q| ∗ L∗(qi|qi) for each qi ∈ Q
2: for pmid ∈ R do
3: score = 0
4: for qi ∈ Q do
5: score = score + weighti ∗ CondSim(qi, pmid)
6: end for
7: balancedSim(D, Q) = score

8: end for

are to be retrieved from among N documents, and k � N . If
score upper-bounds are cheaper to compute than actual scores, then
we can compute score upper-bounds for all documents, order doc-
uments in decreasing order of score upper-bounds, and compute
exact score values as needed, until the k best documents have been
retrieved. Processing, and thus exact score computation, can stop
when the score upper-bound of the document being considered is
lower than the actual score of the current kth best document. In
addition to computing score upper-bounds for all documents, and
evaluating exact scores for M documents, where k ≤ M ≤ N , the
algorithm must perform a certain number of sorts, to determine the
current kth score at every round.

Consider again the computation of term similarity in Algorithm 1,
which computes the value of the expression in Equation 1. We can
transform this equation using distributivity of set intersection over
set union, and observe that a natural upper-bound holds over the
value of term similarity:

TermSim(D,Q) = |(
[

d

L
∗(d)) ∩ (

[

q

L
∗(q))| =

|
[

d,q

L
∗(d) ∩ L

∗(q)| ≤
X

d,q

|L∗(d) ∩ L
∗(q)|

The value of TermSim(D, Q) cannot be higher than the sum
of the sizes of pair-wise intersections of term-scopes of terms from
D with terms from Q. To enable fast computation of this upper
bound, we precompute |L∗(s) ∩ L∗(t)| for all pairs of terms s

and t. The number of entries in this data structure, which we call
PairwiseTermSim, is quadratic in the size of MeSH. In practice, we
only need to record an entry for the terms s and t if L∗(s)∩L∗(t) 6=
∅. There are over 613 million possible pairs of MeSH terms, but
only 158,583 pairs have a non-empty intersection of their term-
scopes and are recorded in the PairwiseTermSim data structure.

For a query of size |Q| and a document of size |D|, we need to

look up |Q| ∗ |D| entries in PairwiseTermSim, and compute a sum
of the retrieved values. The difference between the size of a set of
terms, and the size of the term-scope of that set can be quite dra-
matic, and so computing upper-bounds is often much cheaper than
computing actual scores. We will demonstrate this experimentally
in Section 4.

Let us now consider how score upper-bounds can be computed
for conditional similarity (Eq. 5), which counts the number of pairs
of terms q ∈ L∗(Q) and d ∈ L∗(D) such that there is a node-
path from q → d. This quantity is bounded by the sum of sizes of
L∗(d|q) for all pairs of terms d and q.

CondSim(D, Q) = |
[

d,q

L
∗(d|q)| ≤

X

d,q

|L∗(d|q)|

To facilitate the computation of this upper-bound, we store the
value of L∗(s|t) for all pairs of terms s and t with intersecting term-
scopes. We call this data structure PairwiseCondSim. This data
structure has the same number of entries as PairwiseTermSim.

Finally, for balanced similarity, we observe that:

BalSim(D, Q) =
1

|Q|

X

q

L∗(D|q)|

L∗(q|q)
=

1

|Q|

X

q,d

L∗(d|q)

L∗(q|q)

We re-use the PairwiseCondSim data structure for the computa-
tion of score-upper bounds for balanced similarity. We evaluate the
performance improvements achieved by using score upper-bounds
for ranked retrieval in Section 4.

3.3 Adaptive Skyline Computation with Upper-
Bounds

As we argued in the Introduction, it is sometimes important to
present more than a handful of query results. We propose to use
a two-dimensional skyline visualization [3] that is based on the fa-
miliar concept of dominance. A point in multi-dimensional space
is said to belong to the skyline if it is not dominated by any other
point, i.e., if no other point is as good or better in all dimensions,
and strictly better in at least one dimension.

A skyline contour is defined inductively as follows:

• A point belongs to the first skyline contour if and only if it
belongs to the skyline of the whole data set.

• A point belongs to the kth contour if and only if it belongs to
the skyline of the data set obtained by removing points from
the first through k − 1st contours.

Skyline contours are useful for highlighting points that are close to
the skyline, and that might be of interest to the user.

Publication date is a natural attribute in which to consider bibli-
ography matches, and we use it as the x-axis of our visualization.
The y-axis corresponds to one of the similarity measures described
in Section 2. Figure 3 shows a skyline of results for the query G-
Protein-Coupled receptors, for term specificity with 5 skyline con-
tours. Points of highest quality are close to the origin on the x-axis
and away from the origin on the y-axis. Points on the first contour
are marked in white, points on the second contour are beige, and
points on the last contour are red. When points are selected using
the mouse, a window showing the full citation is displayed.

Our prototype implementation is running outside of the NCBI
infrastructure, and we are using the Entrez query API, eUtils,
to evaluate queries, and receive back ids of PubMed articles that
match the query. The eUtils API can be asked to return query

Figure 3: Two-dimensional skyline representation of results for
the query G-Protein-Coupled receptors. Please view on a color
display or on a color printer.

results in order of publication date. NCBI requests that large re-
sult sets be retrieved in batches, so as not to overload their sys-
tem. In the remainder of this section we describe a progressive
algorithm that computes a two-dimensional skyline of results using
score upper-bounds.

We implemented a divide-and-conquer algorithm based on the
techniques in [2]. Our algorithm processes results one batch at a
time, with batches arriving in order of article publication date, from
more to less recent. Articles within each batch are also sorted on
publication date, and we use this sort order as basis for the divide-
and-conquer.

The algorithm receives as input a sorted list of documents, a
query Q, an integer k that denotes the number of skyline contours
to be computed, a similarity measure Sim, and SkylineSoFar: a
list of documents, sorted on publication date, that were identified as
belonging to the skyline when processing previous batches, along
with the contour number. Note that a result that was assigned to
the skyline during a previous batch will remain on the skyline, with
the same contour number, for the remainder of the processing. This
is because documents are processed in sorted order on publication
date.

The divide-and-conquer algorithm processes the batch by recur-
sively dividing the points along the median on the x-axis. When all
points within an x-interval share the same x value, the algorithm
sorts the points on the y coordinate, identifies contour points as the
k best points in the interval, and assigns to each of the top-k points
a contour number. Let us refer to this sub-routine as AssignLinear-
Dominance. Contour number assignments are then merged across
intervals, from left to right, and contour numbers of points on the
right are adjusted. The SkylineSoFar data structure is supplied
to the left-most interval when a batch is processed.

The algorithm assumes that the values of the x and the y coor-
dinates are readily available for each document. However, as we
discussed in Section 3, the similarity score of the document may be
expensive to compute, while the score upper-bound may be com-
puted more efficiently. We therefore modify the AssignLinearDom-

Figure 4: System architecture.

queries 150
size of L∗(Q) 2 to 454, avg 43, med 22
results 1,024 to 179,450, avg 28,079, med 9,562

Table 1: Characteristics of the query workload.

inance subroutine to use score upper-bounds as in Section 3.2. Ex-
act scores are still computed, but the number of these computations
is reduced. Using score upper-bounds allows us to compute the
two-dimensional skyline more efficiently, as we demonstrate next.

4. EXPERIMENTAL EVALUATION
In this section we present our experimental results that quan-

tify the cost of exact score computation, and demonstrate the im-
provement achieved by using score upper-bounds in the computa-
tion. Techniques for this processing were described in Sections 3.2
and 3.3. Experiments in this section consider the run-time perfor-
mance of three measures: term similarity, conditional similarity,
and balanced similarity.

In the first set of our experiments, we study the advantage of
using score upper-bounds for ranked list retrieval, for the various
values of k. In the second set of experiments, we consider the per-
formance improvement that is achieved when score upper-bounds
are used for skyline computation, for various settings of the number
of contours.

4.1 Experimental Platform
We evaluated the performance of our methods on a Java pro-

totype. Figure 4 describes the system architecture and the data
flow. Processing is coordinated by the Query Manager that re-
ceives a query from the user and communicates with PubMed via
the eUtils API (arrow 1). Results are returned in batches, sorted
in decreasing order of publication date (arrow 2). Query Manager
receives results one batch at a time and communicates with the In-
Memory DB, which implements the data structures and algorithms
of Section 3. In-Memory DB and Query Manager communicate via
Java RMI (arrows 3, 4). In-Memory DB runs on a 32-bit machine
with a dualcore 2.4GHz Intel CPU and 4GB of RAM, with Red-
Hat EL 5.1. Given a query and a list of PubMed ids, In-Memory
DB can compute score upper-bounds or actual scores for each doc-
ument, or it can compute the set of skyline contours. Results are
read by Query Manager (arrow 4), which can optionally pass them
to the visualization component.

For the purposes of our evaluation all processing was done by In-
Memory DB, to reduce communication cost. When a system like
ours is deployed, some of the processing, e.g. skyline computation,
can be moved to the client to reduce server load. All performance
results are based on measuring processing times inside In-Memory

DB. We report performance in terms of wall-clock time. All results
are averages of three executions.

4.2 Workload
Our performance experiments are based on a workload of 150

queries. We were unable to get a real PubMed query workload
from NCBI due to privacy regulations, and so we generated the
workload based on pairwise co-occurrence of terms in annotations
of PubMed articles. The rationale is that, if two or more terms are
commonly used to annotate the same document, then these terms
are semantically related and may be used together in a query.

We took the set of all PubMed documents that were published
during the month of January 2007, 124,413 documents in all, and
computed pair-wise co-occurrence of terms in those documents.
20,848 out of a total of 24,767 MeSH terms are used to annotate
documents in this sample. For all pairs of terms t1 and t2, we
recorded the number of documents that are annotated with both t1
and t2, and compared this to the number of documents annotated
with t1 alone, and with t2 alone. We refer to the sizes of these three
document sets as D(t1 ∧ t2), D(t1), and D(t2), respectively.

Over 2.5 million pairs of terms were used together to annotate at
least one document in our set. From among those, we selected pairs
that contained terms that were neither too common not too uncom-
mon. We removed terms that annotate more than 100 documents
and fewer than 3 documents in the sample. Extremely common
terms, such as Human and Female are likely too general to be used
in a query. Very uncommon terms may be informative, and could
be used as part of a query. However, since the objective of our work
is to assist the user in exploring large result sets, and since achiev-
ing good performance is more challenging for larger result sets, we
decided to bias our experimental evaluation in that direction.

Further, to ensure that combining the terms is semantically mean-
ingful, we selected pairs of terms that occur together at least 10%
of the time that either of the terms occurs on its own. This is the
case when |D(t1∧t2)|

|D(t1)|
≥ 0.1 and |D(t1∧t2)|

|D(t2)|
≥ 0.1. After this step

we were left with 7958 pairs of terms.
From among 7958 pairs of terms (call this P), 487 were pairs

with a common subtree in MeSH (call this PO, for overlapping).
These pairs are interesting because they can be meaningfully com-
bined into an OR query. We thus chose 50 pairs of terms from
P \PO to create AND queries, 50 pairs from PO for AND queries,
and 50 pairs from PO for OR queries.

Table 1 summarizes the properties of 150 queries in our work-
load. The number of results is calculated with respect to the entire
PubMed corpus on which we run our performance experiments.

4.3 Ranked Retrieval with Score Upper-Bounds
Table 2 summarizes the performance of 150 queries with term

similarity, conditional similarity, and balanced similarity. We com-
pare the execution time of computing exact scores for all results
(Score) against the time of computing score upper-bounds for all
results (UB). We then report the run-time of computing the top-1,
top-10, top-20, top-50 and top-100 results, in which upper bounds
are computed for all items, and exact scores are computed only
for the promising items. We observe that execution time of Score
can be high, particularly for conditional and balanced similarity. In
contrast, upper bounds can be computed about an order of mag-
nitude faster, in interactive time even in the worst case. This is
expected, since, as we discussed in Section 3.2, the time to com-
pute upper bounds is proportional to |D| ∗ |Q|, while the time to
compute scores is a function of the size of the term-scope of the
query and of the document, which is typically much higher.

Figure 5 compares the total run-time of Score, UB, and ranked

Term Similarity(sec) Conditional Similarity(sec) Balanced Similarity(sec)
med avg min max med avg min max med avg min max

Score 0.412 1.342 0.013 13.238 0.387 4.408 0.004 274.230 0.372 3.760 0.006 195.420
UB 0.062 0.177 0.005 1.242 0.060 0.195 0.005 2.210 0.059 0.177 0.005 1.236
top-1 0.228 0.557 0.009 5.127 0.273 2.016 0.010 83.063 0.246 1.558 0.009 55.365
top-10 0.228 0.566 0.009 5.128 0.273 2.010 0.010 84.063 0.245 1.550 0.010 55.441
top-20 0.226 0.567 0.009 6.565 0.272 1.989 0.010 83.061 0.248 1.560 0.010 55.460
top-50 0.228 0.578 0.010 5.080 0.273 2.001 0.014 83.132 0.245 1.582 0.010 55.457
top-100 0.228 0.568 0.010 5.092 0.273 2.001 0.014 83.132 0.246 1.566 0.012 55.444

Table 2: Ranked retrieval: median, average, minimum and maximum processing times for 150 queries.

Figure 5: Total runtime of ranked retrieval.

Figure 6: Term similarity: percent improvement in runtime of
top-K when score upper-bounds are used.

retrieval with k = 1, 10, 20, 50, 100, for all queries. Observe
that term similarity computes fastest, while conditional similarity
is slowest. It takes approximately the same amount of time to com-
pute the top-k for different values of k.

Figures 6, 7 and 8 present run-time improvement of using score
upper-bounds for top-k computation vs. computing exact scores,
for three similarity measures. Performance of the vast majority of
queries is improved due to using upper-bounds, for all similarity
measures. The actual run-time improvement was up to 9.1 sec for
term similarity, and between 0.7 and 0.8 sec on average for differ-
ent values of k. For conditional similarity, the improvement was up
to a dramatic 191 sec, and the average improvement was about 2.4
sec. For balanced similarity, using score upper-bounds improved
run-time by up to 140 sec, and between 2.0 and 2.2 sec on average,

Figure 7: Conditional similarity: percent improvement in run-
time of top-K when score upper-bounds are used.

Figure 8: Balanced similarity: percent improvement in runtime
of top-K when score upper-bounds are used.

for different values of k.
While performance improved for most queries, it degraded for

some queries due to the overhead of sorting. This overhead was
noticeable only in short-running queries, and absolute degradation
was insignificant: at most 0.081 sec for TermSim, 0.254 sec for
CondSim and 0.213 sec for BalancedSim.

4.4 Skyline Computation with Upper-Bounds
In this section we consider the performance impact of using score

upper-bounds for skyline computation, described in Section 3.3.
We computed the skyline with 1, 2, 5, and 10 contours for 150
queries in our workload. Table 3 presents the median, average, min-
imum, and maximum execution time for three similarity measures.
For each number of contours, and for each similarity measure, we
list two sets of numbers. The Exact line lists the performance of
computing the skyline without the upper-bounds optimization, and
the UB line lists the performance with the optimization. Recall
that, whether we first compute exact scores for all documents (as
in Exact), or first compute score upper-bounds for all documents,
and then compute exact scores only for promising documents (as in
UB), the result will be the same correct set of skyline points.

Based on Table 3 we observe that the Exact skyline performs in
interactive time for the majority of queries, for all similarity mea-
sures. Median results are sub-second in all cases. We also observe
that UB skyline outperforms Exact skyline. Note that these results
are for the total execution of each query. Long-running queries typ-
ically execute in multiple batches, and the user is presented with the
initial set of results as soon as the skyline of the first batch is com-
puted., and does not have to wait for entire processing to complete.

In our experiments, we are able to predict whether a query will be
long-running based on the number of results that the query returns.
In fact, exact skyline computation for all queries that return fewer
than 20,000 results completes in under 2 seconds. The information
about the size of the result set is provided to us at the start of the
execution by the eUtils API, and we can use this information to
decide whether to apply the upper-bounds optimization. 45 out of
150 queries in our workload return over 20,000 results, and we refer
to these as the large queries in the remainder of this section.

Figure 9(a) summarizes the total cumulative run-time of Exact
and UB skylines for term similarity for all queries (exact all and UB
all entries), and for the large queries (exact large and UB large).
We note that over 75% of the time is spent processing 30% of the
workload. The time to compute the exact skyline stays approxi-
mately the same as the number of contours changes, while the time
to compute the UB skyline increases with increasing number of
contours. Finally, observe that UB skylines compute faster in to-
tal than do exact skylines. The same trends hold for conditional
similarity (Figure 10(a)) and balanced similarity (Figure 11(a)) .
Figures 9(b), 10(b), and 11(b) plot the percent-improvement of UB
skyline over Exact against the percentage of the large queries for
which this improvement was realized. Query execution time was
improved for the vast majority of large queries..

5. EVALUATION OF EFFECTIVENESS
We now present a qualitative comparison between our similarity

measures, and evaluate them against two baselines.

5.1 Baselines
As before, we refer to the the set of MeSH terms derived from the

query as Q, and to the set of MeSH terms that annotate a document
as D.

Our first baseline is a distance-based measure, designed explic-
itly for MeSH, that compares two sets of terms based on the mean

path-length between the individual terms [10]. For terms d and q,
dist(d, q) is the minimal number of edges in a path from any node
in N∗(d) to and node in N∗(q). Consider nodes C and F in Fig-
ure 2. There are two paths between these nodes: C → A →
E → F of length 3, and C → B → F of length 2, and so
dist(C, F) = 2. We define path-length as:

MeanPathLen(D, Q) =
1

|D||Q|

X

d∈D

X

q∈Q

dist(d, q)

This measure captures the distance between document D and
query Q, and we transform it into a similarity:

MeanPathSim(D,Q) =
1

1 + MeanPathLen(D, Q)
(7)

A known limitation of distance-based measures is an implicit as-
sumption that edges in the taxonomy represent uniform conceptual
distances, which does not always hold in practice. In Figure 2, the
path distance between G and A is 2, the same as between G and
B. However, one can argue that G is more closely related to B

than to A because B has a smaller subtree, and so G represents a
larger portion of the meaning of B than of A. Several information-
theoretic measures have been proposed to overcome this limitation,
and we use the one proposed by Lin [8] to derive our second base-
line. Lin [8] demonstrated that his measure has a high degree of
correlation with several other related measures [11, 9, 14].

For two taxonomy nodes s and t, we denote the lowest common
ancestor by LCA(s, t). The information content of a node s, de-
noted by P (s), is the size of the subtree induced by s. Lin [8]
defines similarity between nodes s and t as:

sim(s, t) =
2 × logP (LCA(s, t))

logP (s) + logP (t)

To use this similarity for MeSH, we need to apply it to a poly-
hierarchy, with multiple nodes per term. We take a similar approach
as in MeanPathSim, and say that the similarity between terms
d and q is the highest similarity between any two nodes s and t,
where s ∈ N∗(d) and t ∈ N∗(q). To handle multiple terms per
query and per document, we define:

MeanInfoSim(D, Q) =
1

|D||Q|

X

d∈D

X

q∈Q

sim(d, q) (8)

5.2 User Study
5.2.1 Methodology

We recruited 8 researchers, all holding advanced degrees in medicine,
biology, or bioinformatics. All are experienced PubMed users, with
usage between several times a week and several times a day. Users
were asked to come up with one query in their field of expertise,
and to subsequently rate results returned by our system.

Rather than rating articles in the result, we asked our users to
rate annotation sets: sets of MeSH terms that occur together as an-
notations of these articles, for two reasons.We opted for this kind
of evaluation for several reasons. First, MeSH annotations of some
articles are imprecise, that is, more general or more specific than
the content of the article warrants. Second, abstracts of articles are
often unavailable, making it difficult to judge the quality of content.
Third, presenting sets of MeSH terms for evaluation adds coverage
and statistical power to our results, because we are deriving a judg-
ment about a common class of annotations, which itself maps to a
set of articles.

(a) Total run-time. (b) % improvement with UB for large queries.

Figure 9: Run-time performance of skyline computation for term similarity.

(a) Total run-time. (b) % improvement with UB for large queries.

Figure 10: Run-time performance of skyline computation for conditional similarity.

Scores are incomparable across measures, and we use ranks for
our comparison. For a fixed query, and for a fixed similarity, all arti-
cles that are annotated with the same set of terms receive the same
score. Additionally, several different annotation sets may map to
the same score, and so ties are common. Furthermore, term sim-
ilarity typically assigns fewer distinct scores than other measures,
and so its ranking is more discrete, while baselines generate more
continuous ranks than do our measures. In order to meaningfully
accommodate ties, and to make ranks comparable across measures,
we assign ranks in the following way. To each result in a set of 1
or more ties, we assign the rank as the average row number of the
ties. For example, if annotation sets s1, s2 and s3 tie for the highest
score, followed by sets s4 through s10 that tie for the second high-
est score, then s1, s2 and s3 are assigned a rank of 6

3
= 2, and the

following 7 sets are assigned a rank of 49
7

= 7.
Many queries return thousands of results, and we cannot expect

that the users will evaluate the quality of results exhaustively. We
focus on a sub-set of results that is most informative about either the
performance of a particular similarity measure, or about the relative
performance of a pair of measures. Results are ranked according

to TermSim, CondSim, BalancedSim, MeanPathSim, and
MeanInfoSim. For a pair of measures M1 and M2, we choose
10 results from each of the following categories:

• topM1: in top 10% of ranks for M1 but not for M2

• topM2: in top 10% of ranks for M2 but not for M1

• botM1: in bottom 10% of ranks for M1 but not for M2

• botM2: in bottom 10% of ranks for M2 but not for M1

Results are chosen to maximize rank distances. So, a result that
is at rank 1 for M1 and at rank 100 for M2 will be chosen before
another result that is at rank 10 for M1 and at rank 100 for M2.
Finally, we generate pairs of results to be compared to each other by
the user. We never compare topM1 to topM2, and bottomM1 to
bottomM2. Comparing top against bottom for the same method
helps us validate that method on its own. Comparing top of one
method against bottom of another allows us to compare a pair of
methods against each other.

(a) Total run-time. (b) % improvement with UB for large queries.

Figure 11: Run-time performance of skyline computation for balanced similarity.

K Term Similarity(sec) Conditional Similarity(sec) Balanced Similarity(sec)
med avg min max med avg min max med avg min max

Exact 1 .4295 1.356 .016 13.225 .4305 4.471 .009 274.301 .4275 3.861 .01 199.521
UB 1 .299 .684 .014 5.687 .343 2.377 .017 107.673 .3345 1.925 .018 72.955
Exact 2 .43 1.355 .016 13.202 .424 4.471 .008 274.296 .433 3.833 .01 195.194
UB 2 .3705 .825 .018 6.771 .4055 2.796 .019 136.881 .389 2.345 .019 95.654
Exact 5 .4285 1.356 .016 13.209 .4285 4.473 .009 274.311 .4365 3.803 .01 195.13
UB 5 .448 1.036 .022 8.263 .4855 3.351 .019 167.917 .4785 2.841 .02 116.974
Exact 10 .4295 1.358 .016 13.222 .4275 4.472 .008 274.305 .4365 3.806 .01 195.163
UB 10 .4835 1.265 .022 9.647 .546 3.859 .019 197.304 .506 3.17 .019 132.334

Table 3: Skyline computation: median, average, minimum and maximum processing times for 150 queries.
Figure 12 shows our evaluation interface. The user is presented

with two annotation sets, Match 1 and Match 2, and rates each
set on a three-point scale.Clicking on a term name opens its defini-
tion in MeSH. Clicking on example article link shows the title and
abstract (when available) of an article where the annotation set is
used. We instructed users to use the following definitions when rat-
ing matches. A match is good if it is relevant to all, or most, aspects
of the query. It answers the query exhaustively. A match is OK if
it is relevant to some, but not all, aspects of the query. Additional
information is needed to answer the query fully. A match is bad if
it is irrelevant, or relevant to a minor aspect of the query. The user
also compares the matches with respect to how well they answer
the query, on a three-point scale: match 1 is better than match 2,
match 2 is better than match 1, or match 1 and match 2 are about
the same. Both scales include a “not sure” option., so as not to
force a judgment when the user is not comfortable making one.

5.2.2 Results
Results in this section are based on 8 queries, each evaluated

by a single user. We collected 670 individual judgments, and 335
pairwise judgments. In this section, we analyze the performance
of each of our similarity measures individually, and then describe
the relative performance of our measures, and compare them to the
baselines. For results r1 and r2, user U issues a pair-wise relevance
judgment U : r1 = r2 if he considers results to be of equal qual-
ity, U : r1 > r2 if r1 is better, or U : r1 < r2 if r2 is better.
(We exclude the cases where the user was unable to compare the
results.) Likewise, a similarity measure M issues a judgment w.r.t.
the relative quality of r1 and r2 by assigning ranks. Because users

only judge a pair of results that are far apart in the ranking, the case
M : r1 = r2 never occurs.

A similarity measure may agree with the user’s assessment, or it
may disagree, in one of two ways: by reversing the rank order of
r1 and r2, or by ranking r1 and r2 differently while the user con-
siders them a tie. For ease of exposition, we incorporate all three
outcomes: agreement (A), tie (T) and rank reversal error(E), into
a single agreement score, defined as: agreement(U ,M, Q) =
A+0.5∗T
A+T+E

. Worst possible score is 0, best possible is 1. Table 4
presents the agreement between the user and each similarity mea-
sure, for each query. Note that while we explicitly generate 20
results for each query and each similarity measure, the total num-
ber of judgments may be higher or lower. Fewer than 20 results
are listed when judgments for some results are unavailable (user
selected “cannot compare” when evaluating results). More than
20 results are listed when similarity measures are correlated, and
judgments issued for one of the measures can be used to evaluate
another measure.

Due to the scale of our study we are unable to draw statistically
significant conclusions about the relative performance of the mea-
sures. However, we point out some trends that emerge based on
the data in Table 4, and which we plan to investigate further in
the future; see Section 5.3 for a discussion. None of the measures
seem to agree with user’s judgment for queries Q2 and Q8. These
queries do not exhibit polyhierarchy features: each term maps to
a single node in MeSH. Our measures appear to outperform the
baselines for queries Q3, Q4, and Q6. All these queries include at
least one term that exhibits polyhierarchy features: either the term

Query TermSim ConditionalSim BalancedSim MeanPathSim MeanInfoSim
X – 5 score X – 5 score X – 5 score X – 5 score X – 5 score

Q1 3 4 2 0.56 15 8 14 0.51 15 8 14 0.51 32 10 10 0.71 29 10 13 0.65
Q2 16 17 17 0.49 17 18 17 0.50 17 19 17 0.50 25 19 22 0.52 23 19 24 0.49
Q3 12 11 3 0.67 11 11 4 0.63 11 11 4 0.63 5 14 12 0.39 8 14 9 0.48
Q4 22 5 10 0.66 25 7 11 0.66 26 7 12 0.66 13 7 21 0.40 18 7 20 0.48
Q5 12 2 17 0.42 12 2 16 0.43 12 2 16 0.43 10 2 21 0.33 21 2 10 0.67
Q6 7 11 8 0.48 11 14 10 0.51 13 4 8 0.60 12 16 14 0.48 13 16 13 0.50
Q7 4 9 7 0.43 5 9 7 0.45 5 9 7 0.45 10 9 4 0.63 8 12 12 0.44
Q8 5 5 6 0.47 5 5 6 0.47 5 5 6 0.47 1 3 4 0.31 9 7 6 0.57
Avg 0.52 0.52 0.53 0.47 0.54

Table 4: Agreement between similarity measures and user judgments: X for agreement, – for tie, 5 for reversal error.

Figure 12: User study interface.

itself maps to two or more nodes and induces subtrees of different
shape, or its descendant terms do. Baselines appear to outperform
our measures for queries Q1, Q5, and Q7. Query Q1 exhibits no
polyhierarchy features. For a two-term query Q8, each term maps
to two nodes in MeSH, but the subtrees are isomorphic, i.e., there
is structural redundancy in this part of the hierarchy. Query Q5

exhibits true polyhierarchy features, yet the information theoretic
baseline seems to be more in-line with the user’s judgment for this
query.

Table 5 presents the relative performance of our measures against
the baselines. We present averages across queries, but note that per-
formance for individual queries is in line with the trends in Table 4.
Here, we are using judgments about pairs of results such that one
of the results has a high rank w.r.t. one method and a low rank w.r.t.
another. We present the average percentage of user judgments that
were in-line with the judgment made by the similarity measure. For
example, in the entry for TermSim and MeanPath the user agreed
with TermSim 46% of the time, and with MeanPath 28% of the
time, and considered the remaining 26% of the cases as ties.

We also compared the relative performance of our measures for
queries, for which there was a difference in performance. For Q6,
BalancedSim outperforms CondSim, which in turn outperforms Term-

MeanPath MeanInfo
TermSim 46% / 28% 31% / 36%
CondSim 41% / 31% 36% / 36%
BalSim 42% / 29% 36% / 35%

Table 5: TermSim, CondSim and BalancedSim compared to
baselines.

Sim. For Q3, TermSim outperforms other measures. These findings
are in line with results in Table 4.

5.3 Assessment of Results
Several issues make ranking difficult in our context. First, all

results are already matches, i.e., all are in some sense “good”. So,
ranking by ontology is a second-order ranking among documents
that may not be all that different from each other in terms of real
relevance. However, as we demonstrate in Section 5.2.2, ontology-
related score is correlated with quality as judged by the users in
some cases. This occurs when terms appear in multiple tree loca-
tions and induce subtrees of different shape, a distinguishing fea-
ture in MeSH. Second, our user study is small, and so we cannot
expect to demonstrate statistical significance. We plan to deploy the
system and obtain more information by studying user feedback.

A user’s perception of quality is informed by many aspects. Our
work is motivated by the hypothesis that one of these aspects is
captured by ontological relationships. This was supported by ob-
servations made by several users that they appreciated the presence
of both general concepts, e.g., Neurodegenerative Disease, and re-
lated concepts that are more specific, e.g., Alzheimer and Parkin-
son.

Nonetheless, other aspects of user’s quality perception may re-
quire a more sophisticated ontology than MeSH. Even when the
ontology is helpful in principle, users may disagree with classifica-
tion, as observed by one user in our study. Semantic relationships,
e.g., that a protein known by an expert to be connected to a disease
may not be ontologically related to the disease, are not present in
MeSH, and are therefore unavailable for scoring. In future work,
we plan to combine MeSH with other information sources that pro-
vide additional information about relationships between concepts.
We also plan to incorporate weighting of terms, perhaps on a user
by user basis, based on external information.

Due to the scale of our study, we do not establish which ranking
is best for which kind of query, and when a query is amenable to
ontology-aware ranking. We will investigate this in the future. For
some queries our methods appear to do better, while for others the
competing methods appear to do better. While no method domi-

nates another for all queries, our methods seem to outperform the
path-based method overall, while performing comparably with the
information theoretic method.

6. RELATED WORK
Ranking that takes into account hierarchical structure of the do-

main has been considered in the literature. Ganesan et al. [4] de-
velop several families of similarity measures that relate sets or mul-
tisets of hierarchically classified items, such as two customers who
buy one or several instances of the same product, or who buy sev-
eral products in the same hierarchy. This work assumes that items
in the sets are confined to being leaves of the hierarchy, and that
the hierarchy is a strict tree. In our work we are comparing sets of
terms in a scoped polyhierarchy, and we do not restrict the terms to
being leaves.

Rada and Bicknell [10] consider the problem of ranking MED-
LINE documents using the MeSH polyhierarchy, the same problem
as we consider in our work. The authors propose to model the dis-
tance between the query and the document as the mean path-length
between all pairs of document and query terms. This measure is
one of several distance-based measures that have been proposed in
the literature, see also [7]. A known limitation of these measures
is an assumption that links in the taxonomy represent uniform con-
ceptual distances.

In an alternative approach, several information-theoretic mea-
sures have been proposed that can be used to measure semantic
relatedness between concepts in hierarchical domains, see for ex-
ample [8, 11]. These measures are similar to the distance-based
methods in that they typically relate two concepts via a common
ancestor. However, rather than simply counting the length of the
path to the ancestor, the information content of the ancestor (the
size of its subtree) is factored into the measure. The intuition is
that a common ancestor that is very general is not as informative as
one that is more specific.

In our work we propose several alternative ways to relate a docu-
ment to a query, by measuring the overlap among common descen-
dants (rather than ancestors) of all nodes labeled with two concepts.
To the best of our knowledge, our work is the first to explicitly
model semantic relatedness in a scoped polyhierarchy in which a
term may appear in many parts of the hierarchy with subtly differ-
ent meanings in each context. The question of how contributions
of different terms, or different meanings of the same term, are rec-
onciled in the final score is central to our approach. We explicitly
model and explore alternative semantics of combining the contri-
butions of individual pairs of terms to the over-all similarity score.
Despite the extra computation needed for measures based on sets of
descendants rather than ancestors, we demonstrate experimentally
that interactive response times are still possible even when process-
ing tens of thousands of documents.

The OWL Web Ontology Language was developed as part of the
W3C Semantic Web Initiative [13], with the goal of assigning ex-
plicit semantic meaning to the information, and of presenting the
semantics in machine-processable form. Hierarchies are modeled
in OWL by means of the rdfs:subClassOf feature, and multiple in-
heritance is allowed. However, scoped polyhierarchies like MeSH
cannot be expressed directly in OWL. Such hierarchies can be sim-
ulated with constructs rdf:Property and rdfs:rdfssubPropertyOf which
are typically used to model relationships in OWL, and by restricting
the scope of the inheritance relationship with rdfs:domain.

Efficient computation of skyline results has been receiving sig-
nificant attention in the database community. We build on the the
classic divide-and-conquer algorithm by Bentley [2], and adapt it
to our application scenario and performance needs by incorporat-

ing score upper-bounds. Tan et al. [12] develop progressive skyline
computation methods, while Jin et al. [5] propose an efficient al-
gorithm for the mining of thick skylines in large databases. In our
work we also compute skylines progressively, by relying on a sort
order in which results are supplied, and we are able to compute
multi-contour skylines efficiently on the large scale. Our scenario
differs from prior work in that coordinates of skyline points may be
costly to compute, motivating us to use score upper-bounds.

7. CONCLUSIONS
MeSH is a sophisticated, curated real-world ontology with about

25,000 terms. It has the interesting property that terms can appear
in multiple parts of the hierarchy. Each time a term appears, its
meaning is scoped, i.e., the meaning of the term depends on its
position in the hierarchy. This observation challenges most past
work which has been developed assuming that a term has a unique
node in the generalization hierarchy.

We have attempted to capture the semantics of a term by looking
at all of the term’s descendants, across the whole hierarchy. We
developed three similarity measures that relate sets of terms based
on the degree of overlap between the sets of their descendants. We
have demonstrated that each of these measures can be computed in
interactive time for the complete MeSH ontology, at the scale of
the complete PubMed corpus. We have also shown how computing
score upper-bounds can be used to reduce the cost of identifying
the best-matching documents, or of computing the skyline of the
dataset with respect to score and publication date. We evaluated
our similarity measures with a user study.

8. REFERENCES
[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval. 1999.
[2] J. L. Bentley. Multidimensional divide-and-conquer.

Commun. ACM, 23, 1980.
[3] S. Börzsönyi, D. Kossman, and K. Stocker. The skyline

operator. In ICDE, 2001.
[4] P. Ganesan, H. Garcia-Molina, and J. Widom. Exploring

hierarchical domain structure to compute similarity. ACM
TOIS, 21(1), 2003.

[5] W. Jin, J. Han, and M. Ester. Mining thick skylines over large
databases. In PKDD, 2004.

[6] J. Kaiser. Systematic indexing. London, Pitman, 1911.
[7] J. Lee and M. Kim. Information retrieval based on a

conceptual distance in is-a hierarchy. J Doc, 49, 1993.
[8] D. Lin. An information-theoretic definition of similarity. In

ICML, 1998.
[9] G. A. Miller. WordNet: An on-line lexical database. Int J

Lexicography, 3, 1990.
[10] R. Rada and E. Bicknell. Ranking documents with a

thesaurus. JASIS, 40(5), 1989.
[11] P. Resnik. Using information content to evaluate semantic

similarity in a taxonomy. In IJCAI, 1995.
[12] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive

skyline computation. In VLDB, 2001.
[13] W3C. OWL web ontology language overview.

www.w3.org/TR/owl-features.
[14] Z. Wu and M. S. Palmer. Verb semantics and lexical

selection. In ACL, 1994.

