
Columbia University Intrusion Detection Systems Lab

1

Self-monitoring Monitors

Salvatore J. Stolfo, Isaac Greenbaum, and Simha Sethumadhavan

Columbia University

Computer Science Department

Intrusion Detection Lab

April 27, 2009

Revised: June 3, 2009

Abstract

Many different monitoring systems have been created to identify system state conditions

to detect or prevent a myriad of deliberate attacks, or arbitrary faults inherent in any

complex system. Monitoring systems are also vulnerable to attack. A stealthy attacker

can simply turn off or disable these monitoring systems without being detected; he would

thus be able to perpetrate the very attacks that these systems were designed to stop. For

example, many examples of virus attacks against antivirus scanners have appeared in the

wild. In this paper, we present a novel technique to “monitor the monitors” in such a way

that (a) unauthorized shutdowns of critical monitors are detected with high probability,

(b) authorized shutdowns raise no alarm, and (c) the proper shutdown sequence for

authorized shutdowns cannot be inferred from reading memory. The techniques

proposed to prevent unauthorized shut down (turning off) of monitoring systems was

inspired by the duality of safety technology devised to prevent unauthorized discharge

(turning on) of nuclear weapons.

1. Introduction

Much time and effort have been put into developing systems and processes that can

monitor and protect against various types of threats. For example: Anti-virus programs

are designed to identify and disable all viruses that attempt to infect a computer.

Intrusion detection systems are supposed to notify and protect against unwanted

infiltrations into a system.

A knowledgeable user or a system administrator who desires to perpetrate malicious acts

can simply disengage a monitoring system designed to identify and detect malicious acts.

(If the personnel responsible for securing a system are themselves insider attackers, the

monitoring systems that send alerts to them would therefore be rendered useless even if

not disengaged.) Hence, all monitoring systems, regardless of how well they meet their

stated objectives, suffer from the same fatal vulnerability, they may be turned off (or

ignored). If a less sophisticated attacker begins his attack by initially shutting down the

monitors, and that act provides no warning or alarm, the attacker will have free reign to

pursue his attack unimpeded by any process. Any relatively unsophisticated subsequent

attack can successfully cause damage.

One may presume that a monitoring system designed with a “heart beat” that

continuously informs personnel of its own state, and that it is actively at work, will

Columbia University Intrusion Detection Systems Lab

2

adequately solve the problem. In some cases this may be so. However, the clever attacker

may possibly use a man-in-the-middle attack to ensure the signal is continuously

broadcast, but the core monitoring functions may still be disabled. In other words, the

techniques proposed herein may still be applicable to the core functions of the monitoring

system whether or not it persistently signals its own state.

Furthermore, there may be some circumstances in which the owner of the system may

legitimately wish to discontinue the monitoring process without generating alarms, say

during a system update process that causes sufficient change to system state sufficient to

cause many alarms, or worse lock down the system. Graceful control of the monitoring

infrastructure is clearly a desideratum.

The concept proposed herein involves a uniquely formed network of monitors that are

created anew when a system is first booted up and each time thereafter. A series of

system boot ups creates a diversity of independent monitoring networks. No information

persists across each instance of a monitoring network that provides any useful

information to an attacker.

The network of monitors consists of a set of monitoring programs each designed to

logically connect two at least two other randomly chosen monitors. Each such monitor is

required to have at least two other monitors connected to it. The key concept is that if a

monitoring program is shut down (eg., by use of the “kill” command on Linux systems,

or “end process” command on Windows systems), then at least one of the two monitoring

programs will notice the killed process and issue an alarm. The implementation of this

alarm function and protecting it from interception can be implemented by a number of

designer choices, such as an irrevocable destruction of critical data on a disk to prevent

the host from being used any further, alternatively a “secret back channel” can be

employed communicating information to a number of security personnel in a manner that

survives interception unless all security personnel collude. There may be many methods

to implement and protect the alarm, but in this paper we are focused primarily on the

means of detecting when an attacker, such as a knowledgeable insider, attempts to shut

down the system monitoring function.

It is thus the goal of this paper to present a protocol for dealing with this potential attack

in a way that allows an authorized agent to turn off the system but raises an alarm during

an unauthorized attempted shutdown. Our goal is to provide an appropriate answer to the

question of “Who monitors the monitors?”

2. Attack Models and Assumptions

2.1 Attack Models

The ultimate goal of the attacker in all our models is to disable (by killing or otherwise

corrupting) the critical process (CP) that we hope to protect (e.g. AV, RUU monitor).

Columbia University Intrusion Detection Systems Lab

3

Given these assumptions, we consider three increasingly sophisticated threat models:

(A) An attacker cannot see inter-process traffic.

(B) An attacker can see inter-process traffic.

(C) An attacker can see inter-process traffic and can shut off every process on one

computer simultaneously.

Attack Model A considers an attacker with very limited capabilities and serves as a

proof-of-concept model for the validity of the general strategy proposed below. If the

proposed protocols cannot identify unauthorized attacks when an attacker is so limited,

there is no need to test against more sophisticated attack models.

Attack Model B considers an attack by a slightly more sophisticated attacker. As the

proposed protocols are critically based upon interprocess traffic, the next most logical

model to consider would be to relax the privacy assumptions regarding that traffic were

relaxed. The most basic relaxation would be to allow the attacker to identify the sender

and receiver of any traffic, as well as when it is sent. The proposed techniques for

addressing Attack Model A fail under these new circumstances and extensions are

proposed.

Attack Model C represents a further extension of the previous model. The protocols

proposed to address Attack Model B (and A as well) rely on the idea that there must

necessarily be a delay between shutting off a process and a second. In this model, we

relax this assumption and allow all monitors (or a subset thereof) to be shut down

simultaneously. With this capability, an attacker can overcome the techniques employed

to counter Attack Models A and B.

We did not, however, consider memory-based attacks. The reasons for this are that we

assume that they can be countered by specially designed hardware (TPM for bootup, IDS

chip for ongoing monitoring) and software (polymorphic code for the monitors to make

each process unique). See Further Research for more details about this assumption.

2.2 Assumptions

While this paper primarily focuses on detecting and warning against unauthorized

attempts to shut down a critical process, we believe that the techniques detailed herein

can be extended to apply to identifying potential attempts to corrupt the code.

With regard to an attacker’s capabilities in executing an attack, we assume that an

attacker has the ability to see all processes that are running and can kill any of them.

The design of the below procedures depend upon processes being shut down in a specific

sequence. In an operational monitoring system, the following characteristics must be

implemented to achieve the desired behavior:

Columbia University Intrusion Detection Systems Lab

4

1) An attacker cannot read the identity of the next monitor in the sequence by

scanning memory. This assumption can be practically implemented using a

polymorphic code. See Further Research for more details about this

assumption.

2) The time between monitoring pings is less than the time required by an attacker to

shut down a second process. If that were not the case, an attacker could exploit

that weakness by shutting down the monitors in rapid succession and reduce the

risk of triggering an alarm.

3) A further potential problem would arise if an attacker could kill a process and set

up his own process in its place in the time between “monitoring pings.” As in the

previous concern, however, it should be possible to adjust the frequency of the

pings such that the time needed to set up any new process would be longer than

the time to the next ping.

4) Network congestion and computational limitations can lead to false positives

when incorporating too many hosts or monitors as “ping” response times may be

slowed enough to be considered as non-responses.

5) Any communications between two distinct hosts need to be secure and in such a

way that the identities of the two hosts are authenticated. This is to eliminate the

proxy attack from consideration as a means of attacking the proposed system.

3. Proposed Solution

Our proposed solution to this problem is inspired by the safety protocol employed in

nuclear weapon safety. See Related Research for more details.

The basic underlying framework of our proposed solutions for all three attack models is

to create a random directed cycle of monitors at bootup using a TPM or other secure

bootup process, wherein the randomization is based on a seed known only to users with

the authorization to shut the system down. In this cycle, each monitor only cares about

the next monitor in the cycle. However, one of the processes must disregard any actions

done to the process it is monitoring. The disregarded monitor is thus the first process

(SS1) to be killed in the SS. The second process (SS2) to be killed in the SS is the

process that (SS1) was monitoring. As the process monitoring it has been killed, no

alarms will be raised when SS2 is shut down. Similarly, the third process (SS3) to be

killed in the SS is the process that (SS2) was watching. Again, no alarms will be raised

as the only monitor that cares about whether it is running, i.e. (SS2) has previously been

killed. The remaining order of shutdowns in the SS is constructed similarly; the last

process (SSlast) to be shut down in sequence is process (dr). A user that is authorized to

shut down the critical process can recover the proper SS by following the logic of the

bootup process.

Columbia University Intrusion Detection Systems Lab

5

However, if any process is killed in an order other than the SS, the monitor that is

watching it will still be alive and will raise an alarm.

If implemented correctly for each threat model, the probability of correctly guessing the

SS comprised of n monitors is 1/(n!). Additionally, with this construct, we realize the

important goal that the sequence needed to shut down the monitors without raising an

alarm is not stored in memory anywhere, but rather it is stored in the structure of the

monitoring network itself.

Using this framework, we can then apply them to the three threat models we delineated.

(A) In this threat model, we assume that the attacker can not see the traffic between

processes, i.e. the attacker does not know which process is monitoring which

other process. Under these assumptions, a simple directed cycle of monitoring

would be sufficient to implement the SS. If an attacker cannot see the cycle, then

he must guess a random permutation of the n monitors of which there are n!

possibilities. Thus, for a large enough monitoring network, a simple loop can

reasonably reliably warn against unauthorized attempts to shut down the CP.

(B) However, if we assume that the attacker can see inter-process traffic, then the

structure of the entire cycle is known to the attacker. The only safety mechanism

remaining is the identity of the first monitor in the SS; once SS1 is known, SS2

and subsequent processes in the SS can be determined with probability 1. The

probability of guessing the correct SS would thereby increase from 1/(n!) to 1/n.

Under this threat model, therefore, we propose an extension of the original

protocol. We still maintain an underlying directed cycle; but, in addition, we also

require all processes to monitor all other processes. Unlike the monitoring

between consecutive processes in the SS, monitors will not raise alarms if a

process other than the next one in the SS is killed. Effectively, each process

Monitor1 Monitor2 Monitor3 Monitor4 Monitor5
Critical
Process

SS1 SS2 SS3 SS4 SS5 /

SSlast

disregard

Monitor1 Monitor2 Monitor3 Monitor4 Monitor5
Critical
Process

SS1 SS2 SS3 SS4 SS5 /

SSlast

disregard

Columbia University Intrusion Detection Systems Lab

6

receives information from all other processes, but only reacts to at most one of

them.

With this extension, the attacker’s ability to view inter-process traffic provides no

additional information as to the correct SS. Each monitor looks identical: it sends

and receives information from every other monitor. Furthermore, as long as a

monitor receives “pings” from the monitor it is watching, it reacts to receiving a

ping from any monitor in an identical way. It is only when the next process in the

SS is shut down that the monitor behaves differently, but by then, an alarm is

raised and the attacker cannot glean any information about the sequence. The

graph of processes and monitors effectively is complete and the true SS is

therefore obfuscated by meaningless, yet symmetric, inter-process traffic. A

correct identification of SS1 will therefore provide no information regarding the

identity of SS2; the probability of guessing the correct SS therefore returns to

1/(n!).

(C) As in threat model (B), we assume the attacker can see inter-process traffic. Thus

for this model, on any given computer, we should use the protocol established in

(B) such that the probability of a correct guess remains 1/(n!). However, with the

additional assumption that the attacker can gain control of the computer (via a

root-kit, or some other means) and the ability to shut off all monitors at once, the

attacker can disable the CP without the requirement of figuring out the SS.

To counter this additional threat, the protocol must be extended to share the

monitoring load across multiple remote hosts. In addition to the network of

monitors on each computer, a “communicating process” should be created and

attached to the created to the critical process to broadcast the “alarm” status on

each host.

Monitor2 Monitor3

Monitor5Monitor4

Monitor1

Sequence of shutdowns

Critical
Process

Disregard Results

SS1

SS2

SS3SS4

SS5 /

SSlast

Monitor2 Monitor3Monitor2 Monitor3

Monitor5Monitor4 Monitor5Monitor4

Monitor1

Sequence of shutdownsSequence of shutdowns

Critical
Process

Disregard ResultsDisregard Results

SS1

SS2

SS3SS4

SS5 /

SSlast

Columbia University Intrusion Detection Systems Lab

7

Two types of unauthorized shutdowns must be monitored within this larger

system: 1) a monitoring process is shut down out of order of that host’s SS and 2)

a “communicating process” is shut down. In the event that a type (1) shutdown

occurs, the communicating process should broadcast to all hosts in the network

that an alarm has been raised in its system. In the event of a type (2) shutdown,

the communicating process on each other host must realize that it can no longer

communicate with that original host and raise an alarm.

Using this protocol, an improper shutdown sequence on any individual machine

will raise an alarm on all connected remote hosts. Thus even if an attacker

manages to gain control of one host and shuts off all its monitors and CP, other

hosts in the network can identify that there is a potential unauthorized shutdown

on that host and react accordingly. With a large number of computers, the

probability of simultaneously shutting off the monitors on all hosts is reasonably

remote.

Summary of Models

Attack Model Attacker Capabilities Proposed Solution

A Cannot see interprocess

traffic

Simple cycle of monitors

B Can see interprocess traffic Complete graph of monitors

C Can see interprocess traffic

and can shut off multiple

processes simultaneously

Complete graph of monitors

and remote monitoring

Memory (not considered) Can read memory to

determine next in sequence

Polymorphic code, specially

designed IDS hardware

Bootup (not considered) Can learn information about

sequence at bootup

TPM

Monitor2 Monitor3

Monitor5Monitor4

Monitor1

Monitor2 Monitor3

Monitor5Monitor4

Monitor1

Host 1 Host 2

Critical Process Critical Process

Sequence of shutdowns
Status information

SS1

SS2
SS3

SS4

SS5 /

SSlast

SS1

SS2

SS3

SS4

SS5 /

SSlast

Monitor2 Monitor3

Monitor5Monitor4

Monitor1

Monitor2 Monitor3Monitor2 Monitor3

Monitor5Monitor4 Monitor5Monitor4

Monitor1

Monitor2 Monitor3Monitor2 Monitor3

Monitor5Monitor4 Monitor5Monitor4

Monitor1

Host 1 Host 2

Critical Process Critical Process

Sequence of shutdowns
Status information
Sequence of shutdowns
Status information

SS1

SS2
SS3

SS4

SS5 /

SSlast

SS1

SS2

SS3

SS4

SS5 /

SSlast

Columbia University Intrusion Detection Systems Lab

8

4. Alternative Protocols

There are two alternative protocols that could be implemented to achieve similar results.

However, each of them has their own advantages and disadvantages.

The first alternative is a different approach to the protocol presented to address attack

model (C). As opposed to a system in which each computer can have its own unique SS

and interacts with other computers via a communicating process, a distributed system, in

which one SS applies to all computers, could be employed.

In this system, the seed for the random cycle on the first computer is passed to all others

in the network. Each computer then creates a similar network of processes on its

machine. Once these networks are set up, monitoring processes communicate across

hosts such that all processes “ping” all other processes, but the SS1 of each only cares

about the SS2 of each and so on. In order to shut down the system without alarms, every

SS1 process in the network must initially be shut off followed by every SS2, and so on

until all monitors are turned off.

The main advantage to this protocol is the fact that it will be much more sensitive to any

attempts to shut off processes on any of the linked hosts. However, the drawbacks for

this plan are numerous and outweigh any gain. Firstly, the amount of additional network

traffic generated over the proposed protocol is greater by orders of magnitude. Secondly,

the necessity for passing the seed for the random cycle to a remote host introduces yet

another possible point of vulnerability for the system. Lastly, the enmeshed nature of this

network makes it that much harder to extricate one host from the network, even if done

so with proper authorization.

The second alternative represents a paradigm shift in terms of approaching a solution.

The idea for this protocol is again to create a directed cycle of monitoring processes (not

necessarily random); however, the processes need not be shut down in any specific order.

Processes continuously run and monitor the next in the sequence; yet if a process or host

wishes to exit the network (“leaving process”), it must inform the process that is

monitoring it that it wishes to leave the network by passing it a special code. The

“leaving process” then securely passes along the information concerning the process it is

monitoring to the process that is monitoring it. In this way, even though a process has

left, a cycle of monitoring processes and the protection it provides are preserved.

The advantages to this protocol lie in the reduction in the inter-process and inter-host

traffic as well as provide a method by which monitors can leave the network with proper

authorization. On the other hand, the disadvantages include the computational overhead

necessary for secure communication between processes and the fact that the validation

code for “leave requests” must be stored in memory (where it may be subject to attack).

Columbia University Intrusion Detection Systems Lab

9

5. Related Research

Interestingly, the concept is similar in nature to nuclear weapon safety systems. It is

natural that dangerous weapons be prevented from accidental discharge, hence safety

mechanisms have been developed to prevent unwanted discharge unless and until a

specific unique code is provided to the weapon. Whereas one desires to prevent the

unauthorized or accidental discharge (turning on) of a nuclear weapon, hence requiring a

safety mechanism, this paper proposes a system to prevent the unauthorized or accidental

disengagement (turning off) of a monitoring system, hence requiring a means of

generating an alarm whenever an illegitimate attempt is made to render a monitoring

system inactive.

Nuclear weapons are carried by planes, mounted on rockets, and are generally deployed

with little fear of accidental arming and detonation. In order to detonate a nuclear device,

energy must reach the critical components of the bomb. Safety protocol thus requires

that an energy barrier must surround these components, thereby isolating the components

from any significant amount of energy. Energy gateways, known as stronglinks, are

embedded within this energy barrier. A stronglink serves as a physical gateway in the

barrier for energy to pass through to the inner critical components. At rest, the stronglink

is as impenetrable to energy as the rest of the barrier. However, upon receiving a correct

unique signal (UQS), the stronglink effectively opens up and allows energy to pass into

the interior of the barrier. The stronglink and its UQS are constructed such that only an

“unambiguous communication of intent” will allow the bomb to detonate. The stronglink

contains a “UQS discriminator” that evaluates each sequence event in succession and

responds accordingly, i.e. allowing the next event to be processed in the event of a correct

UQS event and permanently sealing the barrier in the event of an incorrect UQS event.

The UQS is designed such that the probabilities of a random electrical (or other medium

of transmission) signal occurring under abnormal circumstances or unauthenticated

agents generating the correct sequence are very low. All these safety mechanisms

combined provide a very high degree of safety for nuclear weapons.

It is this interaction between the UQS and stronglink in nuclear devices that inspired a

solution to our problem. While it was clear that a cycle of mutually checking monitors

should prevent attempted shutdowns from going unrecognized, it remained to be seen

how such a scheme could be implemented without storing any shutdown key information

in memory. It is here that the stronglink and UQS system provided the key insight.

Whereas the goal in nuclear safety protocols is to refuse to arm the device if even one

UQS event is incorrect, our task presents the dual problem, i.e. to raise an alarm if even

one step in the shutdown sequence (SS) is incorrect and to allow the user to proceed with

shutting down the next process unhindered if the sequence is correct. Effectively, the key

would be implied and validated by the very structure of the monitoring network.

Columbia University Intrusion Detection Systems Lab

10

[2] describes methods for limiting the types of randomization to avoid sequences that can

be commonly entered either by accidental or by guess. Given that the main focus of

these restriction were to preclude typical signals emitted by electrical discharges caused

by damage or failure, these methods need not be applied to the protocol.

In addition, [2] describes procedures for keeping the UQS generator and stronglink

separate until there is an intent to “detonate”. This prevents any unauthorized actions

form occurring, malicious or not. This concept should be applied to the proposed

protocols to provide a further measure of protection against unauthorized shutdowns. If

the correct sequence were stored on a remote host or in some segregated and protected

section of memory, the monitoring system’s sequence would remain unknown should an

attacker fail to additionally gain access to the remote host or area of memory.

6. Conclusions and Further Research

Ultimately, we believe that the general techniques presented herein can serve as the basis

for more secure monitoring systems. However, further research is required to convert

this protocol into a scalable and reliable product.

The first necessary area of further exploration relates to the use of a TPM chip in such a

way as to ensure that the monitoring processes are loaded in an uncorrupt state.

While we have implemented a software-based version of a system incorporating these

protocols, an ideal system would be implemented as close to the hardware layer as

possible. Specially designed hardware components gain even more importance when

the “threat model” is expanded to include an attacker’s ability to introduce corrupt

code to the monitoring processes. By incorporating hardware into the system, a designer

can reduce the likelihood of a successful attack as an attacker would be required to

physically alter the machines in order to disable the system.

In addition to hardware components, the proposed monitoring system can be further

protected by incorporating polymorphic code into its design. Implemented correctly, the

bootup process can then be designed such that each monitor in the network is unique;

thus if an attacker can comprise or disable a monitor by reading its memory, s/he cannot

leverage that information to read the memory of others. The monitoring system therefore

becomes that much harder to disable.

Another area of further research surrounds multicast protocols for sending out status

messages between the communicating processes in each computer. With a large number

of computers in a mutually protecting monitoring system, the amount of inter-computer

traffic generated with a fully-connected graph of one-to-one connections can become

onerous for the network. Sending messages to a router’s multicast address with an

appropriately designed LSA protocol should simplify the delivery mechanisms

significantly and make for a more practical system.

Columbia University Intrusion Detection Systems Lab

11

References

[1] D. Plummer, W. Greenwood. The History of Nuclear Weapon Safety Devices.

Sandia National Laboratories. June 8, 1998.

[2] The Unique Signal Concept for Detonation Safety in Nuclear Devices. UC-706.

Sandia National Laboratories, System Studies Department. December 1992.

Acknowledgments

 This work was partially supported by a Department of Homeland Security

I3P/DHS Contract: 2006-CS-001-000001-02 entitled Cyber Security Collaboration and

Information Sharing, Insider Threat Project, subcontracted through the Institute for

Information Infrastructure Protection hosted at Dartmouth College.

