Baiting Inside Attackers using Decoy Documents

Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, Salvatore J. Stolfo
Department of Computer Science
Columbia University
New York, NY 10027

Abstract— The goal of this work is to design insider at-
tack mitigation strategies to thwart and deter insider attacks,
and challenge security professionals to design and develop
more sophisticated security architectures than is presently the
norm.Insider attack detection is unlikely to be solved by a single
technology solution, but rather by a set of detection techniques
that are hard to avoid by a clever adversary. At the core of
any approach to detect malfeasance is a monitoring technology
that audits and analyses system events, whether these events are
initiated by a user directly or indirectly by a proxy such as
planted malware. The goal of such a monitoring infrastructure
is to detect suspicious acts that are clear violations of policy.
We posit that no one monitoring infrastructure alone will do
the job effectively. Sophisticated insiders may easily avoid one or
more detectors. Instead, one must design a ”web of detectors”
that may be stealthy and hard to avoid. In our work, we
have developed tools and techniques to monitor user-initiated
events using host-level sensors. We have also developed new trap-
based decoy techniques and technologies that are designed with
multiple detectable elements, including watermarked documents
with embedded beacons and decoy credentials recognized by
external monitoring infrastructures (eg., available at remote
banking sites). The combination of host-level sensors, trap-based
defenses and (remote) network detectors provides a formidable
defense against insider attack.

I. INTRODUCTION

Much research in computer security has focused on the
means of preventing unauthorized and illegitimate access to
systems and information. Unfortunately, the most damaging
malicious activity is the result of internal misuse within an
organization, perhaps since far less attention has been focused
inward. Despite classic internal operating system security
mechanisms and the body of work on formal specification of
security and access control policies, including Bell-LaPadula
[1] and the Clark-Wilson models [4], we still have an extensive
insider attack problem. Indeed in many cases, formal security
policies are incomplete and implicit or they are purposely
ignored in order to get business goals accomplished. There
seems to be little technology available to address the insider
threat problem.

Insider attack has overtaken viruses and worm attacks as
the most reported security incident according to a report from
the US Computer Security Institute (CSI) [20]. The annual
Computer Crime and Security Survey for 2007 surveyed
494 security personnel members from US corporations and
government agencies, finding that insider incidents were cited
by 59 percent of respondents, while only 52 percent said they
had encountered a conventional virus in the previous year. The
state-of-the-art seems to be still driven by forensics analysis

after an attack, rather than technologies that prevent, detect,
and deter insider attack.

We define insider threats by differentiating between Mas-
queraders (attackers who impersonate another inside user) and
Traitors (an inside attacker using their own legitimate creden-
tials). One possible solution for masquerade detection involves
anomaly detection [19]. In this approach, users actions are
profiled to form a baseline of normal behavior. Subsequent
monitoring for abnormal behaviors that exhibit large deviations
from this baseline [17] signal a potential insider attack. The
common strategy to prevent inside attacks involves policy-
based access control techniques to limit the scope of systems
and information an insider is authorized to use, and hence,
limit the damage the organization may incur when an insider
goes awry. Prevention techniques may not always succeed, and
thus, monitoring and detection techniques are needed when
prevention fails. In this paper, we are focused on different
techniques aimed at detecting masqueraders and traitors.

We note that some external attackers can become insiders
when an outsider attains internal network access. Many attacks
use spyware and rootkits [3], which give outsiders internal
access. Such software can easily be installed on systems
from physical or digital media (e.g., email, downloads, etc.)
and allow an attacker administrator or “root” access on a
machine along with a means to gather sensitive data. Rootkits
have the ability to conceal themselves and elude detection,
especially when the rootkit is previously unknown, as is true
in zero-day attacks [8]. An external attacker that manages to
install rootkits internally in effect becomes an insider, thereby
multiplying the ability to inflict harm. Although the techniques
described in this paper may have utility for these cases, in
this paper our primary focus is on human insiders attempting
to exfiltrate sensitive information. By exfiltration we mean
unauthorized copying and transmission of information by any
means including human memory.

The insider attack defense system described in this paper
is of an offensive nature, intended to confuse and deceive
a traitor by leveraging uncertainty, to reduce the knowledge
they ordinarily have of the systems and data they might be
authorized to use. This work considers methods to detect
insider actions against enterprise systems as well as indi-
vidual hosts and laptops. We introduce a deception system
to distribute potentially large amounts of decoy information
with the aim to detect nefarious acts as well as to increase
the workload of an attacker to identify real information from
bogus information, rather than providing unfettered access

as broadly exists today. We developed a system to generate
and place decoy documents within a file system. Our system
generates decoy documents containing decoy credentials that
are monitored (e.g., Gmail credential monitoring) for misuse
and stealthily embedded beacons that signal an alert when
the document is opened. Beacons are embedded in documents
using methods of deception and obfuscation gleaned from
studying malcode embedded inside documents as seen in the
wild [16]; we thus turn the tables on attackers.

To achieve the goal of wide spread deception we must
consider methods to trap a wide variety of potential insiders
with varying levels of sophistication. Toward this goal, we
developed a proof-of-concept system we call D3, the Decoy
Document Distributor system. Samples of D? generated doc-
uments are presented in the Appendix. The contributions of
this paper include:

e A novel set of generally applicable properties are pro-
posed to guide the design and deployment of decoys and
maximize the deception they induce for different classes
of insiders who vary by their level of knowledge and
sophistication.

o A large-scale automated creation and management system
for deploying decoys that can detect the presence (and,
in some cases, “identity””) of malicious insiders, or at
least indicate malicious insider activity. This provides
a means for ordinary users to deploy honey documents
without having to setup sophisticated honeypot systems
and sensors.

e An offensive trap-based defense system is proposed to
detect masqueraders and traitors, and to flood attackers
with bogus exfiltrated information that they must analyze
in order to find real information of value. Hence, our
long term goal is to flood the miscreant marketplace with
bogus information devaluing their quarry.

o A design of decoy information that combines a number of
methods and monitors, both internal and external, to de-
tect insider exploitation using a common and ubiquitous
set of baited targets, ordinary looking documents.

1) A watermark is embedded in the binary format of
the document file to detect when the decoy is loaded
in memory, or egressed in the open over a network.

2) A “beacon” is embedded in the decoy document
that signals a remote website upon opening of the
document indicating the malfeasance of an insider
illicitly reading bait information.

3) If these methods fail to detect an insider attack or
an exfiltration of baited documents, the content of
the documents contain bait and decoy information
that is monitored as well. Bogus logins at multiple
organizations as well as bogus and realistic bank
information is monitored by external means.

e An easy to use system to broadly deploy decoys to
ordinary users who are alerted by email when a decoy has
been touched on their laptops and personal computers; no
such system presently exists.

The reader is encouraged to visit the Decoy Document Dis-
tribution (D3) website to evaluate our technology developed
to date at: http://www.cs.columbia.edu/ids/RUU/Dcubed!.

II. RELATED WORK

The use of deception, or decoys, plays a valuable role in the
protection of systems, networks, and information. The first use
of decoys (i.e., in the cyber domain) has been credited to Cliff
Stoll [27], [24] and detailed in his novel “The Cuckoos Egg”
[25], where he provides a thorough account of his crusade
to catch German hackers breaking into Lawrence Berkley
Laboratory computer systems. Stoll’s methods included the
use of bogus networks, systems, and documents to gather
intelligence on the German attackers who were apparently
seeking state secrets. Among the many techniques waged, he
crafted “bait” files, or in his case, bogus classified documents
that really contained non-sensitive government information
and attached “alarms” to them so that he would know if anyone
accessed at them. To Stoll’s credit, a German hacker was
eventually caught and it was found that he had been selling
secrets to the KGB.

Deception-based information resources that have no pro-
duction value other than to attract and detect adversaries (like
those used by Stoll) are commonly known as Honeypots [11].
Honeypots serve as effective tools for profiling attacker behav-
ior and to gather intelligence to understand how attackers oper-
ate. Honeypots are considered to have low false positive rates
since they are designed to capture only malicious attackers,
except for perhaps an occasional mistake by innocent users.
Spitzner described how honeypots can be useful for detecting
insider attack[23], in addition to the common external threats
for which they are traditionally known. He discusses the use
of honeytokens, which he defines as “a honeypot that is not
a computer” [24], citing examples that include bogus medical
records, credit card numbers, and credentials, with descriptions
of how they can be used to detect malicious insiders [23],
[24]. In current systems, the decoy/honeytoken creation is
a laborious and manual process requiring large amounts of
administrator intervention. In contrast, we propose the seeding
of decoy information (of various different types) throughout an
operational system. Our work extends these basic ideas to an
automated system of managing the creation and deployment
of these honeytokens.

Yuill et al. [27] extend the notion of honeytokens with a
“honeyfile system” to support the creation of bait files, or
as they define them, “honeyfiles.” The honeyfile system is
implemented as an enhancement to the Network File Server.
The system allows for any file within user file space to become
a honeyfile through the creation of a record associating a
filename to userid. The honeyfile system monitors all file
access on the server and alerts users when honeyfiles have
been accessed. Their work does not focus on the content or
automatic creation of files, but they do elicit some of the

'Some features are restricted for internal use only.

challenges of creating deceptive files (with respect to names)
that we address in section 4.

In this paper, we introduce a set of properties of decoys
to guide their design and maximize the deception they induce
for different classes of insiders who vary by their level of
knowledge and sophistication. To the best of our knowledge,
the synthesis of these properties is indeed novel a contribution.
Bell and Whaley [2] have described the structure of deception
as a process of hiding the real and showing showing the
false. They introduce several methods of hiding that include
masking, repackaging, and dazzling, along with three methods
of showing that include mimicking, inventing, and decoying.
Yuill et al. [28] expand upon this work and characterize
deceptive hiding in terms of how it defeats an adversary’s
discovery process. They describe an adversary’s discovery
process as taking three forms: direct observation, investigation
based on evidence, and learning from other people or agents.
Their work offers a process model for creating deceptive
hiding techniques based on how they defeat an adversary’s
discovery process.

The decoy documents introduced in this paper utilize similar
deception mechanisms as well as beacons to signal a remote
detect and alert in real-time time when a decoy has been
opened. Web bugs are a form of silent embedded beacons
which have been used to track user habits of web or email.
Web bugs are a class of silent embedded tokens which have
been used to track usage habits of web or email users [18].
Unfortunately, they have been most closely associated with
unscrupulous operators, such as spammers, virus writers, and
spyware authors who have used them to violate users privacy.
Typically they will be embedded in the HTML portion of
an email message as a non-visible white on white image,
but they have also been demonstrated in other forms such
as Microsoft Word, Excel, and PowerPoint documents [22].
When rendered as HTML, a web bug triggers a server update
which allows the sender to note when and where the web bug
was viewed. Animated images allow the senders to monitor
how long the message was displayed. The web bugs operate
without alerting the user of the tracking mechanisms. The
advantage for legitimate advertisers is that this allows them to
monitor advertisement effectiveness, while privacy advocates
worry that this technology can be misused to spy on users’
habits. Our work leverages the same ideas, but extends them
to other document classes and is more sophisticated in the
methods used to draw attention. In addition, our targets are
insiders who should have no expectation of privacy on a
system they violate.

III. THREAT MODEL - LEVEL OF SOPHISTICATION OF THE
ATTACKER

The insider seeks to identify and avoid the decoys and
abscond with “real” information. We broadly define four
monotonically increasing levels of insider sophistication and
capability. Some will have tools available to assist in deciding
what is a decoy and what is real. Others will only have their
own observations and thoughts.

Low: Direct observation is the only tool available.
The adversary largely depends on what can be
gleaned from a first glance. We strive to defeat
this level of adversary with our beacon documents,
even though decoys with embedded beacons may be
distinguished with more advanced tools.

Medium: A more thorough investigation can be per-
formed by the insider; decisions based on other, pos-
sibly outside evidence, can be made. For example, if
a decoy document contains a decoy account creden-
tial for a particular identity, an adversary may verify
that the particular identity is real or not by querying
an external system (such as www.whitepages.com).
Such adversaries will require stronger decoy infor-
mation possibly corroborated by other sources of
evidence.

High: Access to the most sophisticated tools are
available to the attacker (e.g., super computers, other
informed people who have organizational informa-
tion). The notion of the “Perfect Decoy” described in
the next section may be the only indiscernible decoy
by an adversary of such caliber.

Highly Privileged: Probably the most dangerous of
all is the privileged and highly sophisticated user.
Such attackers might even be aware that the system
is baited and will employ sophisticated tools to try
to analyze, disable, and avoid decoys entirely. As an
example of how defeating this level of threat might
be possible, consider the analogy with someone who
knows encryption is used (and which encryption
algorithm is used), but still cannot break the system
because they do not have knowledge of an easy-to-
change operational parameter (the key). Likewise,
just because someone knows that decoys are used
in the system does not mean they should be able to
identify them. This is the principal- coming up with
a scheme to satisfy it remains an open problem.

IV. GENERATING AND DISTRIBUTING BAIT

In order to create decoys to bait various levels of insiders,
one must understand the core properties of a decoy that will
successfully bait an insider.

A. Decoy Properties

We enumerate various properties and means of measuring
these properties that are associated with decoy documents to
ensure their use will be likely to snare an inside attacker.

Believable?: Capable of eliciting belief or trust;
capable of being believed; appearing true; seem-

ing to be true or authentic.
A good decoy should make it difficult for an adversary to
discern whether they are looking at an authentic document
from a legitimate source or if they are indeed looking at

2For clarity, each property is provided with its definition gleaned from
online dictionary sources.

a decoy. We conjecture that believability of any particular
decoy can be measured through experiment. We define a decoy
believability experiment as follows:

e Choose two documents such that one is the decoy we
wish to measure the believability of and the second is
chosen at random from a pool of authentic documents.

e Select a volunteer at random to participate in a user study.

e The volunteer is given access to the documents chosen
in step one and tasked to decide which of the two is
authentic.

For concreteness, we build upon the definition of “Perfect
Secrecy” proposed in the cryptography community [13] and
define a “perfect decoy” to be a decoy that is chosen in a
believability experiment with a probability of 1/2 (the outcome
that would be achieved if the volunteer decided completely at
random). That is, a perfect decoy is one that is completely
indistinguishable from one that is not. A benefit of this defini-
tion is that the challenge of showing a decoy to be believable,
or not, reduces to the problem of creating a “distinguisher”
that can decide with probability better than 1/2.

In practice, the construction of a “perfect decoy” might
be unachievable, especially through automatic means, but the
notion remains important as it provides a goal to strive for in
our design and implementation of systems. For many threat
models, it might suffice to have less than perfect believable
decoys. For our proof-of-concept system described below,
we generate receipts and tax documents, and other common
form-based documents with decoy credentials, realistic names,
addresses and logins, all information that is familiar to all
users.

We note that the believable property of a decoy may be
less important than other properties defined below since the
attacker may have to open the decoy in order to decide whether
the document is real or not. The act of opening the document
may be all that we need to trap the insider, irrespective of the
believability of its content. Hence, enticing an attacker to open
a document may be a more effective defense strategy.

Enticing: highly attractive and able to arouse
hope or desire; ‘““an alluring prospect”; lure.

Herein lies the issue of how does one measure the extent
to which a decoy arouses desires, how well is it a lure? One
obvious way is to create decoys containing information with
monetary value, such as passwords or credit card numbers that
have black market value [15], [26].

However, enticement depends upon the attacker’s intent.
Hence, we posit that by defining several general categories
of “things” that are of “attacker interest”, one may compose
decoys using terms or words that correspond to desires of
the attacker that are overwhelmingly enticing. For example,
if the attacker desires money, any document that mentions or
describes information that provides access to money should
be highly enticing. We believe we can measure frequently
occurring (search) terms associated with major categories of
interest and use these as the constituent words in decoy
documents. To measure the effectiveness of this generative

strategy, it should be possible to execute content searches and
count the number of times decoys appear in the top 10 list
of displayed documents. This is a reasonable approach also,
to measuring how conspicuous, defined below, the decoys
become based upon the attacker’s searches associated with
their interest and intent.

Conspicuous: easily visible; easily or clearly vis-

ible; obvious to the eye or mind; Attracting

attention.

Here, a conspicuous decoy should be easily found or ob-
served. When a user first logs in, a conspicuous decoy should
either be in full view on the desktop, or viewable after one
(targeted) search action. One simple user action is optimal for a
highly conspicuous decoy. Thus, a measure of conspicuousness
may be a count of the number of search actions needed, on
average, for a decoy to appear in full view. The decoy may be
stored in the file system anywhere if a simple content-based
search locates it in one step. But, this search act depends
upon the query executed by the user. The query can either
be a location (eg., search for a directory named “TAX” in
which the decoy appears) or a content query (eg., using Google
Desktop Search for documents containing the word “TAX.’)
In either case, if a decoy document appears after one such
search, it is conspicuous. But, this depends upon what search
terms the attacker uses to query! If the decoy never appears
because the attacker used the wrong search terms, the decoy
is not conspicuous. We posit that the property of enticing is
likely the most important property, and a formal measure to
evaluate enticement will generate better decoys. In summary,
an enticing decoy should be conspicuous to be an effective
decoy trap.

Detectable; to discover or catch (a person) in
the performance of some act: to detect someone
cheating.

We designed the decoy documents with several techniques
to provide a good chance of detecting the malfeasance of an
inside attack in real-time.

e At time of application start-up, the decoy document emits

a beacon alert to a remote server.

e At the time of memory load, a host-sensor, such as an
AV scanner, may detect embedded tokens placed in a
clandestine location of the document file format.

o At the time of exfiltration, a NIDS such as Snort may be
used to detect these embedded tokens during the egress
of the decoy document in network traffic where possible.

e At time of information exploitation and/or credential
misuse, monitoring of decoy logins and other credentials
embedded in the document content by external systems
will generate an alert that is correlated with the decoy
document in which the credential was placed.

This extensive set of monitors forces the attacker to expend
considerable effort to avoid detection, and hopefully will
serve as a deterrent to reduce internal malfeasance within
organizations that deploy such a trap-based defense. In the
proof-of-concept implementation reported in this paper, we

focus our evaluation on the fourth item. We utilize monitors
at our local IT systems, at Gmail and at an external bank.

Variability: The range of possible outcomes of a
given situation; the quality of being subject to
variation.

Attackers are humans with insider knowledge, even possibly
with the knowledge that decoys are liberally spread throughout
an enterprise. Their task is to identify the real documents from
the potentially large cache of decoys. One important property
of the set of decoys is that they are not easily identifiable due
to some common invariant information they all share. A single
search or test function would thus easily distinguish the real
from the fake. The decoys thus must be highly varied.

Clearly, a good decoy generator should produce an un-
bounded collection of enticing, conspicuous but distinct and
variable documents. They are distinct with respect to string
content. If the same sentence appears in 100 decoys, one
wouldn’t consider such decoys with repetitive information
as highly variable; the common invariant sentence(s) can be
used as a “signature” to find the decoys, rendering them
distinguishable (and clearly, less enticing).

Non-interference: Something that does not hinder,
obstructs, or impede.

How might a decoy interfere with regular operations of the
legitimate user? One would expect that the more conspicuous
a decoy is, the more it would interfere (since it could be found
more easily). Conspicuous may help catch a thief, but the
unwitting user may be ensnared as a by-product.

Although we seek to create decoys to ensnare an inside
attacker, a legitimate user whose data is the subject of an
attacker must still be able to identify their own real documents
from the planted decoys. The more enticing or believable
a decoy document may be, the more likely it would be
to lead the user to confuse it with a legitimate document
they were looking for. Our goal is to increase believability,
conspicuousness and enticingness while keeping interference
low; ideally a decoy should be completely non-interfering. The
challenge is to devise a simple and easy to use scheme for the
user to easily differentiate their own documents, and thus a
measure of interference is then possible as a by-product.

As an outsider, we presume the attacker lacks some specific
knowledge known to the creator of the real document, or the
attacker lacks access to some “physical key” owned by the
user who created the document. This crucial property therefore
requires that the legitimate owner of the document be able
to easily differentiate the real document they created from
the bogus generated to thwart the attacker. Hence, another
important property is as follows.

Differentiable: to mark or show a difference
in; constitute a difference that distinguishes; to
develop differential characteristics in; to cause
differentiation of in the course of development.

It is important that decoys be “obvious” to the legitimate
user to avoid interference, but “unobvious” to the insider
stealing information. How might we easily differentiate a

decoy for the legitimate user so that we maintain “non-
interference” with the user’s own actions and legitimate work?

The remote thief who exfiltrates all of a user’s files onto a
remote hard drive may be perplexed by having hundreds of
decoys amidst a few real documents; the thief should not be
able to easily differentiate between the two cases. If we store
a hundred decoys for each real document, the thief’s task is
daunting; they would need to test embedded information in
the documents to decide what is real and what isn’t, which
should complicate their end goals. For clarity, decoys should
be easily differentiable to the legitimate user, but not to the
attacker without significant effort.

B. The Decoy Document Distributor (D3) System

The D3 web-based service generates and distributes decoy
documents to registered users. The decoy properties guide the
design of decoy templates in D? that are used to generate
specific documents for download. The content of each decoy
document includes several types of “bait” information such
as online banking logins provided by a collaborating financial
institution?, login accounts for online servers, and web based
email accounts. In our deployment we used Columbia Univer-
sity student accounts and Gmail email accounts as bait, but
these can be customized to any set of monitored credentials.
These decoy credentials are “bait” and are enticing targets
for different types of adversaries [15], [14]. These particular
examples of bait credentials are monitored internally and
externally.

C. Decoy Document Design

The primary goal of the trap based defense is to detect
malfeasance. Since no system is foolproof, we propose that
multiple overlapping signals be embedded in the decoy doc-
uments to ensure detectability. Any alert generated by the
multiple decoys is an indicator that some insider activity
has occurred. Since the attacker may have varying levels
of sophistication, a combination of traps are used in decoy
documents to increase the likelihood one will succeed in
generating an alert. A sophisticated attacker may, for example,
disable the internal beacon, or cut off network connections
avoiding communication, disable or kill local host monitoring
processes, or they may exfiltrate documents via a web-browser
without opening them locally. The documents are designed
with several means of detecting their misuse:

e embedded honeytokens, computer login accounts created
that provide no access to valuable resources, and that are
monitored when (mis)used;

e cmbedded honeytoken banking login accounts specifi-
cally created and monitored for this trap-based tech-
nology demonstration specifically to entice financially
motivated attackers;

e a network-level egress monitor that alerts whenever a
marker, specially planted in the decoy document, is
detected (we are collaborating with Cornell to use Cayuga

3By agreement, the institution request that its name be withheld.

[5] for this purpose. Presently Snort may be used as
simple signature detector as a proof-of-concept);

e a host-based monitor that alerts whenever a decoy doc-
ument is “touched” in the file system such as a copy
operation;

e an embedded “beacon” alerts a remote server at a site at
Columbia, that we call SONAR. The website emits an
email to the registered user who created and downloaded
the decoy document. The implementation of document
beacons is described in the next section.

1) Beacon Implementation: The highly sophisticated at-
tacker will likely attempt to differentiate between a real
document and a decoy by analyzing the binary file format
prior to opening a file. This necessitates a design where
beacon code and watermarks in decoy documents are hidden
to avoid their easy identification. The attacker would surely
avoid the decoys if they could easily identify them by a simple
static test for an embedded beacon. The beacon code can be
embedded in documents in a number of ways and made to
appear statistically equivalent to its surrounding data using a
blending technique called “spectrum shaping” (see [21], [6]).
Such obfuscation techniques are very hard to defeat [16].

Using common techniques developed for malware, beacons
attempt to silently contact a centralized server with a unique
token embedded within the document at creation time. The
token is used to identify the decoy and document, IP address of
the host accessing the decoy document. In addition to passing
the token and IP address, some addition data is collected.
This is dependent on the particular document type, and the
rendering environment used during viewing of the beacon
document.

The first proof-of-concept beacons have been implemented
in Word and PDF and deployed through the D3 website.

2) Word: Microsoft Word is a rich editing platform which
allows users to automate tasks by recording a set of com-
mon actions that can be triggered on demand. These “Word
Macros” and tasks are encoded and interpreted in Microsoft’s
Visual Basic scripting language.

Due to security concerns, firewalls strictly limit the ability
of Word to access the Internet. To bypass this issue and allow
beacons to be passed to the server, the local browser can be
invoked from within a Word macro. Information such as local
machine directories, user’s credentials, and the machine’s IP
address can all be encoded and passed through the firewall by
the local browser agent. As long as the document is digitally
signed, Word will allow some level of macro activity on the
host. The macros are automatically triggered upon opening the
document.

Due to their misuse in the past, macros are sometimes
disabled on the local system. We have embedded an alternative
method suggested by [22] to allow a beacon to be triggered.
A remote image is embedded in the decoy document and
rendered by Word’s document browser when the user views the
document. The D3 website supports this feature by intercept-
ing image requests and parsing out stealthy tokens embedded
in the request.

3) Adobe PDF': PDF is an open standard published by the
ISO and is supported on most platforms and configurations. In
the latest version, Adobe has embedded a Javascript interpreter
in the application to be able to verify form data as the
user enters them in. We leverage this feature to issue a data
request upon the initial opening of the document through some
Javascript code. The beacon contains the token to identify the
document so that the system can track individual documents
as they are read across different systems. Due to security
concerns, the latest releases of Adobe Reader now prompt the
user for permission to contact a remote server. On the users
own host, this action can be “memorized” so that subsequent
requests do not issue warnings. Earlier versions of the Adobe
Reader do not show an alert, allowing them to silently contact
the SONAR server also on remote systems. Not all readers
support the Javascript PDF so this particular beacon is limited
on those systems where the default reader is not Adobe.

The D? site includes a tutorial guiding the user on how
to generate, download, and open a newly generated decoy
document to “memorize” beacon triggers to allow silent com-
munication on the host.

4) Embedded Marker implementation: Beacon documents
contain embedded markers that a host or network sensor
may detect either when documents are loaded in memory or
egressed in the open. The markers are constructed as a unique
pattern of word tokens uniquly tied to the document creator.
The sequence of word tokens are stealthy embedded within the
beacon document’s meta-data area or reformated as comments
within the document format structure. Both locations are ideal
for embedding stealthy markers since most rendering programs
ignore these parts of the document. The embedded markers
can be used in Snort signatures for detecting exfiltration. The
technique is partly based on ”Chaffing and winnowing” which
is an attempt to maintain network confidentiality in the absence
of encryption [29].

V. EVALUATION
A. Masquerade detection using Decoy Documents as Bait

We have defined the general properties that decoys should
have and discussed how we may measure these properties, but
here we focus on the most important property: detectability.
Under ideal testing conditions, decoy efficacy could be shown
through deployment on true operational systems either within
an enterprise environment, or on personal computers, by the
number of attacks they are able to detect or thwart (they have a
deterrence effect). However, given reasonable time limits, the
infrequency of attacks within the insider threat model makes
this approach impractical within a university environment. As
we mentioned we are now seeking a larger user population to
study and measure decoy generation over time.

Another approach to evaluation is a user study in which
users are organized and asked to evaluate decoys based on
each of the key decoy properties mentioned earlier. We take
human evaluation to be the gold standard of evaluation since
the human mind is the ultimate target of our decoys. That is,
we wish to show how well our decoys can induce deception

on human test subjects. One of the challenges of conducting a
traditional user study lies in the logistics of obtaining volun-
teers. In our methodology, we attempt to reduce this challenge
by leveraging external attackers to serve as participants in
our study on masquerade detection. To do so, we “invite”
attackers (or more accurately, bamboozle them) into our study
by attracting them with a set of vulnerable systems on the
university network, which also serve as our testing platform.

Our test platform is embedded within a honeynet [9]. It
consists of several virtual machines running Linux and con-
figured with Sebek [10] to capture attacker activities including
commands and file references. In order to limit potential
damage from system compromise and still allow for testing,
we configured the honeynet to allow all incoming connections
while restricting the number of outgoing connections.

The virtual machine hosts within the honeynet were con-
figured with accounts and home directories for three decoy
usernames. To make the environment as real as possible,
genuine data from personal accounts on other systems were
loaded into each of the home directories. We changed name
references within the data to reflect those of the appropriate
decoy users. In total, our phony user accounts contained 15 or
more directories and 50-100 files. The hosts were then seeded
with several of D3’s decoy files using the decoy distributor
utility. The decoy files were generated to have conspicuous
names such as “stolen passwords”, “credit card”, “private
data”, and “Gmail AccountInfo”, but were distributed within
the polluted home directories of the decoy accounts, making
the environment as real as possible.

To lure test subjects into the study, our initial approach
was to use attackers that attempt to gain internal access via
password scanning. Password scanning attacks are common on
the university network, where attempts on a typical machine
are in the range of thousands per day. To enable attacker
access, we conducted a short study to first determine the most
common usernames and passwords (excluding those for root
and actual users) used in these attempts. We created accounts
with several of these usernames and passwords, to quickly
learn that this breed of attacker was not going to suffice for
our user study; their sole purpose seemed confined to creating
zombies for botnets. While this may be a valid threat to study
while evaluating decoys [7], allowing bots to operate on the
university network poses too much risk.

In our second and more aggressive approach, we narrowed
our recruitment effort to web forums and IRC channels with
the expectation and hope that we would get fewer attacks
involving botnets. In this approach, we selected several high
volume forums to solicit volunteers and posted variations of
invitations with messages that included hostnames, usernames,
and passwords. The idea was to provide just enough innocent-
looking information from a novice to lure people into our
machines without providing direct evidence that we were
conducting a deception-based experiment. Note that we de-
liberately omit the names of the forums used and the exact
details of the messages, as this is an ongoing study.

While our methodology could, in theory, provide anyone

with access to our test platform, by selectively choosing the
location of postings and contents postings, we expected to
recruit two primary classes of individuals:

e [egitimate and generally curious computer-savvy individ-
uals. These users have no interest in extending privileges
in an unauthorized way, but participate in the study out
of curiosity, as there is no other incentive.

e Unscrupulous opportunistic hackers who attempt to ex-
tend their network access by whatever means afforded to
them. These individuals are enticed by our posting as they
see our machines as low “hanging fruit” in their targeting
campaign.

In either case, we believe these individuals to be suitable
candidates for our study (with one caveat mentioned later).
Both classes of individuals can be used in measuring the
enticement property of decoys. We measure this by examining
the behavior exhibited in file access, both with respect to the
particular files a user attempts to read and in the order in which
the files are read. For example, if all users consistently read
the same file first, we know the file must indeed be enticing.

In regards to indistinguishability of the decoys, we note
that the content of these decoys contains bait information in
the form of monitored credentials on real systems. Certainly,
if our attackers take the time to use the decoy credentials,
there is an implication that they must also be believable. More
importantly though, if they use the credentials and we detect
their use, we have also answered the most important question
of - can we detect the attacker? Note that the first class of the
individuals is by definition, not useful for this part of the study.
That is, attempting to use credentials found on our machines
is clearly an illicit activity, which they would not partake in.
Unfortunately, we do not have a good way of distinguishing
the two classes, so we get slightly skewed results.

Over the span of the first week 4 our hosts netted 20
unique users, determined anecdotally by source IP address
and reinforced by the unique behaviors exhibited by each.
The length of user sessions ranged from minutes to hours.
The users that spent hours were focused on activities that
included writing code and attempting to install other software,
presumably with malicious intent. The most common activities
exhibited for users upon login included activities such as:
determining who else was on the machine, checking and
deleting the command history, and exploring the system (i.e.,
reading the most conspicuous files). We note that in almost
all cases, our decoys were among the first few files viewed by
users upon initial login (as noted, viewing the history file was
also popular). The most significant observations were made
for 6 of the 20 unique users:

1) There were three attempts to use Gmail credentials that
were contained in a decoy document, which triggered
an alert on SONAR.

2) One person succeeded in changing the password on a
bogus Gmail account, which also triggered a SONAR

4We note that most attacks occurred within the first 8 hour period after
posting.

alert.

3) There were at least two attempts to exfiltrate decoy files
with Secure Copy and Secure FTP, one named “stolen-
passwords” that contained credentials to the university
systems.

4) There was one attempt to use the university credentials
contained in the “stolenpassword” file, which we were
alerted to by the monitor that signaled an alert to
SONAR.

We take these results as evidence that D3/SONAR indeed has
value as a defense against masqueraders. While only 5 of the
20 users sounded an alarm on SONAR, we emphasize that our
methodology did include an unknown proportion of benign
users. Furthermore, the focus of study was on masquerade
detection; admittedly, we do not yet have a good way of
evaluating our system on traitors, but this will be the focus
of future work.

One flaw in our evaluation methodology that was revealed
during testing was that we allowed users to make changes to
the file system. We did this deliberately to increase the realism
of the environment in the experiments. The problem this
created was that it made decoy defense vulnerable to deletion
(e.g., several of our visitors executed wholesale deletion of
files with “rm -rf *”) . This poses a problem in our testing
methodology, but not necessarily in practice. That is, the act
of deleting files is in itself a detectable behavior that would
alert monitors of suspicious behavior.

In this study, we omitted testing decoy documents with
embedded beacons. The honeypots set up to attract remote
attackers were stripped down Linux machines that had no
installed applications necessary to open and render the decoy
documents. We believe the value of beacon documents to be
self-evident. We encourage the reader to visit and test the D?
site, and participate in our planned longitudinal study. In the
next section we describe tests of the beacon implementation
on multiple hosts.

B. Beacon Implementation Tests

To test the robustness of the beacon implementations we
wanted to them it on the most common configurations of
operating systems and document viewers. To this end, we
contacted a random group of users across the Internet and sent
them each two types of beacon documents along with a request
that they open them as part of a benign experiment. The results
of tests conducted on PDF and Word beacons are presented
in Table 1 and 2 below. These results are a representative
sample of real users across multiple hosts accessing the beacon
documents. For the most part the beacon technology works
well on the windows platform while not as well on Mac
and Linux operating systems. The reason is that the default
PDF reader is not Adobe’s and does not execute Javascript
embedded within the documents. Similarly, Word document
beacons do not work when applications other than Microsoft
Word (e.g. OpenOffice or Google Docs) are used to open them.
We are currently researching ways to address these limitations
and will focus on them in future work.

TABLE I
PDF BEACON TEST RESULTS

oS Application ~ #Tests #Pings
Windows XP Adobe 6 6
Windows Vista Adobe 4 4
Mac OS Preview 1 0
Mac OS Adobe 1 1
Ubuntu Evince 1 0

TABLE II
WORD BEACON TEST RESULTS

oS Application ~ #Tests #Pings
Windows XP Word 5 4
Windows XP GoogleDocs 1 0
Windows Vista Adobe 4 4
Mac OS Word 2 2
Linux OpenOffice 1 0

VI. CONCLUSION

Our work focuses on the study and creation of bait informa-
tion with the aim of exposing or thwarting the exploitation of
exfiltrated information. Although the use of bait information
and similar trap-based defenses is well known, most of those
efforts have focused either on artifacts that are logically sepa-
rate from the operational systems (e.g., honeypots [23]) or on
low-level snippets of information created manually (e.g., fake
database records [24]). The D? system is a scalable and auto-
mated trap-based defensive system that forces attackers to ex-
pend considerable effort to identify realistic useful information
from purposely planted bogus information intended to deceive.
Naturally, the probability of exposing a malicious insider with
trap-based defense tactics increases with the amount of decoy
information that is generated and disseminated. D? offers the
novel service of automatically creating and managing decoy
documents, enabling the throttling of bait based on the desired
protection level or cost (e.g., interference) one is willing to

pay.
REFERENCES

[1] Bell D. E. and LaPadula L. J., “Secure Computer Systems: Mathematical
Foundations”. MITRE Corporation, 1973.

[2] Bell, J. and Whaley, B. Cheating and Deception, Transaction Publishers,
New Brunswick, NJ. 1982.

[3] Butler, J., Sherri S., “Security: Spyware and Rootkits”, Login, Vol 29,
No 6, December 2004.

[4] Clark, D. D. and Wilson, D. R., “A Comparison of Commercial and
Military Computer Security Policies”. IEEE Symposium on Security and
Privacy, 1987.

[S] Demers, A., Gehrke, J., Hong, M., Panda, B., Riedewald, M., Sharma,
V., White, W., “Cayuga: A General Purpose Event Monitoring System”.
CIDR 2007.

[6] Detristan, T., Ulenspiegel, T., Malcom Y., and Von Underduk, M. S.
“Polymorphic Shellcode Engine Using Spectrum Analysis”. Phrack 11,
61-9 (2003).

[7] Friess, N., and Aycock, J.,“Black Market Botnets”, Department of Com-
puter Science, University of Calgary, TR 2007-873-25, July, 2007.

[8] Hoang, M. “Handling Today’s Tough Security Threats”, Symantec Secu-
rity Response, 2006.

[9] The Honeynet Project. http://www.honeynet.org

[10] The Honeynet Project, “Know Your Enemy: Sebek, A Kernel based data
capture tool”, November, 2003.

[11] Honeypots. http://www.honeypots.org/

[12] Honeypot Mailing List, Security Focus.
http://www.securityfocus.com/archive/119

[13] Katz, John and Yehuda L., Introduction to Modern Cryptography,
Chapman and Hall CRC Press, 2007.

[14] Kravets, D., "From Riches to Prison: Hackers Rig Stock Prices”, Wired
Blog Network, September, 2008.
http://blog.wired.com/27bstroke6/2008/09/
from-riches-to.html

[15] Krebs, B., “Web Fraud 2.0: Validating Your Stolen Goods”, The Wash-
ington Post, August 20, 2008.

[16] Li W., Stolfo S. J., Stavrou A., Androulaki E., and Keromytis A., A
Study of Malcode-Bearing Documents”. DIMVA, 2007.

[17] Maloof, M. and Stephens, G. D., “ELICIT: A System for Detecting
Insiders Who Violate Need-to-know”. Recent Advances in Intrusion
Detection (RAID), 2007.

[18] McRae, Craig M. and Vaughn, Rayford B. “Phighting the Phisher:
Using Web Bugs and Honeytokens to Investigate the Source of Phishing
Attacks”, Proceedings of the 40th Hawaii International Conference on
System Sciences, 2007.

[19] Nong Ye, “Markov Chain Model of Temporal Behavior for Anomaly
Detection”, Proceedings of the 2000 IEEE Workshop on Information
Assurance and Security, United States Military Academy, West Point,
NY,6-7 June, 2000.

[20] Richardson R., “CSI/FBI Computer Crime and Security Survey”, 2007.

[21] Song Y., Locasto M. E., Stavrou A., Keromytis A. D., and Stolfo S. J..
“On the infeasibility of modeling polymorphic shellcode”. In Proceedings
of the 14th ACM conference on Computer and communications security
(CCS07), pages 541-551. ACM, 2007.

[22] Smith, R. M., “Microsoft Word Documents that Phone Home”, Privacy
Foundation, August, 2000.

[23] Spitzner, L., “Honeypots: Catching the Inisder Threat” Proceedings of
ACSAC. Las Vegas, December, 2003.

[24] Spitzner, L., “Honeytokens: The Other Honeypot”, Security Focus, 2003.

[25] Stoll, C. The Cuckoo’s Egg, Doubleday, 1989.

[26] Symantec. Global Internet Security Threat Report, April 2008. Trends
for July —December 07.

[27] Yuill, J., Zappe M., Denning D., and Feer F.. “Honeyfiles: Deceptive
Files for Intrusion Detection”, Proceedings of the 2004 IEEE Workshop
on Information Assurance, United States Military Academy, West Point,
NY, June 2004.

[28] Yuill, J., D. Denning, Feer, F., “Using Deception to Hide Things from
Hackers : Processes, Principles, and Techniques”, Journal of Information
Warfare, 5(3):26-40, November, 2006.

[29] Rivest L. Ronald. ”Chaffing and Winnowing: Confidentiality without
Encryption”, MIT Lab for Computer Science, March 18, 1998

APPENDIX

AOL Read hitp

Keep as New | Reply Forward M Action Delete

While Iam away....
From Frank Secola <fsecola@gmail.coms Hide
To: /. teryg@aol.com
Date: Tue, 16 Sep 2008 12:11 pm

Terry,

am gone.
will not have internet connectivity, but
please use the credit card info below.

Thanks.
Frank

Gmail username: fsecola
Gmai Password: wxyz1234

ATM PIN: 3983

Crecit Card: 4532681078425093
CVV: 174

Exp. Date: 09/2011

Mother's Maiden Name: Sherican
Birth date: 03/09/1982

Name: Frank Secola

Address: 60 E Rio Salado, Apt#d
City: Tempe

State: AZ

Zip: 85281

Tel: 480-682-5100

NOTICE: This e-mail is intended solely for the use of the individual (s,

ot copy or disclese it to anyene else.

Fig. 1.
information.

Department of the Treasury—internal Revenue Service (

Spam

'l be on vacation for the next & weeks. Please check my email and keep me apprised of anything aritical while

can be reached at (416) 869-3456. If you need to make any puchases,

received this e-mail in error, please notfty the sender immeciately, delete the e-mail from your computer and do

webmail.aol.com3857 50l en-us Mail Display Message.asp

Print
Agd ta; Blog, To Do, C

) to whom it is addressed. If you believe you

Decoy sample email message with embedded gmail account

S idual Income Tax Return 5 Use Only—Do not wrt or staple in s space.

For the Jan. 1-Dec. 31, 2007, or other tax year beginning OMB No. 1545-0074

Your first name and initial Last name Your social security number

= Mark Myers 383 {30 | 7790

» [”a:f:‘; 1f @ Joint retum, spousa's first name and nfial | Last nama ‘Spouse’s social security number
Use the IRS ' '
label. Home address (number and street). If you have a P.O. box, see page 12. Apt. no. “You must enter
Othenwise. A yourssu avove. A
please print 518 Tully Street ¥ (s
or type. City, town or post office, state, and ZIP code. If you have a forsign address, see page 12. Checking a box below will not
Presidential Westland,MI 48185 change your tax or refund.

Election Campaign p» Check here if you, or your spouse if filing jointly, want §3 fo go to this fund (see page 12) >

O vou [spouse

» 1[4 single 4 [Head of household fwith qualifying person). (Ses page 13) |
Filing Status 2 [Maried fiing jointy (even if only one had income) he qualfying person i 2 child but not your dspendant, enter
Check only 3 [Married fiing separately. Enter spouse’s SSN above Mischidsnemehee > 0
one box. and full name here. b 5 [Quaitying widowier) with dependent child (see page 14)

. 6a [¢] Yoursalt. If someone can claim you as a dependent, do not check box 6a Boxos chocked
Exemptions b [Ispouse . . v 0w L No. of children

Fig. 2.

: - 13) Dependent’s | W)V f qualiying o
¢ Dependents: L Dpents s o | o g ived wih you
(1) First name Last name ourry jou_ credit { « did not live with
you to di 3
If more than four by
Ie Dependents on 6c
page 15 not entered ab
‘Add numbers onf 1
d_Total number of damed lines above >
7 Wages, salaries, tips, etc. Atach Forms)W-2 7 61742
Income 8a Taxable interest. Attach Schedule B if required 8a
Attach Form(s) b Tax-exempt interest. Do notinclude onlinega . . , L8| | |
W-2here. Also 9a Ordinary dividends. Attach Schedule Bif required . . - %

Decoy tax document with bogus user information.

Darts Price: $69.99
DMI Sports Bristle DartBoard with Solid Wood Cabinet
Corningware Price: $46.14
Corning\Ware French White 12-Piece Bake and Serve Set
Microwave Price: $49.77
GE 0.7 cu. ft. Capacity Countertop Microwave Oven, JES738WJ
AA Price: $21.40
Duracell Batteries, AA Size, 16
Sub:$187.30
Shipping: $13.67
Total: $200.97

John Hintz Visa: 4929992251203640
2425 Rosewood Court Expires: 4/2012
Gary,MN 57237 Email: John.C.Hintz@dodgit.com

Fig. 3. Decoy eBay receipt.

