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Abstract

Quantifying the efficacy of self-healing systems is a chal-
lenging but important task, which has implications for in-
creasing designer, operator and end-user confidence in
these systems. During design system architects benefit from
tools and techniques that enhance their understanding of
the system, allowing them to reason about the tradeoffs
of proposed or existing self-healing mechanisms and the
overall effectiveness of the system as a result of different
mechanism-compositions. At deployment time, system in-
tegrators and operators need to understand how the self-
healing mechanisms work and how their operation impacts
the system’s reliability, availability and serviceability (RAS)
in order to cope with any limitations of these mechanisms
when the system is placed into production.

In this paper we construct an evaluation framework for self-
healing systems around simple, yet powerful, probabilis-
tic models that capture the behavior of the system’s self-
healing mechanisms from multiple perspectives (designer,
operator, and end-user). We combine these analytical mod-
els with runtime fault-injection to study the operation of
VM-Rejuv – a virtual machine based rejuvenation scheme
for web-application servers. We use the results from the
fault-injection experiments and model-analysis to reason
about the efficacy of VM-Rejuv, its limitations and strate-
gies for managing/mitigating these limitations in system-
deployments. Whereas we use VM-Rejuv as the subject of
our evaluation in this paper, our main contribution is a
practical evaluation approach that can be generalized to
other self-healing systems.

1. Introduction

Self-healing mechanisms are intended to improve the re-
liability, availability and serviceability (RAS) of a system
by enabling it to automatically detect, diagnose and repair

localized hardware and software problems [20]. However,
the inclusion of recovery or repair mechanisms (self-healing
mechanisms) is no guarantee that these mechanisms work
well, are bug free, or that the failure modes and limita-
tions of these mechanisms are well understood. The in-
adequate testing of recovery mechanisms and the unex-
pected/unintended negative side effects of recovery have re-
sulted in a number of (in)famous failures, which have been
discussed in previous work [6], [11], [28], [18]. The rig-
orous testing, analysis and validation of these mechanisms
are important but sometimes overlooked steps in system-
construction that would otherwise allow designers to better
understand how these mechanisms work and identify their
limitations.

The limitations of self-healing mechanisms can take many
forms including, but not limited to: periods of vulnerabil-
ity to successive faults (vulnerability windows), imperfect
repair or recovery scenarios (e.g., instances where recov-
ery fails, or service is only partially restored requiring addi-
tional rollback or compensation semantics to put the system
back into some well understood state), and situations where
the rate of failure or the sequence of failure events over-
whelm the self-healing mechanisms available resulting in
system instabilities.

System designers, operators and end-users have an inter-
est in understanding the limitations of the recovery mech-
anisms available in the system. These limitations impact
them in different ways, and as a result an evaluation frame-
work for self-healing systems needs to accommodate their
different perspectives. In addition to enhancing their un-
derstanding of the system, the insights about the limits of
the recovery mechanisms obtained from an evaluation can
be used to inform contingency plans for coping with these
limitations in real deployments.

To assist designers and operators in system evaluations
there are a number of well-studied modeling formalisms
and associated analytical techniques that can be used to
describe and reason about both system structure and be-
havior. Examples include, Markov Chains, Petri Nets,



Stochastic Activity Networks (SANs), and Queuing Models
([21, 14, 31, 26]). In terms of practical tools, fault-injection
has been accepted as a powerful tool for validating and eval-
uating recovery mechanisms in systems [39, 9] and a num-
ber of fault-injection strategies (and tools that use them) are
available [16]. Note that while fault-injection is accepted
as a powerful system-validation tool it is also accepted that
fault-injection cannot predict actual availability or mean
time between failures (MTBF) [40, 16]. However our goal
in this paper is not to make absolute predictions about these
measures, but rather to present a consistent framework for
reasoning quantitatively about the limitations of recovery
mechanisms and developing contingency plans that can ad-
dress these limitations.

1.1 Contributions

The main contribution of our work is to demonstrate how
an evaluation framework for self-healing systems can be
constructed around simple probabilistic models that cap-
ture different evaluator-perspectives. We use the analyti-
cal tools and fault-injection tools to reason quantitatively
about the limitations of a system’s self-healing mechanisms
and to inform strategies for mitigating these limitations.
In this paper we create a simple analytical model of VM-
Rejuv, a virtual machine based rejuvenation scheme for
web-application servers, using Continuous Time Markov
Chains (CTMCs). We identify RAS measures that can be
used to quantify the efficacy of VM-Rejuv from the per-
spective of the designer, operator and end-user. We then
use runtime fault-injection tools to inject memory leaks into
the web-application servers deployed under VM-Rejuv and
exercise VM-Rejuv’s self-healing capabilities. The results
from our fault-injection experiments are used to gather pa-
rameters for the analytical model, which in turn is used to
identify and reason about potential limitations of VM-Rejuv
and to propose strategies for managing/mitigating these lim-
itations in system deployments.

The remainder of this paper is organized as follows. §2 de-
tails our case study – §2.1 presents background on software
rejuvenation and an overview of the architecture and oper-
ation of VM-Rejuv. §2.2 describes our evaluation method-
ology and §2.3 describes our experiments and results – §3
discusses our results, §4 outlines related work and §5 sum-
marizes our conclusions and future work.

2 Case Study: VM-Rejuv

2.1 Overview

In our case-study we model and experimentally evaluate
the efficacy of VM-Rejuv – a prototype implementation

of a virtual machine (VM) based software rejuvenation
scheme for application servers and internet sites [32] de-
veloped at the Universitat Politècnica de Catalunya (UPC)
in Barcelona.

Software rejuvenation is the concept of gracefully terminat-
ing an application and immediately restarting it in a clean
internal state [17]. This technique has been implemented as
a form of preventative/proactive maintenance in a number
of systems, e.g., AT&T billing applications [17]1, telecom-
munications switching software [3], online transaction pro-
cessing (OLTP) servers [8], middleware applications [5]
and web/application-servers [22], as an approach to miti-
gate the effects of software aging – the degradation of the
state of a software system, which may eventually lead to
system performance degradation or crash/hang failure [1].

Strategies for rejuvenation can be divided into two classes:
time-based rejuvenation and prediction-based rejuvenation
[1]. With time-based rejuvenation state-restoration ac-
tivities are preformed at regular deterministic intervals,
whereas with prediction-based rejuvenation the time to re-
juvenate is based on the collection and analysis of system
data, e.g., resource metrics. State-restoration activities per-
formed during rejuvenation may include one or more of:
garbage collection, preemptive rollback, memory defrag-
mentation, therapeutic reboots, flushing and/or reinitializ-
ing data structures [8].

VM-Rejuv employs a prediction-based rejuvenation strat-
egy for mitigating the effects of software aging and tran-
sient failures on web/application-servers. Software ag-
ing and transient failures are detected through continuous
monitoring of system data and performance metrics of the
application-server; if some anomalous behavior is identified
the system triggers an automatic rejuvenation action [32].
Rejuvenation actions in VM-Rejuv take the form of pre-
ventative application-server restarts.

To minimize the disruption to clients due to an application-
server restart, VM-Rejuv employs redundancy and load-
balancing. Web-application servers are deployed under
VM-Rejuv in multiple virtual machines logically organized
in a cluster. Figure 1 shows the architecture of a VM-Rejuv
virtual machine cluster deployed on a single physical ma-
chine.

VM-Rejuv uses three virtual machines for a hosted web-
application: one VM to run a software load-balancer
(VM1), one VM to be the main/“active” application server
and one VM to be a hot-standby replica of the main appli-
cation server (VMs 2 and 3).

The first virtual machine, VM1, runs:

1The original proposal of the software rejuvenation technique by
Huang et al.



Figure 1. VM-Rejuv framework

• A load-balancer – the VM-Rejuv prototype uses Linux
Virtual Server (LVS) as its load-balancer [38]. LVS
is a layer-4 load-balancer, which provides IP-failover
and a number of load-balancing policies (round-robin,
weighted round-robin, etc.).
• An Aging detector – module for forecasting aging-

related failures. In the current VM-Rejuv prototype
the Aging detector uses simple threshold techniques
concerned with memory utilization [32].
• An Anomaly detector – module that detects anomalies

in VM2 and VM3 using threshold violations as indi-
cators of anomalies, e.g., throughput falling below a
preset threshold or response time exceeding a preset
threshold (SLA violations).
• A Data collector – module that collects statistics from

VMs 2 and 3 for analysis.
• A Watchdog – module that detects server outages.

VM-Rejuv uses ldirectord, which is used to monitor
and administer real servers in LVS clusters [29].
• Software Rejuvenation Agent (SRA) coordinator –

module that directs SRAs on VMs 2 and 3 to initiate
an application-server restart.

While virtual machines 2 and 3 run:

• The web-application server – the resource being load-
balanced and periodically rejuvenated.
• Software rejuvenation agents – modules that initiate

rejuvenation actions as directed by the SRA coordina-
tor.
• A set of probes – modules that collect statistics from

various sources including log files, (guest) operating
system kernel (e.g., CPU utilization, memory usage,
swap space, etc.) and application-server proxies (e.g.,
the P-probe module sits in front of the application-
server collecting statistics on throughput and latency).

2Server icons by Fast Icon Studio (http://www.fasticon.com) designed
by Dirceu Veiga. Client/workstation icons by Layered System Icons de-
signed by BogdanGC (http://bogdangc.deviantart.com/). Database icon by

Figure 2. VM-Rejuv deployment2

An example deployment of a web-application using VM-
Rejuv is shown in Figure 2. During its operation, client
requests to the web-application are routed by the LVS load-
balancer on VM1 to the application server on the active VM,
while the standby VM (and its application-server) remains
ready but inactive as a hot replica until a rejuvenation is
signaled by the SRA coordinator.

When a rejuvenation action is signaled, the active VM and
standby VM switch roles. New client requests are routed
to the application server on the standby VM (old standby
VM marked as the “new” active VM); the application-server
on the old active VM finishes processing any outstanding
requests before the local SRA agent restarts the applica-
tion server. The interval of time the old active VM spends
processing client requests that are in-flight/outstanding
when a rejuvenation is signaled is referred to as the pre-
rejuvenation delay-window.

The use of redundancy in VM-Rejuv and coordinated
switch-overs between the active VM and the standby VM
support application-server restarts that minimize the loss
of in-flight client-requests during rejuvenation. These ele-
ments combined with application-specific technologies like
session migration/replication (e.g., as found in the Apache
Tomcat web/application server [32]) allow rejuvenations
to be performed without disrupting clients, which poten-
tially improves the client-perceived availability of the web-
application.

Deploying a web-application under a prediction-based reju-
venation scheme like VM-Rejuv has a number of implica-
tions for its reliability, availability and serviceability.

Rejuvenation activities can be used as preventative mainte-
nance to avoid certain kinds of failures, e.g., memory-leaks
as shown in [32]. The use of redundancy and IP failover
allow clients to be shielded from the failure of the active
VM and minimizes disruptions due to preventative restarts.

DryIcons (http://dryicons.com).



These aspects of VM-Rejuv’s operation potentially improve
the web-application reliability, availability and serviceabil-
ity. However, the efficacy of problem detection/prediction
mechanisms, the frequency of rejuvenation actions, the suc-
cess rate of rejuvenation actions, and the size of the pre-
rejuvenation delay-window are all elements that can nega-
tively affect the RAS properties of an application deployed
under VM-Rejuv.

Problem detection/prediction mechanisms influence the rate
at which rejuvenation actions are initiated. Imperfect detec-
tion/predictions can result in too many or too few rejuvena-
tion actions.

Whereas too many rejuvenations may not disrupt clients
(due to the redundancy and fail-over) time spent waiting to
rejuvenate (the pre-rejuvenation delay-window) represents
a period of vulnerability during which a failure of the active
VM can affect clients. Further, frequent rejuvenations may
put the system in a state where the active and standby VMs
are constantly switching roles, indicating that the thresholds
used to trigger rejuvenations may be inappropriate or may
make the system unstable. Finally, rejuvenation actions
may also fail, e.g., application servers can fail to restart
or node-failover may be unsuccessful, in which case some
other mechanism would need to be in place to rectify the
situation. On the other hand, too few rejuvenations may re-
sult in failures/unplanned downtime, which could have been
avoided and may indicate inadequate fault/failure coverage
for the system.

In our evaluation of VM-Rejuv we wish to quantify the
effects of; the rejuvenation frequency, the success rate of
rejuvenation actions (node-failover and application-server-
restart), and the size of the pre-rejuvenation delay-window
on its reliability, availability and serviceability.

2.2 Evaluation Methodology

This section describes the six key elements of our eval-
uation; the system under test, the fault-model of inter-
est, the relationship between faults and the remediations
provided by VM-Rejuv, the micro-measurements (metrics
collected from the remediation mechanisms), the macro-
measurements (high-level measures of interest, e.g., facets
of reliability, availability and serviceability, used to score
the overall system) and the data collection infrastructure
(metric collectors) used.

System under test. For the system under test we use
the TPC-W web-application hosted on two Apache Tom-
cat web/application servers [36] under VM-Rejuv. Tom-
cat is a Java-based web/application server developed by
The Apache Foundation. Apache Tomcat is used as the

web-application server in the VM-Rejuv experiments since
a P-probe designed specifically for communicating perfor-
mance statistics from Tomcat to the SRA coordinator is in-
cluded in the VM-Rejuv prototype 3.

Fault model. VM-Rejuv’s main detection mechanisms use
the violation of response time and/or throughput thresholds
to indicate that a rejuvenation action is required. We iden-
tify faults that can be used to trigger these detection mech-
anisms. Severe memory leaks affect both throughput and
response time, degrading these performance metrics [32] in
application servers. We use Kheiron/JVM [13]4 to inject
memory leaks into the web-application servers deployed
under VM-Rejuv.

Fault-remediation relationship. VM-Rejuv initiates a
node-failover and signals a rejuvenation (application-server
restart) action in response to throughput or response time
violations or application server crashes.

Micro-measurements. For micro-measurements we col-
lect metrics on: the time for node-failover, the frequency
of rejuvenation actions, the success of a rejuvenation, the
size of the pre-rejuvenation delay-window, and application-
server restart, server-side estimates of request throughput,
and response time client-side goodput via instrumenting
parts of VM-Rejuv (specifically the SRA agent coordina-
tor and the SRA agents), and parsing application-server
logs and parsing TPC-W client logs (client-side goodput is
reported as the number of web-interactions performed by
TPC-W clients).

Macro-measurements. For macro-measurements we use
the seven node, six parameter scoring model shown in Fig-
ure 3, with parameter descriptions in Table 2, to quantify
facets of reliability, availability and serviceability for VM-
Rejuv deployments.

The structure of our model is designed to focus on the fol-
lowing high-level activities in VM-Rejuv; the rejuvenation
cycle, active VM loss during normal operation, and active
VM loss during rejuvenation (Table 1).

Rejuvenation cycle S0 → S1 → S2 → S0

Active VM loss S0 → S3 → S4 → S2 → S0

during normal
operation
Active VM loss S0 → S1 → S5 → S6 → S2 → S0

during rejuvenation S0 → S1 → S2 → S5 → S6 → S2 → S0

Table 1. VM-Rejuv RAS model structure

In constructing this model we make the following simplify-
ing assumptions. All state transitions in VM-Rejuv are ex-

3The Tomcat P-probe is a Java class that is installed as a filter [34] in
the pipeline that processes requests received by the application-server.

4Kheiron/JVM uses bytecode rewriting and the Java Virtual Machine
Tool Interface (JVMTI)[35] to interact with running Java programs.



ponentially distributed, and the rate of failure during normal
operation (S0 → S3) and the rate of failure during rejuve-
nation (S1 → S5 and S2 → S5) is kept the same5.

The facets of reliability, availability and serviceability that
we quantify using our RAS model include:

• Reliability – frequency of active VM failures during
rejuvenation (transitions from S1 to S5 and from S2 to
S5).
• Availability – basic steady state availability (propor-

tion of time spent in S0, which excludes time spent re-
juvenating) and tolerance availability [15] (proportion
of time spent in S0, S1 and S2, which includes time
spent rejuvenating). We use these two facets of avail-
ability to distinguish between the administrator’s per-
spective and the client’s perspective on system avail-
ability respectively6. This differentiation is discussed
at the end of §2.3 when we present our results.
• Serviceability – mean time to system restoration. We

also quantify this from the perspectives of both the ad-
ministrator and the client.

Figure 3. VM-Rejuv RAS model

Workload and metric collectors. Scripts that parse TPC-
W client logs, Tomcat logs, SRA coordinator logs and SRA
agent logs are used to gather micro-measurement data.

2.3 VM-Rejuv Evaluation

We create a test deployment of VM-Rejuv consisting of
three virtual machines co-located on a single physical ma-
chine. VM1 is configured with 640 MB RAM, 1GB swap,
2 virtual CPUs and an 8GB harddisk. VM2 and VM3 are
each configured with 384 MB RAM, 512 MB swap, 2 vir-
tual CPUs and 8GB harddisks. All three VMs run Centos
5.0 with a Linux 2.6.18-8.el5 SMP kernel.

5The memoryless property of the CTMC does not account for the fact
that in practice the rate of failure in S2 may be lower after a failure occurs
during S1 than it would be if no failure occurred in S1.

6Arguably system designers are interested in both of these metrics.

S0
state where active VM services requests
and standby remains VM ready

S1

state where VM-Rejuv prepares to
rejuvenate the active VM and the
standby VM becomes the new active
VM servicing new client requests

S2
state where old active VM is ready to
rejuvenate

S3
state where the active VM has failed
during normal operation

S4

state where the failure of the active
VM has been
detected

S5

state where the new active VM (the old
standby VM) has failed while the old
active VM is rejuvenating

S6

state where the failure of the active
VM during rejuvenation has been
detected

λrejuv rate of rejuvenation

λfailure
forced/induced rate of failure of
the active VM

µpre rejuv delay size of pre-rejuvenation delay-window

µapp svr restart
mean time to restart/rejuvenate the
application server on the active VM

µdetect active vm failure
mean time to detect that the active
VM has failed/crashed

µnode fail over
mean time to failover to
the standby VM

Table 2. VM-Rejuv RAS model

To enable LVS load-balancing, the network interface on
VM1 is configured with two IP addresses, one public IP
address and one private IP address (192.168.1.xxx). Our
LVS configuration is based on LVS-NAT [37]. VM2
and VM3 are configured with private IP addresses only
(192.168.1.xxx). VM2 and VM3 can route to VM1 only,
whereas VM1 can route to VMs 2 and 3 and the internet.

The physical machine hosting the VMs is configured with 2
GB RAM, 2 GB swap, an Intel Core Duo E6750 Processor
(2.67 GHz) and a 228 GB harddisk running Windows XP
Media Center Edition SP2.

The VM-Rejuv configuration used in our experiments is
identical to that shown in Figure 2 except that the database
is installed on VM1 (the VM with the load-balancer).
We install Apache Tomcat v5.5.20 and Sun Microsystems’
Hotspot Java Virtual Machine v1.5 on VMs 2 and 3 as well
as instances of the TPC-W web-application. We use the
MySQL 5.0.27 database server to store the TPC-W web-
application data, and this is installed on VM1. The TPC-W
web-application instances on VMs 2 and 3 are configured to
access the database server on VM1. The LVS tools (IPVS
v1.2.1 and ipvsadm v1.24) are installed on VM1 [37]. The
following VM-Rejuv components are installed on the three
VMs: the SRA coordinator, ldirectord watchdog, response
time and throughput monitors are installed on VM1 while



the SRA agents are installed on VM2 and VM3.

The VM-Rejuv prototype works with the Apache Tomcat
web/application server [32]. Whereas the components of
VM-Rejuv are written in Java, operations such as rejuvenat-
ing application servers and updating LVS tables for failover
are facilitated by shell scripts called from Java using the
java.lang.Runtime::exec() API. To restart/rejuvenate Tom-
cat, VM-Rejuv’s SRA agents invoke the shutdown.sh and
startup.sh scripts in the bin directory under the Tomcat in-
stallation directory, while updates to the LVS table to desig-
nate the new active VM are performed via calls to the Linux
Virtual Server Administration utility, ipvsadm.

We simulate a client load of 50 TPC-W clients using the
Shopping Mix[24] as their web-interaction strategy.

During 15 failure-free runs, each lasting 22 minutes, the av-
erage number of client-side interactions recorded is 7745.2
± 748.9 (Figure 4). Figures 5 and 6 show a 10 minute sam-
ple of the throughput and response time data reported by
VM probes during one of our failure-free runs. From our
failure-free runs the average throughput is∼13 requests per
second and the average response time is ∼11 ms. We use
the server-side throughput and response time numbers re-
ported to set the SLA violation thresholds for VM-Rejuv
and inject faults that result in the violation of these thresh-
olds, triggering rejuvenation actions so we can estimate the
parameters for our scoring model.

Figure 4. VM-Rejuv baseline performance (client-side
interactions)

To estimate the size of the rejuvenation window, we set VM-
Rejuv’s response time violation threshold at mean response
time (11 ms) and re-run the workload of 50 clients. VM-
Rejuv triggers rejuvenations after four consecutive SLA vi-

6Server icons by Fast Icon Studio (http://www.fasticon.com) designed
by Dirceu Veiga. Client/workstation icons by Layered System Icons de-
signed by BogdanGC (http://bogdangc.deviantart.com/).

Figure 5. VM-Rejuv baseline throughput

Figure 6. VM-Rejuv baseline response time

olations. During three 22 minute runs we observe an aver-
age of 4 rejuvenation actions per run. During rejuvenation
actions, the mean failover time is 25.62 msecs± 3.46 msecs
(see Figure 7) with a mean pre-rejuvenation delay window
size of 14,769 msecs ± 5,420 msecs (see Figure 8).

In our fault-injection experiments we subject both Tomcat
application servers deployed under VM-Rejuv to memory
leaks that result in resource exhaustion within 5.53 minutes7

(332.017 seconds) of running the 50 client TPC-W work-
load. We set VM-Rejuv’s response time violation threshold
to the mean response time of the failure-free runs (11 ms)
and measure the frequency of rejuvenations, and the size
of the pre-rejuvenation delay window. Introducing mem-
ory leaks in the Tomcat application servers increases the re-
sponse time and delays the rejuvenation of the old active

7Whereas we acknowledge that a system that runs out of memory every
5.53 minutes would be quickly redesigned or abandoned by its user base
(see §3 for more discussion on this), our goal is to evaluate VM-Rejuv
under an aggressive memory-leak scenario.



Figure 7. VM-Rejuv VM failover time

Figure 8. VM-Rejuv rejuvenation window size (50
clients)

VM after the standby server is brought online, since the old
active VM must service outstanding requests before it reju-
venates. Table 3 summarizes the results from five 22 minute
memory-leak experiments.

Using a mean rejuvenation interval of 154.06 seconds, mean
rejuvenation window size of 27,401.52 msecs and mean
failover time of 28.94 msecs, we score the VM-Rejuv de-
ployment using the RAS model in Figure 3. The mean time
to restart Tomcat during the memory leak experiments is 3
seconds and the mean time to detect a server outage (via the
ldirectord watchdog) is 5 seconds.

The steady-state probabilities of the VM-Rejuv model are
shown in Table 4 and model analysis results are shown in
Table 5.

Using the scoring model we can estimate the number of ac-
tive VM failures (Favf ) expected during rejuvenation ac-
tions per day, i.e., the frequency of transitions from S1 to

Run # Rejuvenation Rejuvenation Failover Pre-rejuvenation
actions interval time delay window

(secs) (msecs) (msecs)
1 8 155.47 33.88 34,657.63
2 9 142.13 31.63 18,321.38
3 6 155.76 27.20 16,175.60
4 7 149.08 24.71 37,538.57
5 8 167.86 27.29 30,314.43
Avg 7.6 154.06 28.94 27,401.52

Table 3. VM-Rejuv subjected to memory leaks

π0 0.824673
π1 0.135495
π2 0.023510
π3 0.012419
π4 0.000072
π5 0.002395
π6 0.001437

Table 4. VM-Rejuv steady state probabilities – memleak
scenario

S5 (FS1→S5 ) plus the frequency of transitions from S2 to
S5 (FS2→S5 ). This we estimate at 41 per day under the
failure conditions used in our experiments (1 memory-leak
failure every 5.53 minutes).

From the steady-state probabilities of the model we estimate
that the deployment spends ∼82% of the time in its normal
operating mode/configuration, π0, and∼16% of its time re-
juvenating (π1 + π2). While rejuvenations are taking place
client-requests are serviced by the standby VM; as a result
the system would be considered UP from the client’s per-
spective in states {S0, S1, S2} – UPclient = 1416.5 min-
utes per day (98.37%) and DOWN 23.5 minutes per day
(1.63%). Administrators on the other hand may consider
the system to be UP if it is in state S0 since states S1 and
S2 represent a window of vulnerability. From the adminis-
trator’s perspective the system is UPadmin = 1187.5 min-
utes per day (82.47%) and DOWN 252.5 minutes per day
(17.53%), of which 229 minutes are spent performing reju-
venation actions.

Similarly, the mean time to system restoration can be quan-
tified from the perspective of the client and the administra-
tor. For the client, this is the mean time to restore the system
to a state in {S0, S1, S2}, MTTSRclient = 5, 509 msecs,
whereas for the administrator this is the mean time to restore
the system to S0, MTTSRadmin = 22, 373 msecs.

In state S1 clients still connected to the old active VM may
experience some performance degradation and even lose re-
quests if the degree of resource depletion on the old active
VM is so severe that it cannot clear its backlog before the
other VM needs rejuvenating. Further, increasing the size
of the pre-rejuvenation delay window (either through miss-
ing rejuvenation opportunities or imperfect prediction) in-
creases the time spent in S1 (waiting for the backlog to clear



Measure Metrics Results

Reliability Frequency of active VM failures 41.377455
during rejuvenation per day
Favf = FS1→S5 + FS2→S5

Availability

Basic steady-state availability 0.824673
(UPadmin = {S0})
Tolerance availability 0.983678
(UPclient = {S0, S1, S2})

Serviceability

Mean-time to system restoration 22,373 msecs
(UPadmin = {S0})
Mean-time to system restoration 5,509 msecs
(UPclient = {S0, S1, S2})

Table 5. Summary of VM-Rejuv RAS model analysis

at the resource-depleted old active VM), which places the
system in a state where it is vulnerable to a failure of the
current active VM.

3 Discussion

3.1 Model Sensitivity

In our evaluation of VM-Rejuv we build an RAS model of
a web-application deployed under VM-Rejuv and we use
an aggressive failure scenario (memory leak) to exercise its
remediation mechanisms and estimate parameters for the
RAS model. One question to consider, is the sensitivity
of our analytical results to changes in the parameter esti-
mates. Table 6 shows how the RAS measures calculated for
VM-Rejuv are expected to change as the rate of resource ex-
haustion (λfailure) is varied. In our sensitivity analysis we
focus on varying the rate of failure for the following reason.
The rate of resource exhaustion chosen for our experiments
is overly aggressive; whereas this allows us to stress the
self-healing mechanisms of VM-Rejuv, a system that actu-
ally runs out of resources within 5 minutes would likely be
discarded and re-implemented. As a result, we use longer
time horizons for resource exhaustion related failures in our
sensitivity analysis (Table 6).

λfailure 1 hr 1 day 1 week
Favf per day 3.94087 0.16479 0.02354
UPclient 0.99847 0.99994 0.99999
UPadmin 0.83427 0.83515 0.83518
MTTSRclient 5,517 ms 5,518 ms 5,518 ms
MTTSRadmin 29,349 ms 30,355 ms 30,394 ms

Table 6. Sensitivity of VM-Rejuv RAS model to varia-
tions in resource exhaustion rates (λfailure)

A second question to consider is the impact of the rate of
rejuvenation on VM-Rejuv deployments. To reason about
this, we look at the steady state probability of being in
state S3, this state captures resource exhaustion failures
that occur during normal operation. Intuitively we expect

that early/frequent rejuvenation actions reduce the total time
spent in S3 (lower steady-state probability) whereas wait-
ing longer to rejuvenate increases the total time spent in S3

(higher steady-state probability) as shown in Figure 9.

Figure 9. Sensitivity of VM-Rejuv RAS model to varia-
tions in the rate of rejuvenation λrejuv

3.2 Possible Limitations of VM-Rejuv

In VM-Rejuv the combination of redundancy, node-failover
and timely rejuvenations greatly improves system availabil-
ity. Whereas rejuvenation is expected to take place in a
manner that is transparent to the end-user, we identify two
possible limitations of a VM-Rejuv deployment along with
possible mitigations for each.

Performance degradation during rejuvenation. Whereas
redundancy and fail-over allows users to be switched from
one server to another without interruption to their work-
flow, there may be performance penalties for doing so. For
example, switching between servers (i.e., changing server
roles) may lead to some performance perturbations as the
new server warms up to the load (machine affinity effects).
Reasoning about any such degradation can be done by con-
verting our RAS model into a Markov Reward Network and
assigning different throughput values (for example) to states
Snormal = {S0} and Srejuvenating = {S1, S2}. Further, in
a real deployment, close monitoring of the variation in per-
formance during rejuvenation will allow operators to detect
whether rejuvenation actions adversely affect users. Any
performance perturbations during rejuvenation will be ex-
acerbated by excessive rejuvenation actions.

System degradation/vulnerability due to too few reju-
venations or failed rejuvenations. Too few rejuvenations
can adversely affect the duration of rejuvenation cycles
(more specifically they can increase the size of the pre-
rejuvenation delay window). Short pre-rejuvenation delays



imply that the server to be rejuvenated, quickly clears its
backlog of outstanding requests. To the extent that this oc-
curs, users are less likely to be affected by any interrup-
tions. However, inaccurate predictions of when to rejuve-
nate can result in resource depletion so severe that the re-
juvenating server cannot process its outstanding workload.
Tracking the “drain-rate” and request-queue length of the
rejuvenating server and employing a threshold on waiting
for outstanding requests to complete can be used to reduce
the amount of time the system/deployment is without a re-
serve node to failover to.

3.3 Improving the evaluation

Using multiple models. In this paper we present a simple
model of VM-Rejuv based on CTMCs, however, we neither
claim that ours is the only possible model of the system nor
that CTMCs are the best modeling formalism to use. Rather,
we expect there to be multiple models, some of which may
be based on more sophisticated formalisms, e.g., Petri Nets,
SANs, etc. Further, these models may focus on the entire
system or on specific sub-systems or behavioral character-
istics of the system depending on the measures of interest.
Multiple models can then be composed and included as part
of an in-depth system-evaluation. Finally, whereas we cre-
ated a model of VM-Rejuv, other models of VM-Rejuv (or
some other system of interest to evaluators) could originate
from system vendors and/or the research community as has
occurred with TCP [27].

4 Related Work

The analytical tools – Continuous Time Markov Chains
(CTMCs) – and techniques for their analysis have been well
studied and used by others to study many aspects of com-
puting system behavior. For example, Markov chains have
been used in the study and analysis of dependable and fault-
tolerant systems and the techniques used to realize them.
Examples include analyses of RAID (Redundant Arrays of
Inexpensive Disks) [23], telecommunication systems [21]
and Memory Page Retirement (MPR) in Solaris 10 [10].
They have also been used in the study of software aging [4]
and in evaluating the efficacy of preventative maintenance
(software rejuvenation).

[14], [21] and [26] provide a rigorous discussion of the
mathematical principles (probability theory and queuing
theory) underlying Markov chains and Markov reward net-
works as well as techniques for their analysis and solution.

[19] and [2] discuss techniques for the computationally
tractable analysis and solution of Markov models. These

techniques are available in the SHARPE [30] modeling tool,
which we use in the construction and analysis of the RAS
model for VM-Rejuv.

Performability [25] provides unified measures for consid-
ering the performance and reliability of systems together.
Markov reward networks [14] have been used as a formal-
ism for establishing this link between the performance of
a system and its reliability. Other formalisms used in per-
formability analysis include Stochastic Petri Nets (SPNs)
[21] and Stochastic Activity Networks (SANs) [31], which
are both built on top of Markov chains. SPNs and SANs
allow for more detailed and sophisticated modeling of a
system’s operation, e.g., modeling concurrent activities in
a system.

[7] describes work towards a self-healing benchmark. The
authors identify a number of challenges to benchmarking
self-healing capabilities including: quantifying healing ef-
fectiveness (identifying different metrics to quantify the im-
pact of disturbances), accounting for incomplete healing
and accounting for healing specific resources (spare disks,
hot standbys, etc.). In our evaluation of VM-Rejuv we
use RAS models based on Markov Chains to link low-
level metrics from the mechanism (rejuvenation rates, pre-
rejuvenation delay window sizes, etc.) to different facets of
reliability, availability and serviceability.

5 Conclusions and Future Work

In this paper we construct an evaluation framework for VM-
Rejuv using simple probabilistic models (CTMCs) and run-
time fault-injection tools. We use our model and experimen-
tal results to reason about the efficacy of VM-Rejuv from
the perspective of the designer, operator and end-user, iden-
tify its limitations and discuss possible mitigation strategies
for addressing these limitations.

For future work we are packaging and integrating these
models into system monitoring/management/analysis tools.
To this end, we are encouraged by early successes [12]
replicating our VM-Rejuv evaluation and analysis in the
StackSafe Test Center [33], a pre-production staging, test-
ing and analysis platform targeted at IT Operations teams8.
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